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m Small set of rules i.e., low ¢
m Simple rules e.g., short conjunctive propositions



Rule Ensembles — Key Features

m Highly interpretable hypothesis

m Small set of rules i.e., low ¢
m Simple rules e.g., short conjunctive propositions

m Better generalization than conventional rule learners



Rule Ensemble Learning — Formal Definition

Input:

m Training Set: D={(x,4"),...,(x"y™)}, x'€R* and y'e{-1,1}
m Basic propositions regarding input features (say, p in number)

Nominal e.g., z; = a and z; # a
Numeric e.g., z; > band z; <b



Rule Ensemble Learning — Formal Definition

Input:

m Training Set: D={(x,4"),...,(x"y™)}, x'€R* and y'e{-1,1}

m Basic propositions regarding input features (say, p in number)
Nominal e.g., z; = a and z; # a
Numeric e.g., z; > band z; <b

m Construct conjunctive rules from basic propositions

m Few in number
m Short conjunctions

m Compute corresponding weights (w, b)



Rule Ensemble Learning — Challenging task

Extremely large, atleast O(2"), rule space!

X =a&x,#b&x 2c X, =ad&x,zb&x <d)(x, =a&x,2c&x,sd) (x,#b&x 2c&x, =d

R ()
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X, =ad&x,#b&x,2c&x,<d



Rule Ensembles — Existing Methods

SLIPPER(cohenasinger, 99): AdaBoost + RIPPER — greedy
RuleFit(FriedmangPopescu, 08): ISLE + decision tree — greedy

ELCS(Gao etar, 07): Genetic Alg. + post-pruning — sub-optimal
ENDER (pembezynski eral., 10 Minimization of empirical risk — greedy
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Proposed Methodology — Overview

Optimal search for rules over all conjunctions
m Regularized loss minimization
m Convex formulation

m Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

m Complexity: polynomial in active set size (< 2P)

(Large) sub-lattices with long rules are avoided
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m [; regularize to force many w, to zero
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A Naive Formulation

m Decision function!: sign (3=, wy Ry(x) — b)

m [; regularize to force many w, to zero

[ regularized formulation:

2

1 ™ , .

min — E |lwy| | +C g Ly, E wyRy(x') — b

w,b 2 :
veV 1=1 veY

1Y is index set for conjunctive lattice
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A Naive Formulation

X, =a&x,zb&x zc

m long rules may be selected

m Computationally difficult problem
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An Improved Formulation

2
Block 1 regularizer discourages long rules: (Evev HWD(v)Hg)

Computationally
Feasible ?
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m Multiple Kernel Learning — Optimal combination of given kernels
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m Complexity: Polynomial in number of selected kernels

m Condition: kernels are summable in linear time over a
sub-lattice



HKL — Key Result

Active Set Algorithm:

m Complexity: Polynomial in number of selected kernels

m Condition: kernels are summable in linear time over a
sub-lattice

m Kernels indeed easily summable

m R, is nothing but product of few base proposition evaluations
m Sum of exponential no. terms = Product of linear no. terms
| Eg, 1+ Rl ar Rz ar Rle = (1 aF Rl)(l aF Rz)

m Our problem can be solved in reasonable time




Performance Comparison

Dataset RuleFit SLI ENDER HKL
TIC-TAC-TOE 0.652 1 0.068 0.747 + 0.026 0.633 &+ 0.011 0.889 1 0.029
m = 96,p = 27

BALANCE 0.835 + 0.034 0.856 + 0.027 0.827 + 0.013 0.893 1+ 0.027
m = 28,p = 51

HABERMAN 0.512 + 0.072 0.565 1 0.066 0.424 4+ 0.000 0.594 1 0.056
m=31,p =28

CAR 0.913 +0.033 0.895 + 0.024 0.755 + 0.028 0.943 £ 0.024
m = 159,p = 21

BLOOD TRANS. 0.549 + 0.092 0.559 + 0.100 0.489 + 0.054 0.594 4 0.009
m = 75,p = 32

cMC 0.632 +0.013 0.601 =+ 0.041 0.644 + 0.026 0.656 1+ 0.014

m = 114,p = 38
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Proposed Formulation

mln—(ZdHWD(v ||p) +CZL(y > wyRy( —b)

vEVY vEV

where 1 < p < 2.
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Active Set Method

Initialize active set with root node (W = {0}).

Ix‘a&xzzb&x‘<d|x1a&x3>c&x4<d|xzzb&x3>c&xA<d
X, =a&x,#b&x 2c&x,<d
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Active Set Method

Identify potential active set entries (i.e., sources(W¢))

Ix‘a&xzzb&x‘<d|x1a&x3>c&x4<d|xztb&x3>c&xA<d
X, =a&x,#b&x 2c&x,<d
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Active Set Method

Among them, optimality condition violators

Easy to check suff. cond. [

X, =a&x,zb&x, <d
X, =a&x,zb&x 2c&x,<d

x,zb&x 2c&x, <d




Active Set Method

Append them to active set (W = {0, 1, 3,4}).

lx‘a&x;b&xfdix‘a&x3>c&xﬁdlx;b&xgc&xﬁd

X, =a&x,zb&x 2c&x,<d



Active Set Method

Append them to active set (W = {0, 1, 3, 4:}) (repeat until suff. cond. satisfied)
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X, =a&x,zb&x 2c&x,<d
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Solve small problem
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Active Set Method

Identify potential active set entries (i.e., sources(W¢))
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Active Set Method

Among them, optimality condition violators

X, =a&x,zb&x 2c&x,<d



Active Set Method

Append them to active set (W = {0, 1,3,4,6,7,10})

Ix‘a&xzzb&x‘<d|x1a&x3>c&x4<d|xzzb&x3>c&xA<d
X, =a&x,#b&x 2c&x,<d



Active Set Method

Final active set: W ={0, 1, 3,4,6,7,10}

lx‘a&x2¢b&x‘<dix‘a&x3>c&x‘<dlxztb&x3>c&x“<d

X, =a&x,zb&x 2c&x,<d



Active Set Method

Final active set: W = {O, 1, 3, 4:, 6, 7, 10} (Complexity: Polynomial in active set size)

lx‘a&x2¢b&x‘<dix‘a&x3>c&x‘<dlxztb&x3>c&x“<d

X, =a&x,zb&x 2c&x,<d



Active Set Method

Solution with HKL

X, =a
&

X, #b , S

Ix'a&xﬁb&x‘SdIX‘a&XSEC&X‘SdIXZ#b&XSzC&X4Sd

X, =a&x,zb&x 2c&x,<d

',




Active Set Method

Key difference from HKL: Node selected without its ancestor!

X, =a
&

X, #b , <

Ix‘a&x2¢b&x4<d|x‘a&x3>c&x4<d|x2¢b&x3>c&x4<d
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Key Technical Result

Theorem

A highly specialized partial dual of generalized HKL is:

min g(n)
7]67?_“”

st. n2>0, Zvev Ny =1

where g(n) is the optimal objective value of the following convex
problem:

il

maxXqeRrm Z:nzl ai—% (ZUGV {v(‘r])(aTKva)ﬁ) s.t. 0<a; <C, Zznzl a;y=0.

1-p\ 15 =
where Cv('fl) = (ZuEA(v) dﬁnu p) P P = (p 1) and K is
matrix with entries: y*y? k,(x*,x7).



Solving small problem

m Dual is min. of convex, Lipschitz conts., sub-differential
objective over a simplex.

m Mirror-descent — highly scalable alg. for such problems.
m Sub-gradient — solve 1,-MKL (vishwanathan et.., 10).



Key Technical Result

Theorem

Suppose the active set W is such that W = A(W). Let the
reduced solution with this W be (ww, byy) and the corresponding
dual variables be (mw, aw). Then the reduced solution is a
solution to the full problem with a duality gap less than € if:

i

B
a;vaaW

2
(ZueA(v)ﬂD(t) d“)

where e is a duality gap term associated with the computation of
the reduced solution.

maxte sources(WE) ZvED(t) S(Q(WW))2+2(€76W)



Complexity: Polynomial in size of W7
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Performance Comparison

Dataset RuleFit SLI ENDER HKL HKLZ p—1.1
TIC-TAC-TOE ~ 0.652 4+ 0.068  0.747 +0.026  0.633 +0.011  0.889 +0.029  0.935 + 0.043
(40, 2.51) (59, 2.35) (111, 2.46) (129, 1.85) (79, 1.77)
BLOOD TRANS.  0.549 +0.092  0.559+0.100 0.489 +0.054 0.59440.009  0.593 £+ 0.011
(18, 1.99) (6, 1.07) (58, 1.5) (242, 1.64) (7,1.40)
BALANCE 0.83540.034 0.856 +0.027  0.827+0.013  0.893 £0.027  0.899 + 0.023
(17, 2.18) (25, 1.88) (64, 1.99) (65, 1.65) (28,1.23)
HABERMAN 0.51240.072  0.565 4+ 0.066  0.424 +0.000 0.594 £ 0.056  0.594 + 0.056
(6, 1.68) (8, 1.14) (18, 1.87) (32, 1.27) (12,1.20)
CAR 0.91340.033  0.895+0.024  0.755 +0.028  0.943+0.024  0.935 & 0.036
(34, 3.12) (141, 2.27) (80, 1.85) (87, 1.78) (50,1.68)
cMe 0.63240.013  0.601 4+ 0.041  0.644 +0.026  0.656 +£0.014  0.659 + 0.008
(39, 2.41) (13, 2.13) (74, 2.65) (127, 1.96) (43,1.70)
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.in/~pratik.j/REL-HKL.tar.gz
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Summary

m Applied HKL to rule ensemble learning

m Improved generalization

m Bridged gap between kernel and rule learning communities
m Generalized HKL

m Generalizes well while learning compact ruleset

m Sometimes 25% improvement in generalization3

m Applicable elsewhere
m Efficient mirror-descent based active set method

m Complexity: polynomial in active set size < O(2")
m Searched rule space size ~ 2°° in ~ 10 min.

373% decrease in terms of classification error!



Questions?







