Efficient Rule Ensemble Learning using Hierarchical Kernels

J. Saketha Nath Collaboration: Pratik J. and Ganesh R.

Indian Institute of Technology — Bombay

Rule Ensembles — Key Features

- Highly interpretable hypothesis
 - \blacksquare Small set of rules i.e., low q
 - Simple rules e.g., short conjunctive propositions

Rule Ensembles — Key Features

- Highly interpretable hypothesis
 - \blacksquare Small set of rules i.e., low q
 - Simple rules e.g., short conjunctive propositions
- Better generalization than conventional rule learners

Rule Ensemble Learning — Formal Definition

Input:

- Training Set: $\mathcal{D} = \{ (\mathbf{x}^1, y^1), ..., (\mathbf{x}^m, y^m) \}$, $\mathbf{x}^i \in \mathbb{R}^n$ and $y^i \in \{-1, 1\}$
- lacktriangle Basic propositions regarding input features (say, p in number)

```
Nominal e.g., x_i = a and x_i \neq a
Numeric e.g., x_j \geq b and x_j \leq b
```

Rule Ensemble Learning — Formal Definition

Input:

- Training Set: $\mathcal{D} = \{ (\mathbf{x}^1, y^1), ..., (\mathbf{x}^m, y^m) \}$, $\mathbf{x}^i \in \mathbb{R}^n$ and $y^i \in \{-1, 1\}$
- lacksquare Basic propositions regarding input features (say, p in number)

```
Nominal e.g., x_i = a and x_i \neq a
Numeric e.g., x_j \geq b and x_j \leq b
```

Goal:

- Construct conjunctive rules from basic propositions
 - Few in number
 - Short conjunctions
- Compute corresponding weights (\mathbf{w}, b)

Rule Ensemble Learning — Challenging task

Extremely large, atleast $O(2^n)$, rule space!

Rule Ensembles — Existing Methods

```
\begin{split} & \mathsf{SLIPPER}_{(\mathsf{Cohen\&Singer},\ 99)} \colon \mathsf{AdaBoost} + \mathsf{RIPPER} - \mathsf{greedy} \\ & \mathsf{RuleFit}_{(\mathsf{Friedman\&Popescu},\ 08)} \colon \mathsf{ISLE} + \mathsf{decision}\ \mathsf{tree} - \mathsf{greedy} \\ & \mathsf{ELCS}_{(\mathsf{Gao}\ \mathsf{et.al.},\ 07)} \colon \mathsf{Genetic}\ \mathsf{Alg.} + \mathsf{post-pruning} - \mathsf{sub-optimal} \\ & \mathsf{ENDER}_{(\mathsf{Dembczynski}\ \mathsf{et.al.},\ 10)} \colon \mathsf{Minimization}\ \mathsf{of}\ \mathsf{empirical}\ \mathsf{risk} - \mathsf{greedy} \end{split}
```

Rule Ensembles — Existing Methods

```
\begin{split} & \mathsf{SLIPPER}_{(\mathsf{Cohen\&Singer},\,99)} \colon \, \mathsf{AdaBoost} \, + \, \mathsf{RIPPER} \, -\!\!\!\!\! - \, \mathsf{greedy} \\ & \mathsf{RuleFit}_{(\mathsf{Friedman\&Popescu},\,08)} \colon \, \mathsf{ISLE} \, + \, \mathsf{decision} \, \, \mathsf{tree} \, -\!\!\!\!\! - \, \mathsf{greedy} \\ & \mathsf{ELCS}_{(\mathsf{Gao}\,\,\mathsf{et.al.},\,07)} \colon \, \mathsf{Genetic} \, \, \mathsf{Alg.} \, + \, \mathsf{post-pruning} \, -\!\!\!\!\! - \, \mathsf{sub-optimal} \\ & \mathsf{ENDER}_{(\mathsf{Dembczynski}\,\,\mathsf{et.al.},\,10)} \colon \, \mathsf{Minimization} \, \, \mathsf{of} \, \, \mathsf{empirical} \, \, \mathsf{risk} \, -\!\!\!\!\! - \, \mathsf{greedy} \end{split}
```

Proposed Methodology — Overview

Optimal search for rules over all conjunctions

- Regularized loss minimization
- Convex formulation
- Discovers compact ruleset (small set with short rules)

Proposed Methodology — Overview

Optimal search for rules over all conjunctions

- Regularized loss minimization
- Convex formulation
- Discovers compact ruleset (small set with short rules)

Technical Contribution:

Efficient mirror-descent based active set method

■ Complexity: polynomial in active set size $(\ll 2^p)$

Proposed Methodology — Overview

Optimal search for rules over all conjunctions

- Regularized loss minimization
- Convex formulation
- Discovers compact ruleset (small set with short rules)

Technical Contribution:

Efficient mirror-descent based active set method

■ Complexity: polynomial in active set size $(\ll 2^p)$

Key Reason for Efficiency:

(Large) sub-lattices with long rules are avoided

- Decision function¹: sign $(\sum_{v \in \mathcal{V}} w_v R_v(\mathbf{x}) b)$
- lacksquare l_1 regularize to force many w_v to zero

 $^{^{1}\}mathcal{V}$ is index set for conjunctive lattice

- Decision function¹: sign $(\sum_{v \in \mathcal{V}} w_v R_v(\mathbf{x}) b)$
- lacksquare l_1 regularize to force many w_v to zero

l_1 regularized formulation:

$$\min_{\mathbf{w},b} rac{1}{2} \left(\sum_{v \in \mathcal{V}} |w_v|
ight)^2 + C \sum_{i=1}^m L \left(y^i, \sum_{v \in \mathcal{V}} w_v R_v(\mathbf{x}^i) - b
ight)$$

 $^{^{1}\}mathcal{V}$ is index set for conjunctive lattice

Short-comings:

- long rules may be selected
- Computationally difficult problem

Key Idea:

Key Idea:

Key Idea:

Key Idea:

Key Idea:

Key Idea:

Key Idea:

Key Idea:

Key Idea:

- Multiple Kernel Learning Optimal combination of given kernels
- Kernels arranged on DAG (lattice) are given

- Multiple Kernel Learning Optimal combination of given kernels
- \blacksquare Kernels arranged on DAG (lattice) are given

- Multiple Kernel Learning Optimal combination of given kernels
- Kernels arranged on DAG (lattice) are given

- Multiple Kernel Learning Optimal combination of given kernels
- Kernels arranged on DAG (lattice) are given

- Multiple Kernel Learning Optimal combination of given kernels
- Kernels arranged on DAG (lattice) are given

- Multiple Kernel Learning Optimal combination of given kernels
- Kernels arranged on DAG (lattice) are given

Hierarchical Kernel Learning (HKL)(Bach, 08)

- Multiple Kernel Learning Optimal combination of given kernels
- Kernels arranged on DAG (lattice) are given

HKL — Key Result

Active Set Algorithm:

- Complexity: Polynomial in number of selected kernels
- Condition: kernels are summable in *linear* time over a sub-lattice

HKL — Key Result

Active Set Algorithm:

- Complexity: Polynomial in number of selected kernels
- Condition: kernels are summable in *linear* time over a sub-lattice

Our case:

- Kernels indeed easily summable
 - lacksquare R_v is nothing but product of few base proposition evaluations
 - Sum of exponential no. terms = Product of linear no. terms
 - E.g., $1 + R_1 + R_2 + R_1 R_2 = (1 + R_1)(1 + R_2)$
 - Our problem can be solved in reasonable time

Dataset	RuleFit	SLI	ENDER	HKL
$\begin{array}{l} {\rm TIC\text{-}TAC\text{-}TOE} \\ m = 96, p = 27 \end{array}$	0.652 ± 0.068	0.747 ± 0.026	0.633 ± 0.011	0.889 ± 0.029
$\begin{array}{l} {\tt BALANCE} \\ {\it m} = 28, p = 51 \end{array}$	0.835 ± 0.034	0.856 ± 0.027	0.827 ± 0.013	0.893 ± 0.027
HABERMAN $m = 31, p = 28$	0.512 ± 0.072	0.565 ± 0.066	0.424 ± 0.000	0.594 ± 0.056
CAR $m=159, p=21$	0.913 ± 0.033	0.895 ± 0.024	0.755 ± 0.028	0.943 ± 0.024
BLOOD TRANS. $m=75, p=32$	0.549 ± 0.092	0.559 ± 0.100	0.489 ± 0.054	0.594 ± 0.009
CMC m = 114, p = 38	0.632 ± 0.013	0.601 ± 0.041	0.644 ± 0.026	0.656 ± 0.014

Dataset	RuleFit	SLI	ENDER	HKL
$\begin{array}{l} {\rm TIC\text{-}TAC\text{-}TOE} \\ m = 96, p = 27 \end{array}$	0.652 ± 0.068 (2.51)	$0.747 \pm 0.026 \\ (2.35)$	$0.633 \pm 0.011 \ (2.46)$	$0.889 \pm 0.029 \\ (\qquad 1.85)$
BALANCE $m=28, p=51$	0.835 ± 0.034 (2.18)	$0.856 \pm 0.027 \\ (\qquad 1.88)$	$0.827 \pm 0.013 \ (1.99)$	$0.893 \pm 0.027 \ (1.65)$
HABERMAN $m=31, p=28$	0.512 ± 0.072 (1.68)	$0.565 \pm 0.066 \ (1.14)$	$0.424 \pm 0.000 \ (1.87)$	0. 594 ± 0.056 (1.27)
CAR $m=159, p=21$	0.913 ± 0.033 (3.12)	$0.895 \pm 0.024 \\ (2.27)$	$0.755 \pm 0.028 \ (1.85)$	$0.943 \pm 0.024 \\ (\qquad 1.78)$
BLOOD TRANS. $m=75, p=32$	0.549 ± 0.092 (1.99)	0.559 ± 0.100 (1.07)	${0.489 \pm 0.054 \atop (1.5)}$	$0.594 \pm 0.009 \ (1.64)$
$\begin{array}{c} \text{CMC} \\ m = 114, p = 38 \end{array}$	0.632 ± 0.013 (2.41)	$0.601 \pm 0.041 \\ (2.13)$	0.644 ± 0.026 (2.65)	0.656 ± 0.014 (1.96)

Dataset	RuleFit	SLI	ENDER	HKL
TIC-TAC-TOE $m=96,p=27$	0.652 ± 0.068 (40 , 2.51)	$0.747 \pm 0.026 \\ (59, 2.35)$	$0.633 \pm 0.011 \ (111, 2.46)$	$0.889 \pm 0.029 \ (129, 1.85)$
BALANCE $m=28, p=51$	0.835 ± 0.034 (17, 2.18)	$0.856 \pm 0.027 \\ (25, 1.88)$	$0.827 \pm 0.013 \\ (64, 1.99)$	0.893 ± 0.027 (65, 1.65)
HABERMAN $m=31$, $p=28$	0.512 ± 0.072 (6 , 1.68)	0.565 ± 0.066 (8, 1.14)	$0.424 \pm 0.000 \\ (18, 1.87)$	$0.594 \pm 0.056 \\ (32, 1.27)$
$\begin{array}{l} \mathtt{CAR} \\ m = 159, p = 21 \end{array}$	0.913 ± 0.033 (34 , 3.12)	$0.895 \pm 0.024 \\ (141, 2.27)$	$0.755 \pm 0.028 \\ (80, 1.85)$	$0.943 \pm 0.024 \\ (87, 1.78)$
BLOOD TRANS. $m=75, p=32$	0.549 ± 0.092 (18, 1.99)	0.559 ± 0.100 (6, 1.07)	$0.489 \pm 0.054 \\ (58, 1.5)$	$0.594 \pm 0.009 $ (242, 1.64)
$\begin{array}{c} \text{CMC} \\ m = 114, p = 38 \end{array}$	0.632 ± 0.013 (39, 2.41)	0.601 ± 0.041 (13, 2.13)	0.644 ± 0.026 (74, 2.65)	0.656 ± 0.014 (127, 1.96)

Dataset	RuleFit	SLI	ENDER	HKL
TIC-TAC-TOE $m=96, p=27$	0.652 ± 0.068 (40 , 2.51)	$0.747 \pm 0.026 \\ (59, 2.35)$	$0.633 \pm 0.011 \ (111, 2.46)$	$0.889 \pm 0.029 \ (129, 1.85)$
BALANCE $m=28, p=51$	0.835 ± 0.034 (17, 2.18)	$0.856 \pm 0.027 \\ (25, 1.88)$	$0.827 \pm 0.013 \\ (64, 1.99)$	0.893 ± 0.027 (65, 1.65)
HABERMAN $m=31, p=28$	0.512 ± 0.072 (6 , 1.68)	0.565 ± 0.066 (8, 1.14)	$0.424 \pm 0.000 \\ (18, 1.87)$	$0.594 \pm 0.056 $ (32, 1.27)
$\begin{array}{l} \mathtt{CAR} \\ m = 159, p = 21 \end{array}$	0.913 ± 0.033 (34 , 3.12)	$0.895 \pm 0.024 \\ (141, 2.27)$	$0.755 \pm 0.028 \\ (80, 1.85)$	$0.943 \pm 0.024 \\ (87, 1.78)$
BLOOD TRANS. $m=75, p=32$	0.549 ± 0.092 (18, 1.99)	0.559 ± 0.100 (6, 1.07)	$0.489 \pm 0.054 \\ (58, 1.5)$	$0.594 \pm 0.009 $ (242, 1.64)
$\begin{array}{c} \text{CMC} \\ m = 114, p = 38 \end{array}$	0.632 ± 0.013 (39, 2.41)	0.601 ± 0.041 (13, 2.13)	0.644 ± 0.026 (74, 2.65)	0.656 ± 0.014 (217, 1.96)

■ Node selected only if all its ancestors are!

- Node selected only if all its ancestors are!
- \blacksquare l_1 promotes sparsity.
- l₂ promotes non-sparsity. Employ sparsity inducing norm!

- Node selected only if all its ancestors are!
- \blacksquare l_1 promotes sparsity.
- l₂ promotes non-sparsity. Employ sparsity inducing norm!

Proposed Formulation

Generalized HKL

$$\min_{\mathbf{w},b} rac{1}{2} \left(\sum_{v \in \mathcal{V}} d_v \|\mathbf{w}_{D(v)}\|_{
ho}
ight)^2 + C \sum_{i=1}^m L \left(y^i, \sum_{v \in \mathcal{V}} w_v R_v(\mathbf{x}^i) - b
ight)$$

where $1 < \rho < 2$.

Initialize active set with root node ($W = \{0\}$).

Solve small problem

Solve small problem

Identify potential active set entries (i.e., $sources(\mathcal{W}^c)$)

Among them, optimality condition violators

Among them, optimality condition violators

Append them to active set $(W = \{0, 1, 3, 4\})$.

Append them to active set $(\mathcal{W}=\{0,1,3,4\})$. (repeat until suff. cond. satisfied)

Solve small problem

Identify potential active set entries (i.e., $sources(\mathcal{W}^c)$)

Among them, optimality condition violators

Append them to active set $(\mathcal{W} = \{0, 1, 3, 4, 6, 7, 10\})$

Final active set: $W = \{0, 1, 3, 4, 6, 7, 10\}$

Final active set: $\mathcal{W} = \{0, 1, 3, 4, 6, 7, 10\}$ (Complexity: Polynomial in active set size)

Solution with HKL

Key difference from HKL: Node selected without its ancestor!

Key Technical Result

Theorem

A highly specialized partial dual of generalized HKL is:

$$egin{array}{ll} \min & g(\eta) \ ext{s.t.} & \eta \geq 0, \; \sum_{v \in \mathcal{V}} \eta_v = 1 \end{array}$$

Key Technical Result

Theorem

A highly specialized partial dual of generalized HKL is:

$$egin{array}{ll} \min & g(\eta) \ ext{s.t.} & \eta \geq 0, \; \sum_{v \in \mathcal{V}} \eta_v = 1 \end{array}$$

where $g(\eta)$ is the optimal objective value of the following convex problem:

$$\max_{\boldsymbol{\alpha} \in \mathcal{R}^m} \sum_{i=1}^m \alpha_i - \frac{1}{2} \left(\sum_{v \in \mathcal{V}} \zeta_v(\eta) \left(\boldsymbol{\alpha}^\top \mathbf{K}_v \boldsymbol{\alpha} \right)^{\bar{\rho}} \right)^{\frac{1}{\bar{\rho}}} \text{ s.t. } 0 \leq \alpha_i \leq C, \sum_{i=1}^m \alpha_i y^i = 0.$$

where $\zeta_v(\eta) = \left(\sum_{u \in A(v)} d_u^{\rho} \eta_u^{1-\rho}\right)^{\frac{1}{1-\rho}}$, $\bar{\rho} = \frac{\rho}{2(\rho-1)}$ and \mathbf{K}_v is matrix with entries: $y^i y^j k_v(\mathbf{x}^i, \mathbf{x}^j)$.

Solving small problem

- Dual is min. of convex, Lipschitz conts., sub-differential objective over a simplex.
- Mirror-descent highly scalable alg. for such problems.
- Sub-gradient solve l_p -MKL (Vishwanathan et.al., 10).

Key Technical Result

Theorem

Suppose the active set W is such that W = A(W). Let the reduced solution with this W be (\mathbf{w}_{W}, b_{W}) and the corresponding dual variables be (η_{W}, α_{W}) . Then the reduced solution is a solution to the full problem with a duality gap less than ϵ if:

$$\max_{t \in sources(\mathcal{W}^c)} \left(\sum_{v \in D(t)} \left(\frac{\alpha_{\mathcal{W}}^{\top} \mathbf{K}_v \alpha_{\mathcal{W}}}{\left(\sum_{u \in A(v) \cap D(t)}^{d_u} d_u \right)^2} \right)^{\tilde{\rho}} \right)^{\tilde{\rho}} \leq (\Omega(\mathbf{w}_{\mathcal{W}}))^2 + 2(\epsilon - \epsilon_{\mathcal{W}})$$

where ϵ_W is a duality gap term associated with the computation of the reduced solution.

$$\max_{t \in sources(\mathcal{W}^c)} \left(\sum_{v \in D(t)} \left(rac{lpha_{\mathcal{W}}^{ op} \mathbf{K}_v lpha_{\mathcal{W}}}{\left(\sum_{u \in A(v) \cap D(t)} rac{d_u}{d_u}
ight)^2}
ight)^{ar{ar{
ho}}} \stackrel{ar{ar{
ho}}}{=} \leq (\Omega(\mathbf{w}_{\mathcal{W}}))^2 + 2(\epsilon - \epsilon_{\mathcal{W}})$$

Sufficiency Condition:

$$\max_{t \in sources(\mathcal{W}^c)} \left(\sum\nolimits_{v \in D(t)} \left(\frac{\alpha_{\mathcal{W}}^\top \mathbf{K}_v \alpha_{\mathcal{W}}}{\left(\sum\nolimits_{u \in A(v) \cap D(t)} \frac{du}{}\right)^2} \right)^{\bar{\rho}} \right)^{\frac{1}{\bar{\rho}}} \leq (\Omega(\mathbf{w}_{\mathcal{W}}))^2 + 2(\epsilon - \epsilon_{\mathcal{W}})$$

 $ightharpoonup
ho o 1 \ (\bar{
ho} o \infty)$, suff. cond. tight

$$\max_{t \in sources(\mathcal{W}^c)} \left(\sum_{v \in D(t)} \left(\frac{lpha_{\mathcal{W}}^{ op} \mathbf{K}_v lpha_{\mathcal{W}}}{\left(\sum_{u \in A(v) \cap D(t)} rac{d_u}{d_u}
ight)^2}
ight)^{ar{
ho}} \int_{ar{
ho}}^{ar{
ho}} \leq (\Omega(\mathbf{w}_{\mathcal{W}}))^2 + 2(\epsilon - \epsilon_{\mathcal{W}})$$

- $ho \rightarrow 1 \ (\bar{\rho} \rightarrow \infty)$, suff. cond. tight
- $ho = 2 \ (\bar{\rho} = 1)$, suff. cond. loose; computationally feasible

$$\max_{t \in sources(\mathcal{W}^c)} \left(\sum_{v \in D(t)} \left(\frac{lpha_{\mathcal{W}}^{ op} \mathbf{K}_v lpha_{\mathcal{W}}}{\left(\sum_{u \in A(v) \cap D(t)} rac{d_u}{d_u}
ight)^2}
ight)^{ar{
ho}} \right)^{ar{
ho}}$$

- $ho o 1 \ (\bar{
 ho} o \infty)$, suff. cond. tight
- $ho = 2 \ (\bar{\rho} = 1)$, suff. cond. loose; computationally feasible
- How much ground lost by replacing l_{∞} with l_1 ?

$$\max_{t \in sources(\mathcal{W}^c)} \left(\sum_{v \in D(t)} \left(\frac{lpha_{\mathcal{W}}^{ op} \mathbf{K}_v lpha_{\mathcal{W}}}{\left(\sum_{u \in A(v) \cap D(t)} rac{du}{du}
ight)^2}
ight)^{ar{
ho}}
ight)^{ar{ar{
ho}}} \leq (\Omega(\mathbf{w}_{\mathcal{W}}))^2 + 2(\epsilon - \epsilon_{\mathcal{W}})$$

- $ho o 1 \ (\bar{
 ho} o \infty)$, suff. cond. tight
- ho=2~(ar
 ho=1), suff. cond. loose; computationally feasible
- How much ground lost by replacing l_{∞} with l_1 ?
 - Not much: As kernels near bottom are extremely sparse!

Final Sufficiency Condition:

$$\max_{t \in sources(\mathcal{W}^c)} \left(\sum_{v \in D(t)} \left(\frac{\alpha_{\mathcal{W}}^{ op} \mathbf{K}_v \alpha_{\mathcal{W}}}{\left(\sum_{u \in A(v) \cap D(t)}^{d_u} d_u \right)^2} \right) \right) \leq (\Omega(\mathbf{w}_{\mathcal{W}}))^2 + 2(\epsilon - \epsilon_{\mathcal{W}})$$

- $ho o 1 \ (\bar{
 ho} o \infty)$, suff. cond. tight
- lacktriangledown ho=2 (ar
 ho=1), suff. cond. loose; computationally feasible
- How much ground lost by replacing l_{∞} with l_1 ?
 - Not much: As kernels near bottom are extremely sparse!

Dataset	RuleFit	SLI	ENDER	HKL	$HKL^2_{\rho=1.1}$
TIC-TAC-TOE	$0.652 \pm 0.068 $ (40, 2.51)	$0.747 \pm 0.026 \\ (59, 2.35)$	$0.633 \pm 0.011 \ (111, 2.46)$	$0.889 \pm 0.029 \\ (129, 1.85)$	0.935 ± 0.043 (79, 1.77)
BLOOD TRANS.	$0.549 \pm 0.092 \\ (18, 1.99)$	$0.559 \pm 0.100 \ (6, 1.07)$	$0.489 \pm 0.054 \ (58, 1.5)$	$0.594 \pm 0.009 $ (242, 1.64)	$0.593 \pm 0.011 \\ (7,1.40)$
BALANCE	$0.835 \pm 0.034 \ (17, 2.18)$	$0.856 \pm 0.027 \\ (25, 1.88)$	$0.827 \pm 0.013 \\ (64, 1.99)$	$0.893 \pm 0.027 \\ (65, 1.65)$	0.899 ± 0.023 (28,1.23)
HABERMAN	$0.512 \pm 0.072 \ (6, 1.68)$	$0.565 \pm 0.066 \ (8, 1.14)$	$0.424 \pm 0.000 \\ (18, 1.87)$	0.594 ± 0.056 (32, 1.27)	0.594 ± 0.056 $(12,1.20)$
CAR	0.913 ± 0.033 (34, 3.12)	$0.895 \pm 0.024 \\ (141, 2.27)$	$0.755 \pm 0.028 \\ (80, 1.85)$	0.943 ± 0.024 (87, 1.78)	0.935 ± 0.036 (50, 1.68)
CMC	0.632 ± 0.013 (39, 2.41)	0.601 ± 0.041 (13, 2.13)	0.644 ± 0.026 (74, 2.65)	0.656 ± 0.014 (127, 1.96)	0.659 ± 0.008 $(43,1.70)$

 $^{^2} Code \ at \ http://www.cse.iitb.ac.in/~pratik.j/REL-HKL.tar.gz$

Dataset	RuleFit	SLI	ENDER	HKL	$HKL^2_{\rho=1.1}$
TIC-TAC-TOE	$0.652 \pm 0.068 $ (40, 2.51)	$0.747 \pm 0.026 \\ (59, 2.35)$	$0.633 \pm 0.011 \ (111, 2.46)$	$0.889 \pm 0.029 \\ (129, 1.85)$	$0.935 \pm 0.043 \ (79, 1.77)$
BLOOD TRANS.	$0.549 \pm 0.092 \\ (18, 1.99)$	$0.559 \pm 0.100 \ (6, 1.07)$	$0.489 \pm 0.054 \\ (58, 1.5)$	$0.594 \pm 0.009 $ (242, 1.64)	$0.593 \pm 0.011 $ (7,1.40)
BALANCE	0.835 ± 0.034 (17, 2.18)	$0.856 \pm 0.027 \\ (25, 1.88)$	$0.827 \pm 0.013 \\ (64, 1.99)$	$0.893 \pm 0.027 \\ (65, 1.65)$	0.899 ± 0.023 (28,1.23)
HABERMAN	$0.512 \pm 0.072 \ (6, 1.68)$	$0.565 \pm 0.066 \ (8, 1.14)$	$0.424 \pm 0.000 \\ (18, 1.87)$	0.594 ± 0.056 (32, 1.27)	0. 594 ± 0.056 (12,1.20)
CAR	0.913 ± 0.033 (34, 3.12)	$0.895 \pm 0.024 \\ (141, 2.27)$	$0.755 \pm 0.028 \\ (80, 1.85)$	0.943 ± 0.024 (87, 1.78)	0.935 ± 0.036 (50, 1.68)
CMC	0.632 ± 0.013 (39, 2.41)	0.601 ± 0.041 (13, 2.13)	0.644 ± 0.026 (74, 2.65)	0.656 ± 0.014 (127, 1.96)	0.659 ± 0.008 $(43,1.70)$

 $^{^2} Code \ at \ http://www.cse.iitb.ac.in/~pratik.j/REL-HKL.tar.gz$

Summary

- Applied HKL to rule ensemble learning
 - Improved generalization
 - Bridged gap between kernel and rule learning communities

³73% decrease in terms of classification error!

Summary

- Applied HKL to rule ensemble learning
 - Improved generalization
 - Bridged gap between kernel and rule learning communities
- Generalized HKL
 - Generalizes well while learning compact ruleset
 - Sometimes 25% improvement in generalization³
 - Applicable elsewhere

³73% decrease in terms of classification error!

Summary

- Applied HKL to rule ensemble learning
 - Improved generalization
 - Bridged gap between kernel and rule learning communities
- Generalized HKI
 - Generalizes well while learning compact ruleset
 - Sometimes 25% improvement in generalization³
 - Applicable elsewhere
- Efficient mirror-descent based active set method
 - Complexity: polynomial in active set size $\ll O(2^n)$
 - Searched rule space size $\sim 2^{50}$ in ~ 10 min.

³73% decrease in terms of classification error!

Questions?

