

Introduction to
Distributed Computing
using CORBA

Rushikesh K. Joshi
Dept of Computer Science & Engineering
Indian Institute of Technology, Bombay
Powai, Mumbai - 400 076, India.

Email: rkj@cse.iitb.ac.in

Why Do You Go for
Distributed Computing ?

• The information itself is inherently
distributed due to the physical
distributed nature of an
organization

• Explicit distribution gives higher
reliability, availability,
performance etc.

What is the problem with
traditional Single Address
Space Computing ?

• Objects have to be in the same address
space, and hence an object cannot send
a message to an object that is on a
different machine.

You need to extend or enrich the
traditional model for facilitating
distributed computing

Programming Paradigms
Distributed Computing

• Socket based programming
• Typed streams
• Remote Procedure Calls
• Programming Languages: SR,

Lynx..
• Distributed Shared Memory
• Distributed Objects

A Distributed Object
Computing Scenario
• Server objects and client programs

 located on different machines

• Client programs send messages to
these server objects which are
remote

• Location Transparency: Clients can
send messages to these objects as
if they are available locally

What is OMG and the
CORBA Standard?

• OMG : The Object Management Group
consisting of over 600 companies evolved

the CORBA specs :Since 1989

• CORBA is a specification for the
distributed object bus architecture
defined by OMG

• OMG issues specifications, not products

Overview of the Object
Management
Architecture

Object Request Broker (ORB)

Common
Facilities

Application
Objects

Application
Objects

Object Services

The ORB (object request
broker)

ORB is the core of the Object
Management Architecture

• Through ORB, objects written in
different languages on different
machines of different architectures
running different operating systems can
communicate to each other

Structure of the ORB
ORB is responsible for :
• mechanisms to find implementations for

requests
• To prepare implementations to receive

reqs
• To communicate data making up the

reqs.
• ORB is not required to be implemented

as a single component, but is defined by
its interfaces

Commercial ORBs

There are commercial ORBs available

Examples:

• CORBAplus - Expertsoft
• Orbix - IONA
• Visibroker - Visigenic, now with Inprise

The Language of
Application Development

• Client can be developed in one
language, say C++

• Server can be developed in another
language, say JAVA

Client
Observe the Location Transparency

// This is a client
// ...
main ()
{
Library * iitb_lib ;

//...
iitb_lib = Library :: bind (“IITB_LIB”);
Book b = iitb_lib->list_a_book (“OOP”);

}

Clients

• Have references to objects and
invoke operations on them

• Clients know only the logical
structure of the server objects
(interfaces)

• Have no knowledge of
implementations of the objects and
object adapters used by these
implementations

How do Clients invoke a
Server Interface ?

• May invoke server
implementations through the IDL
generated stubs (proxies)

 OR

• May invoke through the Dynamic
Invocation Interface

The Interface Definition
Language
• A server object declares its

interface in the standard Interface
Definition Language specified by
the CORBA specification

• IDL separates the interface from
implementation

• These interfaces are also
commonly referred to as IDLs.

The Server

• The server object can register itself
with the ORB and declare that it is
available for accepting requests

• It can also register its name which
the clients use to get a handle for
the server object

An Example Server

//….
Class Library_Skeleton { ….}; // generated for you

Class Library_Impl : public Library_Skeleton {…};
main ()
{
Library_Impl *lib ;

lib = new Library_Impl;

orb->object_is_ready (lib);
orb->implementation_is_ready (lib);

}

IDL: The Core of CORBA
Spec
The Interface Definition Language

• IDL provides a language/OS independent
interfaces to all objects, services and
components on the CORBA bus

• The OMG IDL is purely declarative : that
means, no implementation details are
provided

• It is strongly typed.
• IDL specs can be written and invoked in

any language that specifies CORBA
bindings (C/C++/COBOL/Smalltalk)

Server implements an IDL
and Client invokes interfaces
defined by an IDL

• Implementation is in an
implementation language

• Invocations are also in an
implementation languages

• IDL to language mapping is
necessary

• e.g. mappings for
C/C++/COBOL/Smalltalk/Java

An Example IDL

Interface Account {

void deposit (in float amount);
void withdraw (in float amount, out
float balance);

}

Inheritance
Interface Clock {
void setTime();
void start();
void stop();
};
Interface AlarmClock : Clock {
void setAlarm();
void stopAlarm();
void testAlarm();
};
Multiple inheritance is allowed

Inheritance..

• Inheritance of interface
• Components with both types of

interfaces may exist
• Does not imply inheritance of

implementation. The component
implementing the derived may
implement both interfaces entirely
independently or may reuse an
existing component

OMG IDL Features

• Modules
• interfaces
• operations
• attributes
• inheritance
• basic types

• Arrays
• sequences
• struct, enum,

union
• typedef
• consts
• exceptions

Basic Types for use in IDL

• float
• double
• long
• short
• unsigned long
• unsigned short
• char

• boolean
• octet
• any

Direction of Parameters

• In from client to server
object

• out from server to
client

• inout from and to client

Exceptions

Interface Bank {
exception Reject {

string reason; // a data member

};
exception TooMany {
}; // to be returned when capacity exceeded

Account newAccount (in string name)
raises (Reject, TooMany);

};

One-way Operations

Interface Account {
oneway void notice (in string notice);
};

Oneway operations do not block
They cannot accept out and inout

parameters
They cannot have a raises clause

Constructed Types:
Structures
for use in IDL

struct PersonalDetails {
string Name;
short age;

};
 interface Bank {

PersonalDetails getPerDet (in string
name) ;

 };

Constructed Types: Arrays

• They can be multi-dimensional
• They must be of fixed size : known in the

idl definition time

Account bankAccounts [100];

short matrix [10] [20]; // 2-d array

Constants

Interface Bank {
const long MaxAccounts = 10000 ;

 …
};

constants of types such as long, float,
string can be declared

Typedef Declaration

typedef short size;
size i;

typedef Account Accounts [100];
Accounts bankAccounts ;

Modules
Module Finance {

interface Bank { ….. };
interface Account { …. };

};

Modules are used to group interfaces into logical
units.

Use full name of Account and Bank interfaces
such as:

Finance::Account *a;
Finance::Bank *state_bank;

Preprocessor

• Macro substitution
• conditional compilation
• source IDL file inclusion
such as :
#include #define #if
#ifdef #defined ……

It is based on the C++ preprocessor

The IDL to Language
Mapping

• Different languages (OO/non-OO)
access CORBA objects in different
ways

• Mapping covers :
– Language specific data types
– Structure of the client stub (only non-

OO lang)
– Dynamic invocation interface
– Implementation skeleton
– Object Adapters
– Direct ORB interface

Mapping the Identifiers

• Identifiers are mapped to same
names

e.g. add_book in IDL is mapped to --
>

 add_book
• But if they are C++ keywords, an

underscore is prefixed
e.g. new is mapped to --> _new

Mapping of Interfaces

• Interfaces are mapped to classes

Interface Account { … } becomes

class Account : public virtual
CORBA::Object { ..}

An IDL mapped C++ class cannot be instanciated

Mapping Scoped Names

Interface Bank {
struct Details { ..}
…. } is mapped to

class Bank {
public:

struct Details {…}
};

…Mapping Scoped Names

Module M { Interface A {..}
 Interface B {..} }

is mapped to
namespace M {

class A {..};
class B {..};

}
refer to them as ==> M::A or

M::B etc.

Mapping the standard
CORBA module
Is mapped to
namespace CORBA { ..
}

Use the members as follows :

CORBA::ORB_init (..);

Mapping the Basic Data
Types
• IDL C++
short CORBA::Short
long CORBA::Long
unsigned short

CORBA::UShort
unsigned long CORBA::Ulong
float CORBA::Float
double CORBA::Double

… Basic Data Types

• IDL C++

char CORBA::Char
boolean CORBA::Boolean
Octet CORBA::Octet
any CORBA::Any

Interface Repository

• Provides storage to store IDL
information

• A program may refer to objects
whose interface would be known at
runtime

• This info may be used by the ORB
to perform requests

• IR may be made to store other info
about interfaces such as debugging
info, browser routines etc

Implementation
Repository
• Contains information that allows

ORB to locate and activate the
implementation of a required
server object

• Also for storing server activation
information such as the machine
where a server would be started on
a client’s request

Dynamic Invocation
Interface
• Rather than calling a specific stub

routine for an operation, it is
possible to specify an object,
operation on it, and parameters to
it through a call or sequence of
calls

• Client must also supply the types of
parameters passed

Interoperability
• For supporting networks of objects

distributed across multiple
heterogeneous CORBA-compliant
ORBs

--> InterORBability
• GIOP : Standard transfer syntax

and a set of message formats for
communication between ORBs

• IIOP : The TCP/IP mapping of GIOP

CORBA Services: Common
Object Service Specification
(COSS)

An ORB is just like a telephone exchange
that connects objects. Applications
require other services defined in terms
of IDL

OMG has brought out a COSS that
includes services such as naming,
events, life cycle, time, transactions,
concurrency, persistence, query,
security, licensing, relationships,
properties, externalization and
collection

Common Facilities
• Newest area of OMG’s

standardization
• ORB and Object Services are

fundamental technologies, and
common facilities extend them to
application developers

• Horizontal and Vertical facilities
• e.g System management,

compound documents, financial
services

• May become most important area
of OMG standards

