e
[EEE—

Introduction to
¥ | Distributed Computing

u: _éikesh K. Joshi

Dt of Computer Science & Engineering
Indian Institute of Technology, Bombay
Powai, Mumbai - 400 076, India.

Email: rkj@cse.iitb.ac.in

¥ Why Do You Go for
§ Distributed Computing ?

' 8.+ The information itself is inherently
. distributed due to the physical
distributed nature of an
organization
* Explicit distribution gives higher
reliability, availability,
performance etc.

= What is the problem with

i traditional Single Address
@ Space Computing ?

~ * Objects have to be in the same address

2 space, and hence an object cannot send

a message to an object that is on a
different machine.

You need to extend or enrich the
traditional model for facilitating
distributed computing

¥ Programming Paradigms
B8 Distributed Computing

' %« Socket based programming
"% * Typed streams

* Remote Procedure Calls

* Programming Languages: SR,
Lynx..

* Distributed Shared Memory
* Distributed Objects

A Distributed Object
Computing Scenario

* Server objects and client programs
located on different machines

* Client programs send messages to
these server objects which are
remote

* Location Transparency: Clients can
send messages to these objects as
if they are available locally

= What is OMG and the
'8 CORBA Standard?
* OMG : The Object Management Group

consisting of over 600 companies evolved
the CORBA specs :Since 1989

¥ . CORBAisa specification for the
distributed object bus architecture
defined by OMG

* OMBG issues specifications, not products

B Overview of the Object
& Management

KW Architecture
L Application
| Obijects Object Services

7T 77

Object Request Broker (ORB)

oo .

Common Application
Facilities Objects

{ The ORB (object request
8 broker)

#" ORB is the core of the Object
~ Management Architecture

* Through ORB, objects written in
different languages on different
machines of different architectures
running different operating systems can
communicate to each other

! "8 ORB is responsible for :
* mechanisms to find implementations for
requests
7 ¢ To prepare implementations to receive
reqs
* To communicate data making up the
regs.

* ORB is not required to be implemented
as a single component, but is defined by

its interfaces

Commercial ORBs

There are commercial ORBs available

| @9 Examples:

* CORBAplus - Expertsoft
* Orbix - IONA
* Visibroker - Visigenic, now with Inprise

B The Language of
88 Application Development

* Client can be developed in one
‘# language, say C++

* Server can be developed in another
language, say JAVA

& Wl
o] iy e
[]
= A e
B ey
ol
% e

Observe the Location Transparency

| & // Thisis a client
| £ main (
Library * iitb lib ;
/...
iitb lib = Library :: bind (“IITB LIB”);
Book b = iitb lib->list a book (“OOP”);
}

Clients

* Have references to objects and
invoke operations on them

* Clients know only the logical
structure of the server objects
(interfaces)

* Have no knowledge of
implementations of the objects and
object adapters used by these
implementations

How do Clients invoke a
Server Interftace ?
* May invoke server

implementations through the IDL
generated stubs (proxies)

OR

* May invoke through the Dynamic
Invocation Interface

¥ The Interface Definition

M Language
" * A server object declares its
"% interface in the standard Interface
Definition Language specified by
the CORBA specification

* IDL separates the interface from
implementation

* These interfaces are also
commonly referred to as IDLs.

‘"B The Server

* The server object can register itselt
with the ORB and declare that it is
available for accepting requests

* It can also register its name which
the clients use to get a handle tfor
the server object

An Example Server

//....
Class Library Skeleton {}; // generated for you

Class Library Impl : public Library Skeleton {...};
main ()

{
Library Impl *lib ;

lib = new Library Impl;

orb->object_is ready (lib);
orb->implementation_is ready (lib);

}

e IDL: The Core of CORBA
| B Spec

The Interface Definition Language

: The OMG IDL is purely declarative : that
means, no implementation details are
provided

* It is strongly typed.

* IDL specs can be written and invoked in
any language that specifies CORBA
bindings (C/C++/COBOL/Smalltalk)

= Server implements an IDL
‘B and Client invokes interfaces
188 defined by an IDL

: * Implementation is in an
' implementation language
" e Invocations are also in an
implementation languages
* IDL to language mapping is
necessary
* e.gJ. mappings for
C/C++/COBOL/Smalltalk/Java

‘B An Example IDL
5’ Interface Account {

void deposit (in float amount);

vold withdraw (in float amount, out
float balance);

- INheritance
‘" | Interface Clock {
' 8 void setTime();

| & void start();

S8 void stop();

: “‘ };

& ¢ Interface AlarmClock : Clock {
void setAlarm();
vold stopAlarm();
void testAlarm();
}

Multiple inheritance is allowed

Inheritance..

* Inheritance of interftace
* Components with both types of

interfaces

may exist

* Does not imply inheritance of

implement
iImplemen

tation. The component
ing the derived may

Implemen

. both interfaces entirely

independently or may reuse an
existing component

OMG IDL Features

* Modules * Arrays

* interfaces ° sequences

* operations * struct, enum,
* attributes union

* inheritance * typedet

* basic types ° consts

* exceptions

Basic Types for use in IDL

* float * boolean
* double * octet

* long ° any

* short

* unsigned long
* unsigned short
* char

Direction of Parameters

° In from client to server
object

* out from server to
client

* ijnout from and to client

Exceptions

Interface Bank {
exception Reject {
string reason; // a data member

¥

exception TooMany {

}; /] to be returned when capacity exceeded
Account newAccount (in string name)

raises (Reject, TooMany);

};

One-way Operations

Interface Account {
oneway void notice (in string notice);

¥

Oneway operations do not block

They cannot accept out and inout
parameters

They cannot have a raises clause

s= Constructed Types:
B Structures
s for use in IDL
ruct PersonalDetails {
string Name;
‘u | short age;
I
interface Bank {

PersonalDetails getPerDet (in string
name) ;

¥

‘B Constructed Types: Arrays

ik ey oy

i = * They can be multi-dimensional

'~ | ° They must be of fixed size : known in the
J idl definition time

Account bankAccounts [100];

short matrix [10] [20]; // 2-d array

Constants

Interface Bank {
const long MaxAccounts = 10000 ;

constants of types such as long, float,
string can be declared

Typedef Declaration

| & typedef short size;
B size i

typedet Account Accounts [100];
Accounts bankAccounts ;

® Module Finance {
' interface Bank { 1.
interface Account { };

Modules are used to group interfaces into logical
units.

Use full name of Account and Bank interfaces
such as:

Finance::Account *a;

Preprocessor

* Macro substitution
* conditional compilation
 source IDL file inclusion

such as :
#include #define #if
#ifdef #defined

It is based on the C++ preprocessor

The IDL to Language

(| Mapping

B8 ° Different languages (OO/non-O0)
-- access CORBA objects in different

i Ways

| | * Mapping covers :

'# - language specific data types

— Structure of the client stub (only non-
OO lang)

— Dynamic invocation interface
— Implementation skeleton

— Object Adapters

— Direct ORB intertace

Mapping the Identifiers

* Identifiers are mapped to same

| 8. names

‘2% e.g.add book in IDL is mapped to --
1 & B

add book

* But if they are C++ keywords, an
underscore is prefixed

e.g. new 1s mapped to --> new

| Mapping of Interfaces

* Interfaces are mapped to classes

Interface Account { ... } becomes

class Account : public virtual
CORBA::Object { ..}

An IDL mapped C++ class cannot be instanciated

Mapping Scoped Names

| & Interface Bank {
ﬂ struct Details { ..}
:; } is mapped to
class Bank {
public:
struct Details {...}

¥}

...Mapping Scoped Names

Module M { Interface A {..}
Interface B {..} }
is mapped to
namespace M {
class A {..};
class B {..};
}

refer to them as ==> M:A or
M::B etc.

Mapping the standard
B CORBA module

| & Ismapped to
i % namespace CORBA { ..

e W
ko T e A

:; }
Use the members as follows :

CORBA::ORB init (..);

B Mapping the Basic Data

Types

= *IDL C++

short CORBA::Short

"4 long CORBA::Long
unsigned short

CORBA::UShort
unsigned long CORBA::Ulong
float CORBA::Float
double CORBA::Double

1§70 char
- boolean

e

Octet
any

"B ... Basic Data Types

C++

CORBA::Char

CORBA::Boolean
CORBA::Octet

CORBA::Any

Interface Repository

* Provides storage to store IDL
information

* A program may refer to objects
whose interface would be known at
runtime

* This info may be used by the ORB
to perform requests

* IR may be made to store other info
about interfaces such as debugging
info, browser routines etc

Implementation
Repository

* Contains information that allows
ORB to locate and activate the
implementation of a required
server object

* Also for storing server activation
information such as the machine
where a server would be started on
a client’s request

& Dynamic Invocation
8 Interface

| & ° Rather than calling a specific stub
"% routine for an operation, it is
possible to specify an object,
operation on it, and parameters to
it through a call or sequence of
calls

* Client must also supply the types of
parameters passed

Interoperability

* For supporting networks of objects
distributed across multiple
heterogeneous CORBA-compliant
ORBs

--> InterORBability

* GIOP : Standard transfer syntax
and a set of message formats for
communication between ORBs

* [IOP : The TCP/IP mapping of GIOP

: CORBA Services: Common
B Object Service Specification
(COSS)

that connects obJects Applications

require other services defined in terms
of IDL

OMG has brought out a COSS that
includes services such as naming,
events, life cycle, time, transactions,
concurrency, persistence, query,
security, licensing, relationships,
properties, externalization and
collection

Common Facilities

* Newest area of OMG’s

' = standardization

| & * ORB and Object Services are
'8 fundamental technologies, and

1 22] common facilities extend them to
' application developers
 Horizontal and Vertical facilities

* e.g System management,
compound documents, financial
services

* May become most important area
of OMG standards

