
Aspect Orientation: An
introduction
A Tutorial conducted at NCOOT-2004
-R. K. Joshi

Abstractions

Abstractions, Related Processes

Abstractions, Related Processes and
Properties

Is this space enough for today’s
computations?
� Maybe enough
� but …
� Do you have a clean organized view of all

aspects of your software that is traceable from
architecture to implementations?

� Do you maximize reuse?
� And Eliminate All Redundancies?

� we may be are asking for too much, but let’s make a beginning…

�Separation of concerns?

�Separation of concerns is
fine, but…

�Separation of concerns is
fine, but…where is the
integration?

�The key is to separate but
be integrated

Let’s Take a look at Some Research
Results
� Code redundancies reported (an old research)

� Application projects: 75%
� System programs: 50%
� Telecommunication projects: 70%

� Reengineering projects find redundancies and
eliminate them: 20-50%

� A latest study: 60% code in one Java class
library was redundant

Is it easy to say ‘Eliminate
Redundancies’?
� So how will you eliminate redundancies and

still address the concerns handled by them?

� Can’t I keep one copy of the redundant code
and simply use it as a black box using
conventional techniques?
� Not always! – It depends on your technology

choices

Programming paradigms influence the
way we organize software

� They provide rules on structuring
� They provide varying flexibility
� They provide ways to represent organized logical ideas into

organized physical manifestations

� We select paradigms based on our needs
� New paradigms open up new possibilities

� Opcodes -- assembly language -- fortran – lists – logic programming
--- procedural programming – functional programming -- object
oriented – distributed – parallel – real time – constraint based – event
based – service oriented – component oriented …

Single abstraction languages
� Limitations on what you can express without

cross-cutting

� E.g.
� invariants across objects in OOPLs

� Whenever function pop() is invoked, print the
return value to a file

Most design Pattern implementations
cannot be reused as it is
� E.g. singleton:

� Private constructor
� A class variable
� A class method

� Method names are specific and cannot be
reused as there is no way to rename method
names automatically

Adding persistence to your executing
process
� Is it possible to express this requirement on

top of an executing process and simply turn it
into a persistent image?

� What about an object oriented program
executable in Java/C++ runtime environment?

Since Programming paradigms
influence the way we organize software

� The problem can be attacked at programming
level

� But that’s not done..

There are models too!

� The problem can be attacked at programming
level

� And also at modeling level

� Architecture and even at Requirements level

Pattern language Approach
Pattern descriptions in keywords related to patterns
+
Application specific code

� code for one pattern

But the problem is that patterns do not occur isolated!

The AOP approach
� Express each of the system’s aspect in a

separate and natural form
� Capture aspects

� Then automatically combine these forms into
one executable form
� Aspect Weaving

� Thus focus in AOP approaches is on ‘Expression’ :
Separate but meant for integration

� Code tangling
� (mixup of multiple concerns at one place)

� Code scattering
� (a concern is scattered over many places)

� Execution environments take care of the actual
interactions/integration

AOP constructs summary
� Join points: A point in a source program

� Method call
� Constructor call
� Variable read/write
� Exception handler
� Variable initializer
� Destructor

AOP constructs summary
� Point Cuts: a set of join points + optionally some of

the execution context values
� Call (void Point.setX(int))

� A call to a specific function

� Call (public * Figure.*(..))
� Calls to all public functions on Figure

� Pointcut move: call … || call …
� Any of the above calls

� !instanceof (X) && call …
� Call originates not from instance of X and to specified method

AOP constructs summary
� Advices: that is executed at the code at joinpoints for given

pointcuts
� Before advice

� After reaching a join point, but before the computation proceeds
� After advice

� After the computation at join point has completed
� Around advice

� Run first. Proceed() inside around advice makes the computation
proceed

� After returning
� After throwing

� Introductions: add new fields to classes, change relationships

Singletone again
� Is it possible to capture the singleton

requirement on many classes at one place?

� Possible in an AOP paradigm

Some more examples
� Aspects in a distributed objects domain

� Object’s functionality
� It’s location
� It’s itinerary
� Communication and synchronization
� Its persistence
� Its security

Some more examples
� Aspects in an OS kernel

� Process related attributes
� Scheduling algorithm

� Memory allocation policies
� Memory allocated to a process
� Locality of reference policies

� Will modifying one need modification of the other?

Early Aspects
� Crosscutting properties at requirements and

architectural level
� Security
� Deadlines
� Persistence
� Mobility
� Replication

Aspect Orientation in middleware

� Write objects in your application first
� Add on services to the application later

� Use AOP techniques (interceptor/static
transformation) techniques

Feature interaction problem
� Effects of one aspect may interfere with that

of another

� Careful ordering of aspect application is
important

Product Line Approaches
High level transformation code

+

High level Base code

� Actual Variant

Base-Meta Separation
� Meta-object protocols

� Reflection

� Ideas are quite old
� Some of the recent technologies have discovered

them only now!

Filter Objects Approach
� Message based paradigm
� Based on interfaces and capture on messages
� Dynamic and First class aspects
� Pluggability at runtime
� Weaving not possible
� Filter objects for C++/Java/CORBA/COM,

patterns, configurations

Open Problems
� Static vs. Dynamic aspects

� Commercial Tools and Technologies are picking up
� Early aspects and traceability into code
� Aspects in processes
� Large scale applications and actual practice
� Impact on Systems design and software Engineering

lifecycle in general
� Impact on Modeling Languages
� Formal Models

