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Problem of Learning

Given: Set of m pairs of the form (xi, yi)
xi ∈ X is some object e.g., picture

,
financial-profile of industry etc.

yi ∈ Y is label of object e.g., chair/bike/panda

,
stock-value etc

.

Goal: Construct f : X 7→ Y such that f(x) = y for all
(x, y) ∈ X × Y
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Binary Classification

Mathematically:

min
f∈F

P [f(X) 6= Y ]︸ ︷︷ ︸
generalization error

impossible!

Typical sets of classifiers:

Linear F = {f | f(x) = sign(w>x− b)}
Quadratic F = {f | f(x) = sign(x>Ax + 2b>x + c)}
Polynomial F = {f | f(x) = sign(P(x))}
Non-linear F = {f | f(x) = sign(g(x))}
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Learning Bounds — classification case

Obtain bounds using concentration inequalities [Boucheron
et.al., 04], Rademacher complexities [Bartlett & Mendelson,
02]:

Pf︸︷︷︸
misclass. prob.

≤ Pmf︸︷︷︸
est. of prob.

+2 R(F)︸ ︷︷ ︸
complexity of F

+

√
2 log(2/δ)

m

holds ∀ f ∈ F with probability 1− δ

Extensions of Vapnik-Chervonenkis-type inequalities [Vapnik,
98].
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Support Vector Machines

Function class is set of all linear discriminators (with strict
separation)

F = {f | f(x) = sign(w>x− b)}
R(F) ∝ ‖w‖22

SVM Problem [Cortes & Vapnik, 95]:

min
w,b,ξi

1
2‖w‖

2
2 + C

∑m
i=1 ξi

s.t. yi(w>xi − b) ≥ 1− ξi, ξi ≥ 0
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SVM Dual Problem

max
αi

∑m
i=1 αi −

1
2

∑m
i=1

∑m
j=1 αiαjyiyjx

>
i xj

s.t. 0 ≤ αi ≤ C,
∑m

i=1 αiyi

f(x) = sign(w>x− b) = sign(
∑m

i=1 αiyix
>
i x− b)

Training and prediction involve dot-products alone

Dual soln. is sparse — fast algorithms
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Non-linear Discriminators

Linear discriminators too restrictive

Easy extension to non-linear discriminators ? Yes

E.g.,

f(x1, x2) = sign(a1 x2
1︸︷︷︸
z1

+a2 x1x2︸︷︷︸
z2

+a3 x2
2︸︷︷︸
z3

)

= sign(a1z1 + a2z2 + a3z3)

which is infact a linear discriminator in z-space.
computing z = φ(x) is inefficient
But, z>1 z2 = (x>1 x2)d

Very useful as SVM relies on dot-products only

Can be extended to generic input-spaces and non-linear
discriminators — kernel trick
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Source: [Schölkopf & Smola, 02]
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Kernels

Let k : X × X 7→ R symmetric and positive

Positive: For any {x1, . . . , xm} ⊂ X gram-matrix
G (Gij = k(xi, xj) is psd

E.g. k(x, z) = x>z︸ ︷︷ ︸
linear

, k(x, z) = (x>z)d︸ ︷︷ ︸
polynomial

, k(x, z) = exp{x>z}︸ ︷︷ ︸
Gaussian

Intuitively, k measures similarity

[Schölkopf & Smola, 02]

∃ φ : X 7→ H 3 < φ(x), φ(y) >H= k(x, y)
Kernel Trick: Replace dot-product with kernel

Essentially working in H
f(x) = sign(

∑m
i=1 αiyik(xi,x)− b)
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Success Story

SVMs achieve state-of-the-art performance in many
applications

Text Classification
Object Categorization
Bio-informatics tasks

Choice of kernel is crucial

Application specific highly tuned kernels

Own merits and demerits
Trade-off discriminative-power vs. invariance
Utilize different aspects of data
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Source: [Varma & Ray, 07]

Source: [Vert, 09]
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Multiple Kernel Learning

Given base kernels: k1, k2, . . . , kn
Combine them to achieve better generalization ?

Convex or linear or non-linear combinations

MKL Framework: [Lanckriet et.al., 04]

Simultaneously optimize for “best” combination of kernels as well
as the discriminating hyperplane in context of SVMs

Saketh DM2010 - Talk on MKL



Multiple Kernel Learning

Given base kernels: k1, k2, . . . , kn
Combine them to achieve better generalization ?

Convex or linear or non-linear combinations

MKL Framework: [Lanckriet et.al., 04]

Simultaneously optimize for “best” combination of kernels as well
as the discriminating hyperplane in context of SVMs

Saketh DM2010 - Talk on MKL



Combinations of Kernels

Conic combinations of positive kernels are positive

k︸︷︷︸
φ

= γ1k1︸︷︷︸
φ1

+ . . .+ γnkn︸ ︷︷ ︸
φn

, γi ≥ 0

φ can be taken as concatenation of φ1, . . . , φn
Convex combinations are positive

Products are positive

k = k1k2

Polynomials are positive

k = (
∑
i γiki)

d, d ≥ 1, γi ≥ 0
Exponentials are positive

k = exp{
∑
i γiki}, γi ≥ 0
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Rademacher Complexity

Recall, R(F) ∝ ‖w‖2

Modification in feature space (with kernel k):

R(F) ∝ ‖w‖H
√

trace(K)
If K =

∑n
i=1 γiKi, γi ≥ 0, then

R(F) ∝ ‖w‖H
√
nmaxi{trace(Ki)}

Tighter bound: R(F) ∝ ‖w‖H
√

log(n) [Cortes et.al., 10]
Weak dependence on n

Maximization of margin (min. of ‖w‖H) will lead to good
generalization as long as trace(K) is bounded (finite number of
kernels)
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MKL Formulation

Deals with conic combination of kernels k =
∑n

i=1 γiki, γ ≥ 0

[Lanckriet et.al., 04]:

min
γ≥0

max
α

1>α− 1
2α
>Y

∑n
i=1 γiKiYα

s.t. 0 ≤ α ≤ C1, y>α = 0

∑n
i=1 γi ≤ 1

Unit-trace Normalization: Ki 7→ Ki
trace(Ki)

(convex

combination)

Application of min-max thm. helps pose as QCQP

Can be solved using SeDuMi or Mosek
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Object Categorization Results

Source: [Vedaldi et.al., 09]
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Bioinformatics Results

Source: [Bleakley et.al., 07]
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Techniques for Solving MKL

SMO algorithm [Bach et.al., 04]

Pose as SILP, solve series of SVMs [Sonnenburg et.al., 06]

SimpleMKL: projected gradient descent [Rakotomamonjy
et.al., 08]

Extended level-set method [Xu et.al., 08]

Mirror descent based alg. [Nath et.al., 09]

highly scalable
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Projected (Sub)Gradient Descent

Extension of steepest descent alg. for constrained problems

minx∈X f(x) (f is convex, Lipschitz, X is compact)

At iteration k:

f is approx. by linear func. f(x) = f(xk) +∇f(xk)>(x− xk)
valid only when ‖x− xk‖2 is small

xk+1 = arg min
x∈X

sk∇f(xk)>(x− xk) +
1
2
‖x− xk‖22

= arg min
x∈X

1
2
‖x− (xk − sk∇f(xk))‖22

= ΠX (xk − sk∇f(xk)))

Convergence guarantees with some choices of step-sizes (sk)

“Optimal” for Euclidean geometry
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SimpleMKL

min
γ∈∆n

max
α∈Sm(C)

1>α− 1
2
α>Y(

n∑
i=1

γiKi)Yα

Danskin’s theorem provides ∇g(γ) (need to solve SVM
problem)

Apply projected gradient descent

Step-sizes chosen by line-search (involves some more SVM
solving)

Saketh DM2010 - Talk on MKL



SimpleMKL

min
γ∈∆n

max
α∈Sm(C)

1>α− 1
2
α>Y(

n∑
i=1

γiKi)Yα︸ ︷︷ ︸
g(γ)

Danskin’s theorem provides ∇g(γ) (need to solve SVM
problem)

Apply projected gradient descent

Step-sizes chosen by line-search (involves some more SVM
solving)

Saketh DM2010 - Talk on MKL



SimpleMKL

min
γ∈∆n

max
α∈Sm(C)

1>α− 1
2
α>Y(

n∑
i=1

γiKi)Yα︸ ︷︷ ︸
g(γ)

Danskin’s theorem provides ∇g(γ) (need to solve SVM
problem)

Apply projected gradient descent

Step-sizes chosen by line-search (involves some more SVM
solving)

Saketh DM2010 - Talk on MKL



Mirror Descent based Algorithm

Key advantages [Nath et.al, 09]:

No. iterations is O(log(n))
No expensive projection step

Step-sizes can be easily computed
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Mirror Descent

Similar to projected gradient descent

Per-step problem has Bregman divergence based regularizer:

xk+1 = arg min
x∈X

sk∇f(xk)>(x− xk) +
1
2
‖x− xk‖22︸ ︷︷ ︸
Breg.Div.

Regularizer chosen such that per-step problem has closed form
solution

For simplex geometry, entropy function based reg. can be
employed [Ben-Tal & Nemirovski, 01]
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Negative Results – Bio-informatics

Source: [Vert, 09]
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MKL leads to sparse selection!

Analyze the primal view [Bach et.al., 04; Rakotomamonjy
et.al., 07]

Consider f(x) = sign(< w, φ(x) >H −b) = sign(
∑n

j=1 <
wj , φj(x) >Hj −b)
MKL is same as:

min
w,b,ξ

1
2(
∑n

j=1 ‖wj‖Hj )2 + C
∑m

i=1 ξi

s.t. yi(
∑n

j=1 < wj , φj(x) >Hj −b) ≥ 1− ξi, ξi ≥ 0

Key observations:

‖w‖2H 6= (
∑n

j=1 ‖wj‖Hj )2

If regularizer were ‖w‖2H, we would get back SVM i.e.
k = k1 + k2 + . . .+ kn!

Current regularizer is l1, l2-norm (block lasso) hence promotes
sparsity — selection of kernels!
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l1 regularization (Lasso) leads to sparsity

Consider minx:‖x‖2≤1 f(x)
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l1 regularization (Lasso) leads to sparsity

Consider minx:‖x‖1≤1 f(x)
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l1 regularization (Lasso) leads to sparsity

Consider minx:‖x‖∞≤1 f(x)
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MKL for non-linear feature selection

Hierarchical Kernel Learning [Bach, 08]

Composite Kernel Learning [Szafranski et.al., 08]

Multi-class MKL [Zien & Ong, 07]

Feature Selection for Density Level-Sets [Kloft et.al., 09]
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Non-sparse MKL

l2-regularization for learning kernels [Cortes et.al., 09]

lp-norm multiple kernel learning [Kloft et.al., 09]

MKL for multi-modal tasks [Nath et.al., 09; Nath et.al., 10]1

1http://www.cse.iitb.ac.in/saketh/research.html
Saketh DM2010 - Talk on MKL

http://www.cse.iitb.ac.in/saketh/research.html


Non-sparse MKL

l2-regularization for learning kernels [Cortes et.al., 09]

lp-norm multiple kernel learning [Kloft et.al., 09]

MKL for multi-modal tasks [Nath et.al., 09; Nath et.al., 10]1

1http://www.cse.iitb.ac.in/saketh/research.html
Saketh DM2010 - Talk on MKL

http://www.cse.iitb.ac.in/saketh/research.html


Source: [Vert, 09]
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MKL for Multi-modal tasks

Kernels are generated from different sources (modes)

Natural grouping:

Atleast one kernel in each group in important
Not all kernels in a group may be crucial
Each source may not be “equally” critical

Propose an MKL formulation which exploits this group
structure!

Let there be n groups and nj kernels in jth group

New regularizer:

1
2

{∑n
j=1

{∑nj
k=1 ‖wjk‖2

}2q
} 1
q
, q ≥ 1
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Variable Sparsity Kernel Learning
Formulation

Primal form:

min
wjk,b,ξi

1
2

[∑
j

(∑nj
k=1 ‖wjk‖2

)2q] 1
q + C

∑
i ξi

s.t. yi

(∑n
j=1

∑nj
k=1 w>jkφjk(xi)− b

)
≥ 1− ξi, ξi ≥ 0 ∀ i

Dual form:

min
λ∈∆nj

max
α∈Sm,γ∈∆n,q∗

fλ(α,γ)︷ ︸︸ ︷
1Tα− 1

2
αTY

 n∑
j=1

nj∑
k=1

λjkKjk

γj

Yα

︸ ︷︷ ︸
G(λ)
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Mirror descent based solver

minλj∈∆nj
G(λ) (min. convex function over compact set)

Entropy function based reg. also works for product of
simplices

Again, Danskin’s theorem provides ∇G(λ)
Need to solve maxα∈Sm,γ∈∆n,q∗ fλ(α, γ)
Alternating minimization alg. with convergence guarantee
In practice, solve 4-5 SVM problems

Overall complexity O(m2ntot log(nmax))
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Performance on Object Categorization

   

Bass Vs Guitar
Bass Vs Mandolin

Gramaphone Vs Ceiling Fan

60

65

70

75

80

85

90

72.67

62.67

72

74.33
72.33

65.67

86.67

80.33
81.33

MKL SVM VSKL
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Performance on Object Categorization

MKL SVM CKL VSKL

Caltech-101 32.25% 33.47% 34.48% 35.62%

Caltech-5 92.76% 93.84% 94.88% 96.12%

Oxford flowers 81.76% 80.12% 80.65% 83.94%
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Non-Linear Combinations

DC-Programming algorithm [Argyriou et al., 05]

Generalized MKL [Varma & Babu, 09]

Polynomial combinations [Cortes et.al., 09]
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Conclusions and Open Problems

MKL is a powerful framework for learning kernels

Great tool for non-linear feature selection

Promise in combining kernels from multiple modes

State-of-the-art performance in many applications

In some cases, performance comparable to simple addition of
kernels

Minimization of alternative bounds ?

Better interpretation of mixed-norm from learning theory view
?

Non-convexity issues in non-linear combinations of kernels
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Questions ?
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Thank You
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