Revision (last lecture was a Q/A session)

- Pointer Arithmetic
 - computing locations in 1d arrays
 - computing locations in 2d arrays

- 4 ways to handle 2d arrays
 - as a continuous 1d array
 - int *A;
 - as a 2d array with both dimensions declared
 - int A[M][N]
 - as 2d array with 2nd dimension declared
 - int A[][N]
 - as a pointer to pointer
 - int **A;

- when do you use pointers?
 - dynamic allocation and declaration to not happen at the same place
 - returning dynamically created objects/values/arrays
 - use a variable to point to various objects

- why the following code counts 1 string extra?

```c
count=0;

while (!f.eof()) {
    f >> str;
    count ++;
}
```
Sorting

• $A = \{ 3, 1, 10, 22, 4, 2, 178, 11, 29 \}$

• How to sort the array?
keep comparing \(A[i] \) and \(A[i+1] \) and keep swapping if needed
In each iteration, one element will be at its position
→ Bubble sort
<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>1</th>
<th>8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
Sorting

```
4 3 1 8 2
3 4 1 8 2
3 1 4 8 2
```
Sorting

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>1</th>
<th>8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
Sorting

4 3 1 8 2
3 4 1 8 2
3 1 4 8 2
3 1 4 2 8
1 3 4 2 8
Sorting

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Sorting

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>1</th>
<th>8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Searching through a sorted array

Binary Search

- $A = \{3, 5, 6, 66, 88, 199, 200, 291, 300\}$
- does A have element 291?
- where to start searching?
- we know that the array is sorted
- how to you search a word through a dictionary?
 - do you start from first page always?
Binary Search

Is it the element that we want?
is it smaller than this one?
is it larger than this one?
Binary Search

| 3 | 5 | 6 | 66 | 88 | 199 | 200 | 291 | 300 |

Is it the element that we want? is it smaller than this one? is it larger than this one?
Binary Search

3 5 6 66 88 199 200 291 300

Is it the element?