Aspect Orientation: An
introduction

A Tutorial conducted at NCOQOT-2004
‘R. K. Joshi

Abstractions
events types D-structures

variables functions - exceptions

structures |
classes objects COMACCLORS
contmuations

mponent
COUIpORCIS PrOCESSES
packages

threads agents b
synchronizers amoeNts fieg

classes objects wCO n
CoMponents wcesses
*reads .I SErvICes

~agents .
synchronizets ambients

Abstractions, Related CeSSes
CVCLLé peESs -Structires
vamavles | v

s unetions E¥pions

connectors

tinua

pack

1008
Ages

files

Abstractions, Related Processes and

Properties

D-structuH i X
ceptions

DeCtors

1€CLS

mpogents ...
reads agenteiy ‘
synchronizers &k

—!

Is this space enough for today’s
computations’?

O Maybe enough
O but ...

O Do you have a clean organized view of all
aspects of your software that 1s traceable from
architecture to implementations?

0 Do you maximize reuse?
0 And Eliminate All Redundancies?

we may be are asking for too much, but let’s make a beginning...

m Separation of concerns?

m Separation of concerns 18
fine, but...

m Separation of concerns 18
fine, but...where 1s the
integration?

wThe key 1s to separate but
be integrated

—!
Let’s Take a look at Some Research

Results

0 Code redundancies reported (an old research)
Application projects: 75%
System programs: 50%
Telecommunication projects: 70%

O Reengineering projects find redundancies and
eliminate them: 20-50%

O A latest study: 60% code in one Java class
library was redundant

—!

Is it easy to say ‘Eliminate
Redundancies’?

O So how will you eliminate redundancies and
still address the concerns handled by them?

0 Can’t I keep one copy of the redundant code
and simply use it as a black box using
conventional techniques?

Not always! — It depends on your technology
choices

—!

Programming paradigms influence the
way we organize software

O They provide rules on structuring

O They provide varying flexibility

O They provide ways to represent organized logical 1deas into
organized physical manifestations

O We select paradigms based on our needs

O New paradigms open up new possibilities

Opcodes -- assembly language -- fortran — lists — logic programming
--- procedural programming — functional programming -- object
oriented — distributed — parallel — real time — constraint based — event
based — service oriented — component oriented ...

Single abstraction languages

0 Limitations on what you can express without
cross-cutting

O E.g.

» 1nvariants across objects in OOPLs

» Whenever function pop() 1s invoked, print the
return value to a file

e ————
Most design Pattern implementations

cannot be reused as 1t 1s

0 E.g. singleton:
= Private constructor
m A class variable

® A class method

O Method names are specific and cannot be

reused as there 1s no way to rename method
names automatically

—!

Adding persistence to your executing
Process

O Is it possible to express this requirement on
top of an executing process and simply turn it
into a persistent image”?

0 What about an object oriented program
executable 1n Java/C++ runtime environment?

Since Programming paradigms
influence the way we organize software

0 The problem can be attacked at programming
level

= But that’s not done..

There are models too!

0 The problem can be attacked at programming
level

0 And also at modeling level

0O Architecture and even at Requirements level

————————
Pattern language Approach

Pattern descriptions in keywords related to patterns
+
Application specific code

—> code for one pattern

But the problem 1s that patterns do not occur 1solated!

———
The AOP approach

O Express each of the system’s aspect in a
separate and natural form

m Capture aspects

0 Then automatically combine these forms into
one executable form

» Aspect Weaving

O Thus focus in AOP approaches 1s on ‘Expression’ :
Separate but meant for integration

m Code tangling

O (mixup of multiple concerns at one place)

m Code scattering
O (aconcern is scattered over many places)

O Execution environments take care of the actual
interactions/integration

AOP constructs summary

O Join points: A point 1n a source program
» Method call

Constructor call

Variable read/write

Exception handler

Variable initializer

Destructor

AOP constructs summary

O Point Cuts: a set of join points + optionally some of
the execution context values

m Call (void Point.setX(int))

O A call to a specific function
m Call (public * Figure.*(..))
o Calls to all public functions on Figure

= Pointcut move: call ... |l call ...
O Any of the above calls

m !instanceof (X) && call ...

o Call originates not from instance of X and to specified method

AOP constructs summary

O Advices: that 1s executed at the code at joinpoints for given
pointcuts
m Before advice
O After reaching a join point, but before the computation proceeds
m After advice
O After the computation at join point has completed
®m Around advice

0 Run first. Proceed() inside around advice makes the computation
proceed

m After returning
= After throwing

O Introductions: add new fields to classes, change relationships

Singletone again

O Is it possible to capture the singleton
requirement on many classes at one place?

» Possible in an AOP paradigm

Some more examples

O Aspects 1n a distributed objects domain
» Object’s functionality

It’s location

It’s itinerary

Communication and synchronization

Its persistence

Its security

Some more examples

O Aspects in an OS kernel

m Process related attributes
» Scheduling algorithm

m Memory allocation policies
= Memory allocated to a process
» Locality of reference policies

O Will modifying one need modification of the other?

————————————————
Early Aspects

0 Crosscutting properties at requirements and
architectural level
= Security

Deadlines

Persistence

Mobility

Replication

Aspect Orientation in middleware

O Write objects 1n your application first

0 Add on services to the application later

m Use AOP techniques (interceptor/static
transformation) techniques

Feature interaction problem

0 Effects of one aspect may interfere with that
of another

0 Careful ordering of aspect application 1s
important

————————
Product Line Approaches

High level transformation code

+

High level Base code

—> Actual Variant

Base-Meta Separation

O Meta-object protocols

0O Reflection

m Ideas are quite old

= Some of the recent technologies have discovered
them only now!

—!
Filter Objects Approach

Message based paradigm

Based on interfaces and capture on messages
Dynamic and First class aspects

Pluggability at runtime

Weaving not possible

Filter objects for C++/Java/CORBA/COM,
patterns, configurations

O O O O O 0O

—!
Open Problems

O Static vs. Dynamic aspects
Commercial Tools and Technologies are picking up

Early aspects and traceability into code
Aspects 1n processes
Large scale applications and actual practice

O O O O

Impact on Systems design and software Engineering
lifecycle 1n general

O

Impact on Modeling Languages
O Formal Models

