Metapatterns

Prof. Rushikesh K. Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay
Outline

1. Inheritance Structures
2. Non-conceptual Inheritance
3. More on Conceptual Inheritance
4. Accepting one Abstraction in Place of Another: Subtyping
5. Frameworks, Metapatterns
Application Framework

- Building blocks are ready to use
- They may be semi-finished
- Specific applications can be produced by adjusting the semi-finished blocks
Frameworks and Hot-spots

Rigid + Flexible
Meta-patterns

- set of design patterns
- Describe how to construct frameworks independent of a specific domain
- i.e. the basic ingredients of framework making
- Very close to principles of object orientation
- Are at meta level, Complementary to main-stream design patterns
Hook Methods

Base
 f() = 0

Derived
 f() { .. }

client of Base
* We are not talking about type templates such as those in C++
Template Methods may be located in a Different Class

* where are template methods located? —- in subclass? in client of hook class?
* how many instances of hook class does the template class refer to?

...more patterns...
'Unification' Pattern

\[
\begin{align*}
\text{TH} \\
f() &= 0 \\
g() &\{..f();..\}
\end{align*}
\]
'Recursive 1:1 Unification' Pattern

TH

f() = 0

\text{g() \{th_ref \rightarrow f()...\}}
'Recursive 1:N Unification’ Pattern

```plaintext
TH
f() = 0

for each th_ref in th_list
    th_ref->f();...
```
Connection Patterns: When T is not located with H

* 1:1 Connection
* 1:N Connection
* 1:1 Recursive connection
* 1:N Recursive connection
1:1 Connection Pattern

\[g() \{ h_{\text{ref}} \to f();.. \} \]

\[f() = 0 \]
1:N Connection Pattern

```c
T

g()
{
    for each h_ref in h_list
    h_ref->f(); ..
}

H

f() = 0
```
1:1 Recursive Connection Pattern

\[
H \quad g() = 0
\]

\[
T \quad g() \{ \text{h_ref->g();..} \}
\]
1:N Recursive Connection Pattern

H
\[g() = 0 \]

T
\[
g() \{
 \text{for each } h_ref \text{ in } h_list \\
 h_ref\rightarrow g();..}
\]