Kernel Learning for Multi-modal Recognition Tasks

J. Saketha Nath

CSE, IIT-B

IBM Workshop
Multi-modal Learning Tasks

- Multiple views or descriptions of the data is available
 - E.g. Object Categorization
Object Categorization

Figure: Daffodils and Dandelions can be distinguished using shape features.

Figure: Blue-bell and Tulip can be distinguished using color features.

Source: http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
Object Categorization — Features

Typical Features:

- **HSV** Color features.
- **SIFT** Local texture and shape features.
- **HOG** Global shape features.
Multi-modal Learning Tasks

- Multiple views or descriptions of the data is available
 - E.g. Object Categorization, Multi-modal Speech/Speaker/Activity recognition

Nilsback and Zisserman (CVPR06) found that:
All the 3 kinds of features are critical
Not all features in each kind may be important
Exploit natural grouping of features.
Multi-modal Learning Tasks

- Multiple views or descriptions of the data is available
 - E.g. Object Categorization, Multi-modal Speech/Speaker/Activity recognition, Text Mining?
Multi-modal Learning Tasks

- Multiple views or descriptions of the data is available
 - E.g. Object Categorization, Multi-modal Speech/Speaker/Activity recognition, Text Mining?
- Build classifier using all features (say SVM)
Multi-modal Learning Tasks

- Multiple views or descriptions of the data is available
 - E.g. Object Categorization, Multi-modal Speech/Speaker/Activity recognition, Text Mining?
- Build classifier using all features (say SVM)

Can we do better?

- E.g. Nilsback and Zisserman (CVPR06) found that:
 - All the 3 kinds of features are critical
 - Not all features in each kind may be important
- Exploit natural grouping of features.
Scope and Objective

Scope:
- Binary classification task, Kernel methods like SVM
- Simultaneous feature selection and classifier construction
 - *Multiple Kernel Learning* [Lanckriet et.al., ’02]

Objective:
- Customized for multi-modal tasks
 - Exploit the group structure in features (prior info)
Problem Setting

Given:

- $\mathcal{D} = \{(x_i, y_i) | x_i \in \mathcal{X}, y_i \in \{-1, 1\}, i = 1, \ldots, m\}$
- Feature maps $\Phi_j, j = 1, \ldots, n$ (n is modality of data)
 - E.g. $\Phi_1(x_i)$ — feature vector describing color of flower x_i
- Using each Φ_j generate various kernels (linear, polynomial, Gaussian)
Problem Setting

Given:

- Kernels $K_{jk}, j = 1, \ldots, n, k = 1, \ldots, n_j$
 - n — modality of data
 - n_j — no. kernels generated from j^{th} mode
Problem Setting

Given:

- Kernels $K_{jk}, j = 1, \ldots, n, k = 1, \ldots, n_j$
 - n — modality of data
 - n_j — no. kernels generated from j^{th} mode

MKL Task:

- Simultaneously determine weights given to Kernels (features) and the classifier
- Utilize prior information regarding the Kernels
Existing Methods

SVM

\[
\max_{\alpha \in S} 1^T \alpha - \frac{1}{2} \alpha^T YKY \alpha
\]

- \(K = \sum_{j=1}^{n} \sum_{k=1}^{n_j} K_{jk} \) (concatenation of all features)
Existing Methods

SVM

\[
\max_{\alpha \in S} 1^\top \alpha - \frac{1}{2} \alpha^\top YK Y \alpha
\]

- \(K = \sum_{j=1}^{n} \sum_{k=1}^{n_j} K_{jk} \) (concatenation of all features)

MKL

\[
\min_{\lambda_{jk} \geq 0, \sum_j, k \lambda_{jk} = 1} \max_{\alpha \in S} 1^\top \alpha - \frac{1}{2} \alpha^\top YK Y \alpha
\]

- \(K = \sum_{j=1}^{n} \sum_{k=1}^{n_j} \lambda_{jk} K_{jk} \) (convex combination of Kernels)
- Equivalent to selecting single best kernel!
Proposed Methodology

- $\Phi_{jk}(\cdot)$ implicit map defined by K_{jk}
- $f(x) = \sum_{j=1}^{n} \sum_{k=1}^{n_j} w_{jk}^\top \Phi_{jk}(x) - b$
Proposed Methodology

- $\Phi_{jk}(\cdot)$ implicit map defined by K_{jk}
- $f(x) = \sum_{j=1}^{n} \sum_{k=1}^{n_j} w_{jk}^\top \Phi_{jk}(x) - b$

SVM Formulation:

$$\min_{w_{jk}, b, \xi_i} \quad \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n_j} \|w_{jk}\|_2 + C \sum_i \xi_i$$

s.t. $y_i \left(\sum_{j=1}^{n} \sum_{k=1}^{n_j} w_{jk}^\top \Phi_{jk}(x_i) - b \right) \geq 1 - \xi_i, \quad \xi_i \geq 0$
Proposed Methodology

- $\Phi_{jk}(\cdot)$ implicit map defined by K_{jk}
- $f(x) = \sum_{j=1}^{n} \sum_{k=1}^{n_j} w_{jk}^\top \Phi_{jk}(x) - b$

Convex Formulation:

$$\min_{w_{jk}, b, \xi_i} \frac{1}{2} \left[\max_j \left(\sum_{k=1}^{n_j} \|w_{jk}\|_2 \right)^2 \right] + C \sum_i \xi_i$$

s.t. $y_i \left(\sum_{j=1}^{n} \sum_{k=1}^{n_j} w_{jk}^\top \Phi_{jk}(x_i) - b \right) \geq 1 - \xi_i, \xi_i \geq 0$
Dual Formulation:

\[
\min_{\lambda_j \in \Delta_{n_j} \forall j} \max_{\gamma \in \Delta_n, \alpha \in S} \ 1^\top \alpha - \frac{1}{2} \alpha^\top Y \left[\sum_{j=1}^{n} \left(\frac{\sum_{k=1}^{n_j} \lambda_{jk} K_{jk}}{\gamma_j} \right) \right] Y \alpha \quad (1)
\]
Dual Formulation:

\[
\begin{align*}
\min_{\lambda_j \in \Delta_{n_j} \forall j} & \quad \max_{\gamma \in \Delta_n, \alpha \in S} & \quad 1^\top \alpha - \frac{1}{2} \alpha^\top Y \left[\sum_{j=1}^{n} \left(\frac{\sum_{k=1}^{n_j} \lambda_{jk} K_{jk}}{\gamma_{j}} \right) \right] Y \alpha
\end{align*}
\]

Comments:

- Equivalent to SVM formulation with \(K \equiv \sum_{j=1}^{n} \left(\frac{\sum_{k=1}^{n_j} \lambda_{jk}^* K_{jk}}{\gamma_{j}^*} \right) \).
- \(\frac{1}{\gamma_{j}^*} \) weight for \(j^{th} \) mode and \(\lambda_{jk}^* \) weight for \(k^{th} \) kernel in \(j^{th} \) mode.
- \(\gamma_{j}^* \neq 0, j = 1, \ldots, n \) provided \(K_{jk} \) are positive definite.
- \(\lambda_{jk}^* \) is highly sparse for each \(j \).
- \(n = 1 \) gives back MKL!
Efficient Solver

- Pose as SOCP, solve using SeDuMi, Mosek
- Extensions of iterative algorithms in MKL literature suffer from non-convexity problems
Efficient Solver

- Pose as SOCP, solve using SeDuMi, Mosek
- Extensions of iterative algorithms in MKL literature suffer from non-convexity problems

Mirror Descent based alg.:
- Iterative alg. solving an SVM at each step.
- Far more scalable than state-of-the-art MKL solvers \((n = 1)\)
Figure: Plot of average gain (%) in accuracy with **MixNorm-MKL** on Caltech-101.
Results — Scaling

Figure: Scaling plots comparing mirror-descent based algorithm and simpleMKL.
THANK YOU