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Abstract—Texts in Indic Languages contain a large proportion
of out-of-vocabulary (OOV) words due to frequent fusion using
conjoining rules (of which there are around 4000 in Sanskrit).
OCR errors further accentuate this complexity for the error
correction systems. Variations of sub-word units such as n-grams,
possibly encapsulating the context, can be extracted from the
OCR text as well as the language text individually. Some of the
sub-word units that are derived from the texts in such languages
highly correlate to the word conjoining rules. Signals such as
frequency values (on a corpus) associated with such sub-word
units have been used previously with log-linear classifiers for
detecting errors in Indic OCR texts. We explore two different
encodings to capture such signals and augment the input to Long
Short Term Memory (LSTM) based OCR correction models, that
have proven useful in the past for jointly learning the language as
well as OCR-specific confusions. The first type of encoding makes
direct use of sub-word unit frequency values, derived from the
training data. The formulation results in faster convergence and
better accuracy values of the error correction model on four
different languages with varying complexities. The second type
of encoding makes use of trainable sub-word embeddings. We
introduce a new procedure for training fastText embeddings on
the sub-word units and further observe a large gain in F-Scores,
as well as word-level accuracy values.

I. INTRODUCTION

The procedure for extracting the text present in images of

documents is referred to as Optical Character Recognition

(OCR). Due to variations in fonts, occlusions, inflections,

and/or the scarcity of training data, every OCR system pro-

duces some errors in the text it recognizes. It is therefore

important to detect errors and provide corrections or (in the

case of historical book scanning) suggestions to help the

human annotators. There have been various works published

on OCR error correction [1], [2] and the importance of post-

OCR error correction is further underlined by competitions

on historical documents in English, French, German, Finish,

Spanish, Dutch, Czech, Bulgarian, Slovak and Polish [3], [4].

For inflectionally rich languages, standard methods for

spell-checking using a dictionary look-up produce inadequate

results for the task of OCR correction [5]. Due to the use

of word conjoining rules in such languages, off-the-shelf

dictionaries are substantially incomplete [6], [7]. Recent work

on error correction in medical documents tries to solve the

large (but nonetheless limited) vocabulary problem via nearest

neighbor search in an embedding space [8]. Such techniques

are not as effective on Indic languages due to the problems
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Fig. 1. Correction flow of our model for a complex word in Sanskrit.

of lack of language-specific text resources, incomplete vocab-

ularies and word ambiguities that arise due to a high degree

of branching in spell-net [5]–[7], [9]. The problem of word

ambiguities can be further appreciated by observing the poor

performance of skylines with respect to the model described

in Saluja et al. [7]. Such skylines involve nearest neighbor

search in the vocabulary of correct words available in both

training and test data. Although, such skylines also invoke

OCR-specific confusions to break ties, such skylines are able

to auto-correct only around 66% and 27% of OCR errors in

Sanskrit (Indic language with high number of inflections) and

Hindi [9] (Indic language with fewer inflections but higher

word ambiguities) respectively.

For Indic Languages, the conjoining rules are of two types,

viz., simple and complex. The simple rules involve the aggluti-

nation of valid word forms, just as the words “can” and “not”

form the word “cannot” in English. The complex rules involve

the fusion of joined words, analogous to the formation of

“coudn’t” by joining the words “could” and “not” in English.

In Indic languages, often more than two words are conjoined

using such simple agglutinative and complex fusional rules. An

example of such a conjoined word is illustrated in Figure 1.

Even if “wouldn’t” was an out-of-vocabulary (OOV) word,

the errors in OCR text corresponding to such a word could be

corrected based on the sub-word units derived from another

vocabulary word (“couldn’t”). This language phenomenon

forms the basis of our work. As a baseline, we use the

frequency of a sub-word unit (of a conjoined OCR word) in a



language corpus to correct the characters in the OCR output.

Some word embeddings also include sub-word units, such

as in fastText [10], ELMO [11] and BERT [12]. Of these we

find fastText to be most naturally suited for the purpose of

pre-training based on reconstruction of each sub-word using

its context in fixed length sub-strings (refer Figures 2, 3).

Such an embedding helps in representing the information

related to the frequency and context of sub-words in the

language and especially benefits OOV words at test time. This

makes fastText a good fit for the segmentation of the complex

conjoined words into generally used words for Sanskrit [13].

Sub-word units, such as n-grams and their (possibly noisy)

contexts, can be extracted from the OCR output text, and

compared with their frequency statistics over a general text

corpus. Different statistical functions for the sub-word units

can be computed, with text embeddings, such as fastText,

essentially learning one such combined function of n-grams

& text dependency from the language data. For the OCR

correction task, we will consider the frequencies of sub-words

in the ground truth of training data as a baseline approach and

compare it with modified fastText embeddings (explained in

Section III) as an alternative approach.

II. RELATED WORK

There have been several attempts at using dictionaries to

correct errors in text [14]–[16]. The methods are not reli-

able for languages with agglutinations and fusions as their

performance suffers due to the OOV problem. Approaches

that perform corrections based on context n-grams are more

effective. The work by Wilcox-OHearn et al. [17] uses a

trigram-based noisy-channel model. Bayesian methods based

on part-of-speech trigrams have also been explored for correc-

tions based on context [18]. The work by Smith [19] further

concludes that noisy-channel models that closely model the

underlying classifier and segmentation errors are required by

OCR systems to improve performance.

Recent work on neural language correction [20] has shown

the benefits of using Recurrent Neural Networks (RNN) for

the purpose of correcting text. A Long Short Term Memory

(LSTM) model has also been used in a recent work for post

OCR corrections [7]. LSTM models can remember longer term

context of the input sequence and are therefore quite successful

in correcting OCR induced errors. This model outperforms

all other models for post-OCR correction tasks in four Indic

Languages with varying complexities. Error detection for Indic

languages presents singular chal- lenges such as large unique

word lists, lack of linguistic resources and lack of reliable

language models [5]. There are many examples of work

in the literature that focus on post-OCR corrections for a

specific Indic language. The various techniques used include

morphological parsing for Bangla [21], shape-based statistics

for Gurmukhi [22] and a multi-stage graph module with a

sub-character model for Malayalam [23].

Error detection in Indic languages using a conventional

lookup technique is outperformed by the use of a Support

Vector Machine (SVM) classifier [5]. This is further improved

# Word µ, σ OOV Word Error
Language Correction of Word percentage Rate for

Pairs Length in test set OCR (OOVs)

Sanskrit 86 k 10.22, 7.98 44.77 51.20 (72.16)
Malayalam 107 k 9.32, 4.93 49.32 38.32 (45.86)
Kannada 118 k 8.42, 3.86 26.59 47.44 (60.14)

Hindi 134 k 5.29, 2.53 23.70 46.80 (48.47)

TABLE I
DATASETS USED FOR OUR EXPERIMENTS.

upon by using Gaussian Mixture Models (GMMs) and RNNs

to detect errors in four Indic languages [6]. Recent work also

presents a copying mechanism for post-OCR corrections in

romanised Sanskrit [24].

The complexities involved in creating effective spell-

checkers for Hindi, Bangla and English are discussed by

Choudhury et al. [9] in terms of spell-nets. A spell-net is a

graph with words as nodes and edit-distance based weighted

edges. The spell-net for Hindi and Bangla have a higher

average degree as compared to English. This causes a higher

number of inter-word ambiguities in Indic Languages. More-

over, in the spell-nets for Indic Languages, the correlation

between degrees of neighboring words (nodes) is higher than

English. This makes it more difficult to rank the candidate sug-

gestions for an incorrect word whenever the word has a high

degree in the spell-net. This work improves the performance of

the current best model in literature for post-OCR corrections

in Indic text [7] by the use of sub-word embeddings. We

present our datasets and methods to derive these sub-word

embeddings in Section III. Our model is described in Section

III-C. The details of our experiments are provided in Section

IV. We present our results and conclusions in Sections V

and VI respectively. In summary, our key contributions are

as follows:-

1) We show that sub-word level information, derived from

language or training data itself, can help to correct OCR errors

in Indic Languages.

2) We demonstrate that augmenting the input of LSTM

models with the frequencies of OCR sub-words in the lan-

guage data, performs as well as using fastText embed- dings

(trained on same data) for correcting Indic OCR.

3) We propose a new procedure for training fastText on

sub- word units present in the constant length substrings. This

involves the transformation of language data in such a way

that it not only includes all the substrings within the language,

but also retains the character level context of substrings in

the language. This method is shown to improve the accuracy

as well as computational performance (see Fig. 1) for error

correction in Indic OCR with respect to the state-of-the-art

and the baseline models.

III. DATASETS AND METHODOLOGY

We work on four Indian languages with varying complex-

ities. Table I summarizes the languages and the details of

the dataset that we obtain from the state-of-the-art work [7].

For Malayalam, we obtain 81k pairs of OCRed words and

their corresponding corrected versions (hereafter referred to

as correction pairs). We also include the 26k correction pairs

obtained from a previous work [6]. Putting these together,
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Fig. 2. Flowchart for transformation of language data (shown in SLP1 for
illustration) for training fastText on all possible substrings of fixed-length (15
here). The transformation retains the context of each substring in the language.

we get a total of 107k correction pairs for Malayalam. As

shown in Table I, the dataset consists of the order of 100,000

pairs of “OCR word, Ground Truth word” in each of the

four languages. The mean and standard deviations of word

lengths in Table I for the different languages are consistent

with the fact that Sanskrit has the highest number of word

conjoining rules, followed by Malayalam, Kannada and Hindi.

The average word length as well as the standard deviation of

word lengths is also highest for Sanskrit and both measures

decrease with the reduction in complexity of languages as

shown in Table I. Further note that although the OOVs in the

Malayalam test set (w.r.t. to training and validation set) are

higher in percentage as compared to Sanskrit, still the Word

Error Rates (WER) for general OCR words as well as OOV

words in Sanskrit are higher than that of Malayalam.

We work on the task of correcting the (possibly incorrect)

character xt in the OCR word x1:Tx
to the correct char-

acter yt. Owing to confusions involving multiple characters

in the source and/or target, some of the xt and yt could

be blanks. The sub-word context xt−l:t+l, (with l being a

hyper-parameter) can be further utilized to predict the correct

character yt. The input space of our model (explained in

Section III-C) can explode if we provide the sub-word units

directly in the form of one-hot-encodings (OHE). We therefore

provide the information about the context sub-words in the

form of normalized frequencies for the baseline, and fastText

embedding vectors trained with a new procedure that we

describe later in this section.

A. Baseline: Sub-word units based learning

As a baseline, for each input character xt in the training

sample {x1:Tx
, y1:Ty

}, we extract the bag of sub-words with

lengths varying from 2 to l + 1 from a context window of

length 2l+1 around xt. We only consider the sub-word units

that contain the character xt. Thus the sub-word units that

we consider for the tth character in the OCR word x1:Tx
are:

2-grams ({xt−1:t}, {xt:t+1}), 3-grams ({xt−2:t}, {xt−1:t+1},

{xt:t+2}), etc., up to (l+1)-grams ({xt−l:t}, {xt−l+1:t+1}, ...

, {xt:t+l}).

We find the normalized frequency of each sub-word unit in

the ground truth of the training data Y and augment sub-word

frequencies to our model as described in Section III-C.

B. A new procedure for training fastText on sub-word units

As an important contribution in this paper, we provide a

new procedure for training embeddings such as fastText for

the task of Indic OCR corrections [10]. The training procedure

is driven by and based on the observations described in the

previous sub-section. While training the fastText embeddings,

we consider the substrings of length 2l+1 in the language. We

split the language text at every 2l + 1th character (including

space characters) to form substrings of length 2l + 1, before

learning the desired embedding over the entire string. It

is important to emphasize that the fastText implementation

involves the bag of smaller sub-words (of length 2 to l + 1

for our case) within the substring (of length 2l + 1) that we

obtain. This is similar to the learning described in the previous

sub-section. The flowchart for this process along with an

example of language data in SLP1 (Sanskrit Library Phonetic

Basic encoding scheme) format and corresponding training

data obtained using fixed length substrings of size 2l+1 = 15

are illustrated in Figure 2. As shown, we first replace each

space (and newline) character in the language text with a

special character. We then split the data every 15 characters

to form substrings of length 15 (adequately padding the end

of language text). We then iteratively 1) pad the language text

in such a way that the substrings starting from the subsequent

characters are considered, and 2) repeat the above splitting,

14 more times to include every possible sub-word of length

15 in the language. This transformation also retains adequate

context for each substring in the original language text.

C. Model

We train our models for OCR corrections using the global

information about our training data, in the form sub-word

frequency values as well as fastText embedding vectors derived

from the ground truth of training data as shown in Figure 3.

Since the OCR output text is mostly correct (i.e. more

characters are correct than incorrect), and since the errors in

such texts follow certain confusion patterns (which arise due

to similarly shaped glyphs in the language font), for OCR

correction character-based approaches are generally used [4],

[7]. To predict the tth character yt of the correct sequence

y1:Ty
of length Ty , based on the OCR character sequence

x1:t+d, an LSTM with fixed sequential delay can be used [7].

Here d is context ahead of the location t in the input sequence

x1:Tx
required to resolve the error at that location. For the

baseline, a database D is filled with the mapping of all possible

sub-words with their frequency in the ground truth of training

data as shown in Figure 3 (orange in bottom right). Then,

we append the one hot encoding (OHE) of each character

xt at the input with the frequencies (which are derived from

the mappings in the database D) of sub-words xt−a:t+b s.t.
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Fig. 3. An LSTM model is shown with 7 units of hard-wired delay
(represented by the blue $), having 1 hidden layer of 4 units. The baseline
flow is shown in orange and the sub-word embedding flow in dark red. For the
baseline, the frequencies of all possible sub-words in the ground truth labels
of training data are stored (f1Y ,f2Y ,f3Y . . .) and the frequencies of the sub-
words are derived from the stored frequencies. For the sub-word embeddings,
the fastText embeddings are learned from the sub-words in training data (fW ).
The fastText vector for the (sub-words present in) substring in context window
is derived from these learned embeddings.

0 ≤ a, b ≤ l within a context xt−l:t+l around it (orange in

bottom left). For illustration, only three sub-word units within

the context xt−l:t+l with l = 5 is shown in Figure 3. In

comparison, for using fastText sub-word embeddings in our

model, we first train fastText on (the sub-words present in) the

constant length (2l+ 1) substrings as explained in Section III

(shown in dark red in Figure 3). We then concatenate the one

hot encoding of each character at the input with the embedding

vector of the substring (of length 2l+1) present in the context

window t− l : t+ l.

IV. EXPERIMENTS

The datasets that we use are explained in Section III.

We split our datasets as per the ratio 64:16:20 for training,

validation and testing respectively. Following the literature,

we evaluate on two tasks, viz., error detection and error

correction [7]. Inspired by the state-of-the-art work, we use

the sequence delay of 7 for Sanskrit and Kannada, and 5 for

Malayalam and Hindi [7]. We use the context of l = 7 on

each side of the OCR character to derive the sub-word units,

based on the n-gram level features used for training log-linear

classifiers in the literature [25]. Thus, we effectively use the

sub-words of length 2 to 8 for our baseline model. For the

fastText based models, we use the embedding size of 100

while training the fastText with (sub-word units present in)

constant length substrings xt−l:t+l (refer Section III-C). We

train the fastText models for 100 epochs on the ground truth

of each language dataset. As discussed earlier, we switched

off the word level n-grams and use the sub-words of length 2

to 8 within context xt−l:t+l. We use 2 × 512 sized hidden

layer LSTM for all our experiments. The gradient descent

algorithm, with the learning rate of 0.002 and decay of 0.97

after 10 epochs of training, is used. We train our models with

the cross-entropy loss for 200 epochs.

We use the disagreements between the input and output of

our model for error detection. It is important to note that

such methodology also allows us to colour code the errors

at the granularity of characters as shown in Figure 3. We

use F-Scores as the measure for error detection. Our models

naturally learn to correct errors as we train them on the pairs

of OCR word and its ground truth. We use Word Error Rates

(WER) of the output of our models w.r.t. ground truth data,

and percentage of erroneous words corrected by our model as

the measures for error correction.

Method TP TN FP FN Prec. Rec. F-Scr.

Normal
training
(Wikipedia
& web)

93.74 94.19 5.80 6.25 94.57 93.74 94.16

Normal
training
(our data)

94.90 94.61 5.39 5.10 95.01 94.90 94.95

New
training
procedure
(our data)

95.11 95.39 4.61 4.89 95.71 95.11 95.41

TABLE II
EFFECT OF PRE-TRAINING FASTTEXT WITH DIFFERENT DATASETS AND

EFFECT OF TRAINING PROCEDURE IN SANSKRIT.

V. RESULTS

A. Error Detection Results

Here, we first discuss the effect of training our model with

different fastText embeddings, then we discuss the results on

two different encodings described in Section III across various

languages.

1) Effect of training LSTM with different fastText embed-

dings: It is important to note that the average word length and

standard deviation in word length is highest for the Sanskrit

dataset as shown in Table II. Thus, for Sanskrit, we perform

our experiments with fastText embeddings trained on 1) a large

generalized corpus, 2) our data, and 3) our data with new

training procedure explained in Section III. The results are

shown in Table II. As shown in rows 1 and 2, the FScore

of model with fast-text embeddings pre-trained on the ground

truth of our our data is better than the model with fastText

embeddings pre-trained on large amount of general data. This

happens probably because there is sharing of sub-words (or

domain) or OCR confusions among the training and the test

datasets. However, when we train fastText on the ground truth

of our training data with new training procedure, and use

the pre-trained embeddings derived from it with our model,

the results outperform the other methods as shown in the

3rd row of Table II. This strongly supports our claim of

contributing a novel, useful training methodology using sub-

word embeddings.

2) Results on different Languages: We perform experi-

ments for all the languages with the baseline model, and the

fastText embeddings, both trained on the ground truth of our

training data. It is important to note that the state-of-the-art



Lang. TP TN FP FN Precision Recall F-Score

Sanskrit (OHE only)* 92.63 94.54 5.45 7.36 94.84 92.64 93.72
Sanskrit (Baseline: OHE and sub-word frequencies) 94.49 95.20 4.79 5.51 95.52 94.49 95.02
Sanskrit (Final: OHE and fastText with new training procedure) 95.11 95.39 4.61 4.89 95.71 95.11 95.41

Malayalam (OHE only) 91.40 96.39 3.61 8.60 94.02 91.40 92.69
Malayalam (Baseline: OHE and sub-word frequencies) 91.62 96.42 3.58 8.37 94.08 91.62 92.84
Malayalam (Final: OHE and fastText with new training procedure) 94.70 95.77 4.23 5.30 93.29 94.70 93.99

Kannada (OHE only)* 98.40 97.18 2.82 1.60 96.92 98.41 97.66
Kannada (Baseline: OHE and sub-word frequencies) 98.64 96.66 3.34 1.36 96.38 98.64 97.50
Kannada (Final: OHE and fastText with new training procedure) 98.36 97.53 2.47 1.64 97.29 98.36 97.82

Hindi* 91.96 93.86 6.14 8.04 92.94 91.95 92.44
Hindi (Baseline: sub-word frequencies) 93.68 94.36 5.64 6.32 93.60 93.68 93.64
Hindi (Final: OHE and fastText with new training procedure) 96.92 95.68 4.32 3.07 95.18 96.92 96.04

TABLE III
ERROR DETECTION RESULTS IN INDIC OCR. *STATE-OF-THE-ART RESULTS [7]. IT IS IMPORTANT TO NOTE THAT DATA-SETS USED FOR DERIVING

SUB-WORD FREQUENCIES AND FASTTEXT EMBEDDINGS ARE SAME IN ALL THE SETTINGS FOR EACH LANGUAGE.

Lan. Word Error Rate (WER) %age words
OCR (OOVs) LSTM (OOVs) corrected by LSTM

San.* 21.41 (32.67) 63.34
San.(Baseline) 51.20 (72.16) 17.85 (28.03) 70.05
San.(Final) 17.72 (28.71) 70.13

Mal. 11.83 (16.07) 75.22
Mal.(Baseline) 38.32 (45.86) 11.55 (16.30) 75.60
Mal.(Final) 10.95 (17.28) 78.24

Kan.* 15.73 (25.71) 69.66
Kan.(Baseline) 47.44 (60.14) 15.53 (27.08) 70.30
Kan.(Final) 15.38 (25.32) 70.90

Hin.* 16.71 (29.23) 72.47
Hin.(Baseline) 46.80 (48.47) 14.42 (26.29) 75.59
Hin.(Final) 9.58 (20.26) 84.42

TABLE IV
DECREASE IN WER AND PERCENTAGE OF ERRONEOUS WORDS

CORRECTED BY OUR MODEL. *STATE-OF-THE-ART RESULTS [7].

results were already above 92% in terms of F-Score. Given

that it can be challenging to further improving the F-Scores,

we analyze the percentage improvement in F-Scores w.r.t. the

state-of-the-art here. As shown in Table III our baseline model

as well as the model based on fastText outperform the state-

of-the-art results for all our experiments (except for Kannada

where the results of our baseline are slightly lower than

previous work). The improvements are because we provide the

context information with each OCR character in the form of

sub-word frequencies or sub-word embeddings as explained in

Section III. As shown in the 2rd row of Table III, our baseline

model, that works on the principle of frequencies derived from

sub-words in the ground truth of training data, performs as

good as the fastText embeddings trained on the same data

(refer row 2 of Table II) for Sanskrit. Our experiments show

that there are gains of 1.38% and 1.80% F-Score using our

baseline model and fastText based model respectively over

the state-of-the-art for Sanskrit. Furthermore, the percentage

increase in F-Scores for Malayalam, Kannada and Hindi are

0.43%, -0.16% and 1.30% respectively when we use our

baseline model, and 1.62%, 0.16% and 3.69% when using

fastText embeddings pre-trained with the proposed procedure.

We further noted that all our models converge to 90% of F-

Score (on test set) within the first 20 epochs of training. Thus

we gain both higher performance and faster convergence with

the pre-trained (or pre-calculated) encodings.

B. Error Correction Results

In Table IV we show that for Sanskrit, our baseline model

reduces the word level errors to 17.85%, which is 3.56% better
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Fig. 4. The first column shows the OCR word with errors marked in red. The
second column shows the output from previous work [7]. The final column
shows corrected output from our system. These examples are words with
agglutination (marked in blue-purple) & fusion (in dark red) in 4 Languages.

as compared to state-of-the-art results. The increase in the per-

centage of erroneous words corrected by our baseline model

is 6.71% w.r.t. the state-of-the-art. The gains increase further

with our final model based on pre-trained fastText embedding.

The corresponding improvements with our baseline models in

Malayalam, Kannada and Hindi are 0.28%, 0.30%, & 2.29%

in terms of reduction in WER, and are 0.28%, 0.64%, &

2.82% in terms of percentage of erroneous words corrected

by the models. For the final model (fastText trained with the

proposed procedure), the corresponding reductions in WER

are 0.88%, 0.35% and 7.13% respectively, and the gains in

word correction are 3.02%, 1.24% and 11.95% respectively.

Moreover, it can be observed that all the models consistently

reduce the errors in OOV words. As shown in Table I, for

Sanskrit, Hindi and Kannada, the higher context in form of

sub-word information helps in reducing word error rates in

OOVs w.r.t previous work [7]. Interestingly, for Malayalam,

we observed slightly higher word error rates for OOVs w.r.t.

baseline model. We conjecture that this is due to differences

in the statistics for OOV words between the training and test

set, due to the addition of data from a different source [6]

(explained in Section III) to the test set. We also noted that

the correction pairs from this dataset form the 35% of our test

set which leads to a high percentage of OOVs in Malayalam

w.r.t. Sanskrit as shown in Table I.

Figure 4 shows sample errors corrected by our model in

different languages. The OCR words are shown in the first

column. The corrections performed by the previous state-of-

the-art model are shown in the second column [7]. The correct

predictions of our model are shown in the third column. Here,

the correct word forms in the language are shown in blue



 

OCR 
CONFUSIONS 

FREQUENCY  
OCR OUTPUT 

FREQUENCY  
PREVIOUS 

WORK 

FREQUENCY  
OUR 

MODEL 

◌ो -> ◌ी 756 24 9 
¢ -> च 382 14 9 

èव -> ख 319 5 4 

ല ്-> ൽ 1087 52 28 
ര ്-> ർ 966 57 22 
ന ്-> ൻ 714 36 19 

” ->   184 12 5 
ಐ -> ಎ 155 10 5 
ಯ -> ಇ 126 4 1 

◌ȯ -> ◌ं 707 1 0 
थ -> य 600 19 17 
◌Ȱ ->  ◌ं 373 3 2 

Fig. 5. Top 3 OCR confusions (Correct → OCR) in Sanskrit, Malayalam,
Kannada & Hindi (Top-to-bottom).

and purple colors. Thus there is a change of color from blue

to purple (or reverse) when two words are agglutinated. The

fusions are shown in dark red color. As shown, our model

is able to correct the highly complex words that involve

agglutinations and/or fusions in different Indian Languages.

C. Analysis

We now substantiate how our model improves the detec-

tion/correction for top character confusions (and also improves

over the previous model [7]) in the OCR output as motivated

earlier in Section III-C. As shown in Figure 5, the previous

model is able to reduce the confusions to a large extent in our

test data, and our model reduces them further. It is important

to note that these confusions are corrected by the models based

on their context in different OCR sequences.

VI. CONCLUSION

We work on the task of error correction in four different

Indian languages with varying complexities. As a baseline,

we use sub-words within a context window around the OCR

characters to be corrected. We append the OHE input of the

LSTM model with the frequency of such sub-words in the

ground truth of training data. Such a baseline outperform the

state-of-the-art models for three Indic Languages. We further

experiment with the concatenation of fastText embedding

vectors, pre-trained on different datasets, with the OHE input

of LSTM. We present that our baseline model works similar

to the fastText embeddings when pre-trained on the same

data from which we derive the frequencies for the baseline

model. We also present a better procedure of training fastText

with all possible substrings of the desired length. Such model

outperforms our baseline models, in addition to state-of-the-

art, for the four Indic Languages with varying complexities.
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