
Architectural Patterns

CS 718 lecture series

Prof. Rushikesh Joshi
IIT Bombay

wrapper

provide a single layer of abstraction on top of many related
functions

wrapper – an example

● the semop system call in unix-- it wraps around
many functions related to semaphores
–

 int semop(int semid, struct sembuf *sops, unsigned nsops);

Layering

A large system is decomposed into layers of abstractions

Layers: examples

● operating systems – system calls, inner kernel,
hardware abstractions, hardware

● networking layers
● APIs-platform independent Implementation-

Platform dependent implementation
● 3-tiered architecture – UI, BL, Data

Pipelines

data
in

data
out

processing steps in a pipeline are sometimes referred
to as filters, and the connectors as pipes

stream of data passes through pipes and filters

pipelines-- examples

● language processing – lexical analysis, syntax
analysis, semantic analysis, code generation,
optimization

● unix pipes and filters
● instruction pipelines

The difference between layers and
pipes

client-server

client

server

call/service invocation

return results

client does not provide an interface, the only
communication from the server to client is through return
results or exception/error values

client-server examples

● Lan services on a unix machine/windows machine
– ldap, portmapper, nslookup, directories

● RMI, RPC, Web-servers and web clients

Blackboard

blackboard

knowledge
sources and
task solvers

blackboard
controller

activates

monitors

operate on/use/share

collaborative problem solving through knowledge sharing

blackboard-examples

● Linda tuple space
● shared memory based parallel/distributed problem

solvers

Master-Slave

master

slave slave slave

task distribution

master-slave example

● used in parallel computing on clusters
– master process splits a big task into subtasks,

distributes and coordinates slave processes, collects
and collates results

Broker

coordinating communication (requests, replies, exceptions)
in a distributed remote service invocation scenario

client proxy broker
stub/

skeleton
server

broker--examples

● direct communication broker- connect and then let
client communicate directly

● trader broker (select one of many servers)
● middleware brokers (e.g orb in corba)

– locating servers, supporting interoperability

Example: Activation Broker -1
server
machine

client machine

service repository

client
process

messaging
broker

Example: Activation Broker -2
server
machine

client machine

service repository

client
process

specific req

messaging
broker

Example: Activation Broker -3
server
machine

client machine

service repository

activation
server

client
process

messaging
broker

Example: Activation Broker -4
server
machine

client machine

service repository

activation
server

client
process

messaging
broker

USE

Example: Activation Broker -5
server
machine

client machine

service repository

activation
server

client
process

messaging
brokerreqister

USE

Example: Activation Broker -6
server
machine

client machine

service repository

activation
server

client
process

USE
specific req

messaging
brokerreqister

Example: Activation Broker -7
server
machine

client machine

service repository

activation
server

client
process

USE
specific req

messaging
brokerreqister

forward
specific req

Example: Activation Broker -8
server
machine

client machine

service repository

activation
server

client
process

USE
specific req

messaging
broker

server

LOAD

reqister

forward
specific req

Example: Activation Broker -9
server
machine

client machine

service repository

activation
server

client
process

USE
specific req

messaging
broker

server

LOAD

server start
 event

Example: Activation Broker -10
server
machine

client machine

service repository

activation
server

client
process

specific req

messaging
broker

server

specific req

Activation Policies

● Per client's request
● Per client
● Per service request
● Per server

Who does the registration into
repository

● A separate application that creates server
implementations

● Server implementations are registered in
implementation repositories

● Server interfaces can be registered with interface
repositories

Main title

Row 1
Row 2
Row 3
Row 4

Model - View – Controller -1

controller
Row 1 Row 2 Row 3 Row 4

0

2

4

6

8

10

12

Main title

view

10 20 1
20 10 2
30 15 2
30 12 1

pradeep
vinay
namita
yogita

Model

Main title

Row 1
Row 2
Row 3
Row 4

Model - View – Controller -2

controller
Row 1 Row 2 Row 3 Row 4

0

2

4

6

8

10

12

Main title

view

pradeep 10 20 1
vinay 20 10 2
namita 30 15 2
yogita 30 12 1

Model

user/control
inputs

Main title

Row 1
Row 2
Row 3
Row 4

Model - View – Controller -3

controller
Row 1 Row 2 Row 3 Row 4

0

2

4

6

8

10

12

Main title

view

pradeep 10 20 1
vinay 20 10 2
namita 30 15 2
yogita 30 12 1

Model

update
model

user/control
inputs

Main title

Row 1
Row 2
Row 3
Row 4

Model - View – Controller -4

controller
Row 1 Row 2 Row 3 Row 4

0

2

4

6

8

10

12

Main title

view

pradeep 10 20 1
vinay 20 10 2
namita 30 15 2
yogita 30 12 1

Model

update
model

user/control
inputs

change
 intimation

Main title

Row 1
Row 2
Row 3
Row 4

Model - View – Controller -5

controller
Row 1 Row 2 Row 3 Row 4

0

2

4

6

8

10

12

Main title

view

pradeep 10 20 1
vinay 20 10 2
namita 30 15 2
yogita 30 12 1

Model

update
model

user/control
inputs

change
 intimation

pull
updates

Model - View – Controller -6

Model

model view

controller

change
 intimation

update
modelpull

updates

input events sent to controller
model contains the state information
model is displayed in view

user inputs

view messagescontrol view

Properties of MVC

● controller not aware how the state is displayed
● model not aware of how the state is displayed
● controller does not directly inform the view about

updates
● model sends update intimations to view
● the view can pull in the updates

mvc -- examples

● smalltalk MVC – different look and feel standards
● Java pet-store example
● observer based systems

Pull Type Architecture

Push type Architecture

Combining them.. Pull Push
Architecture

Combining them.. Push Pull
Architecture

Combining them.. Push Push
Architecture

Combining them.. Pull Pull
Architecture

Design issues

● Buffer spaces
– at source
– at intermediate channel

● Connectivity
– dynamic
– disconnections

● Service orientation, payment model
● Failure Handling
● Performance

Design of interfaces

interface pushConsumer {

 notifyEvent(Event e);
 disconnectingPushPublisher();

}

interface pushPublisher {

 subscribe (pushConsumer c)
 unsubscribe (pushConsumer c)

}

interface pullPublisher {

 boolean subscribe (pullConsumer c);
 unsubscribe (pullConsumer c);
 Event pullevent ();
}

interface pullConsumer {

 disconnectingPullPublisher();
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

