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Is this space enough for today’s
computations’?

O Maybe enough
O but ...

O Do you have a clean organized view of all
aspects of your software that 1s traceable from
architecture to implementations?

0 Do you maximize reuse?
0 And Eliminate All Redundancies?

we may be are asking for too much, but let’s make a beginning...



m Separation of concerns?



m Separation of concerns 18
fine, but...



m Separation of concerns 18
fine, but...where 1s the
integration?



wThe key 1s to separate but
be integrated
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Let’s Take a look at Some Research

Results

0 Code redundancies reported (an old research)
Application projects: 75%
System programs: 50%
Telecommunication projects: 70%

O Reengineering projects find redundancies and
eliminate them: 20-50%

O A latest study: 60% code in one Java class
library was redundant
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Is it easy to say ‘Eliminate
Redundancies’?

O So how will you eliminate redundancies and
still address the concerns handled by them?

0 Can’t I keep one copy of the redundant code
and simply use it as a black box using
conventional techniques?

Not always! — It depends on your technology
choices
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Programming paradigms influence the
way we organize software

O They provide rules on structuring

O They provide varying flexibility

O They provide ways to represent organized logical 1deas into
organized physical manifestations

O We select paradigms based on our needs

O New paradigms open up new possibilities

Opcodes -- assembly language -- fortran — lists — logic programming
--- procedural programming — functional programming -- object
oriented — distributed — parallel — real time — constraint based — event
based — service oriented — component oriented ...



Single abstraction languages

0 Limitations on what you can express without
cross-cutting

O E.g.

» 1nvariants across objects in OOPLs

» Whenever function pop() 1s invoked, print the
return value to a file



e ————
Most design Pattern implementations

cannot be reused as 1t 1s

0 E.g. singleton:
= Private constructor
m A class variable

® A class method

O Method names are specific and cannot be

reused as there 1s no way to rename method
names automatically
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Adding persistence to your executing
Process

O Is it possible to express this requirement on
top of an executing process and simply turn it
into a persistent image”?

0 What about an object oriented program
executable 1n Java/C++ runtime environment?



Since Programming paradigms
influence the way we organize software

0 The problem can be attacked at programming
level

= But that’s not done..



There are models too!

0 The problem can be attacked at programming
level

0 And also at modeling level

0O Architecture and even at Requirements level



————————
Pattern language Approach

Pattern descriptions in keywords related to patterns
+
Application specific code

—> code for one pattern

But the problem 1s that patterns do not occur 1solated!



———
The AOP approach

O Express each of the system’s aspect in a
separate and natural form

m Capture aspects

0 Then automatically combine these forms into
one executable form

» Aspect Weaving



O Thus focus in AOP approaches 1s on ‘Expression’ :
Separate but meant for integration

m  Code tangling

O (mixup of multiple concerns at one place)

m  Code scattering
O (aconcern is scattered over many places)

O Execution environments take care of the actual
interactions/integration



AOP constructs summary

O Join points: A point 1n a source program
» Method call

Constructor call

Variable read/write

Exception handler

Variable initializer

Destructor



AOP constructs summary

O Point Cuts: a set of join points + optionally some of
the execution context values

m Call (void Point.setX(int))

O A call to a specific function
m Call (public * Figure.*(..))
o  Calls to all public functions on Figure

= Pointcut move: call ... |l call ...
O Any of the above calls

m !instanceof (X) && call ...

o  Call originates not from instance of X and to specified method



AOP constructs summary

O Advices: that 1s executed at the code at joinpoints for given
pointcuts
m  Before advice
O  After reaching a join point, but before the computation proceeds
m  After advice
O  After the computation at join point has completed
®m  Around advice

0  Run first. Proceed() inside around advice makes the computation
proceed

m After returning
= After throwing

O Introductions: add new fields to classes, change relationships



Singletone again

O Is it possible to capture the singleton
requirement on many classes at one place?

» Possible in an AOP paradigm



Some more examples

O Aspects 1n a distributed objects domain
» Object’s functionality

It’s location

It’s itinerary

Communication and synchronization

Its persistence

Its security



Some more examples

O Aspects in an OS kernel

m  Process related attributes
»  Scheduling algorithm

m  Memory allocation policies
= Memory allocated to a process
» Locality of reference policies

O Will modifying one need modification of the other?



————————————————
Early Aspects

0 Crosscutting properties at requirements and
architectural level
= Security

Deadlines

Persistence

Mobility

Replication



Aspect Orientation in middleware

O Write objects 1n your application first

0 Add on services to the application later

m Use AOP techniques (interceptor/static
transformation) techniques



Feature interaction problem

0 Effects of one aspect may interfere with that
of another

0 Careful ordering of aspect application 1s
important



————————
Product Line Approaches

High level transformation code

+

High level Base code

—> Actual Variant



Base-Meta Separation

O Meta-object protocols

0O Reflection

m Ideas are quite old

= Some of the recent technologies have discovered
them only now!
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Filter Objects Approach

Message based paradigm

Based on interfaces and capture on messages
Dynamic and First class aspects

Pluggability at runtime

Weaving not possible

Filter objects for C++/Java/CORBA/COM,
patterns, configurations

O O O O O 0O
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Open Problems

O Static vs. Dynamic aspects
Commercial Tools and Technologies are picking up

Early aspects and traceability into code
Aspects 1n processes
Large scale applications and actual practice

O O O O

Impact on Systems design and software Engineering
lifecycle 1n general

O

Impact on Modeling Languages
O Formal Models



