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PROBLEM OF LEARNING

GiveN: Set of m pairs of the form (z;,v;)
o x; € X is some object e.g., picture

e y; € ) is label of object e.g., chair/bike/panda
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PROBLEM OF LEARNING

GiveN: Set of m pairs of the form (z;,v;)
o x; € X is some object e.g., picture,
financial-profile of industry etc.

o y; € ) is label of object e.g., chair/bike/panda,
stock-value etc.

s0AL: Construct f : X +— Y such that f(x) =y for all
(x,y) e X x Y
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BINARY CLASSIFICATION

MATHEMATICALLY:

fer

generalization error

min P[f(X) #Y]
—_——

Typical sets of classifiers:

Linear F={f| f(x) =sign(w'x —b)}
QuapraTic F={f| f(x) =sign(x"Ax +2b'x +¢)}
PorynomiaL F={f| f(x ): |gn(IP’( )}
Non-LINEAR F ={f| f(x) =sign(g(x))}
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MATHEMATICALLY:

fer

generalization error

min P[f(X) #Y] impossible!
—_—

Typical sets of classifiers:

Linear F={f| f(x) =sign(w'x —b)}
QuapraTic F={f| f(x) =sign(x"Ax +2b'x +¢)}
PorynomiaL F={f| f(x ): |gn(IP’( )}
Non-LINEAR F ={f| f(x) =sign(g(x))}
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LEARNING BOUNDS — CLASSIFICATION CASE

@ Obtain bounds using concentration inequalities [Boucheron
et.al., 04], Rademacher complexities [Bartlett & Mendelson,

02]:
2log(2/d
Py < PP o2 R(F) 4y 280
~— ~—~ N~~~ m
misclass. prob. est. of prob. complexity of F

holds V f € F with probability 1 — ¢
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LEARNING BOUNDS — CLASSIFICATION CASE

@ Obtain bounds using concentration inequalities [Boucheron
et.al., 04], Rademacher complexities [Bartlett & Mendelson,

02]:
2log(2/d
Py < PP o2 R(F) 4y 280
~— ~—~ N~~~ m
misclass. prob. est. of prob. complexity of F

holds V f € F with probability 1 — ¢

o Extensions of Vapnik-Chervonenkis-type inequalities [Vapnik,
98].
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SUPPORT VECTOR MACHINES

o Function class is set of all linear discriminators (with strict
separation)

o F={f | f(x) = sign(w x —b)}
o R(F)  ||w|3
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SUPPORT VECTOR MACHINES

o Function class is set of all linear discriminators (with strict
separation)

o F={f | f(x) = sign(w x —b)}
o R(F)  ||w|3

SVM PROBLEM [CORTES & VAPNIK, 95]:

min slwl3 +C3, &
W,b,fi

st. yi(wix;—b)>1-¢&, >0
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SVM DuAL PROBLEM

m i 1 m m [ I
max i1 i~ 5D i Zj:l QY Y X, X
1

s.t. 0<o; <C, 221 ;Y;
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SVM DuAL PROBLEM

max 3%« — 3 Yl YLy asbiyX X;
s.t. 0<o; <C, 221 ;Y;
o f(x)=sign(w'x —b) = sign(>-0" 4 Qiyix, x — b)

o Training and prediction involve dot-products alone

@ Dual soln. is sparse — fast algorithms
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NON-LINEAR DISCRIMINATORS

o Linear discriminators too restrictive
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NON-LINEAR DISCRIMINATORS

o Linear discriminators too restrictive
o Easy extension to non-linear discriminators 7 Yes
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NON-LINEAR DISCRIMINATORS

o Linear discriminators too restrictive
o Easy extension to non-linear discriminators 7 Yes
o Eg.,

f(x1,22) =sign(ay x? +ag 129 +asz 23 )
~—~ A ~—~
21 22 z3

=sign(a1z1 + azze + aszs)

which is infact a linear discriminator in z-space.
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NON-LINEAR DISCRIMINATORS

o Linear discriminators too restrictive
o Easy extension to non-linear discriminators 7 Yes
o Eg.,

f(x1,22) =sign(ay x? +ag 129 +asz 23 )
~—~ A ~—~
21 22 z3
=sign(aiz1 + asze + azz3)

which is infact a linear discriminator in z-space.
o computing z = ¢(x) is inefficient

SAKETH DM2010 - TALK oN MKL



NON-LINEAR DISCRIMINATORS

o Linear discriminators too restrictive
o Easy extension to non-linear discriminators 7 Yes
o Eg.,

f(x1,22) =sign(ay x? +ag 129 +asz 23 )
~—~ A ~—~
21 22 z3

=sign(a1z1 + azze + aszs)

which is infact a linear discriminator in z-space.

o computing z = ¢(x) is inefficient

o But, z] z5 = (%] x2)¢
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NON-LINEAR DISCRIMINATORS

o Linear discriminators too restrictive
o Easy extension to non-linear discriminators 7 Yes
o Eg.,

f(x1,22) =sign(ay x? +ag 129 +asz 23 )
~—~ A ~—~
21 22 z3

= sign(a121 + azzs + azz3)

which is infact a linear discriminator in z-space.
o computing z = ¢(x) is inefficient
o But, z] zo = (x{ x2)¢
o Very useful as SVM relies on dot-products only
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NON-LINEAR DISCRIMINATORS

o Linear discriminators too restrictive
o Easy extension to non-linear discriminators 7 Yes
o Eg.,

f(x1,22) =sign(ay x? +ag 129 +asz 23 )
~—~ A ~—~
21 22 z3

= sign(a121 + azzs + azz3)

which is infact a linear discriminator in z-space.
o computing z = ¢(x) is inefficient
o But, z] zo = (x{ x2)¢
o Very useful as SVM relies on dot-products only
o Can be extended to generic input-spaces and non-linear

discriminators — kernel trick
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KERNELS

o Let k: X x X — R symmetric and positive

o Positive: For any {z1,...,z,,} C X gram-matrix
G (G” = k(l’i,l’j) is de

SAKETH DM2010 - TALK oN MKL



KERNELS

o Let k: X x X — R symmetric and positive
o Positive: For any {z1,...,z,,} C X gram-matrix
G (G” = k(l’i,l'j) is de
o Eg k(x,z)=x'z k(x,2) = (x'2)%, k(x,2) = exp{x 'z}

Ve v
linear polynomial Gaussian

o Intuitively, £ measures similarity
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KERNELS

o Let k: X x X — R symmetric and positive
o Positive: For any {z1,...,z,,} C X gram-matrix
G (G” = k(l’i,il,'j) is de
o Eg k(x,z)=x'z k(x,2) = (x'2)%, k(x,2) = exp{x 'z}

Ve v
linear polynomial Gaussian

o Intuitively, kK measures similarity

[SCHOLKOPF & SMOLA, 02]
°©3¢: X —H 3 <(2),d(y) >n= k(z,y)
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KERNELS

o Let k: X x X — R symmetric and positive
o Positive: For any {z1,...,z,,} C X gram-matrix
G (G” = k(l’i,l’j) is de
o Eg k(x,z)=x'z k(x,2) = (x'2)%, k(x,2) = exp{x 'z}

Ve v
linear polynomial Gaussian

o Intuitively, kK measures similarity

[SCHOLKOPF & SMOLA, 02]

°©3¢: X —H > <éx),0(y) >n=k(z,y)
o Kernel Trick: Replace dot-product with kernel
o Essentially working in H

SAKETH DM2010 - TALK oN MKL



KERNELS

o Let k: X x X — R symmetric and positive
o Positive: For any {z1,...,z,,} C X gram-matrix
G (G” = k(l’i,l’j) is de
o Eg k(x,z)=x'z k(x,2) = (x'2)%, k(x,2) = exp{x 'z}

Ve v
linear polynomial Gaussian

o Intuitively, kK measures similarity

[SCHOLKOPF & SMOLA, 02]

°d¢: X —>H 3> < ¢(x),¢(y) >n=k(z,y)
o Kernel Trick: Replace dot-product with kernel

o Essentially working in H
o f(x)=sign(>iL, auyix/ x —b)
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KERNELS

o Let k: X x X — R symmetric and positive
o Positive: For any {z1,...,z,,} C X gram-matrix
G (G” = k(l’i,l’j) is de
o Eg k(x,z)=x'z k(x,2) = (x'2)%, k(x,2) = exp{x 'z}

Ve v
linear polynomial Gaussian

o Intuitively, kK measures similarity

[SCHOLKOPF & SMOLA, 02]

°d¢: X —>H 3> < ¢(x),¢(y) >n=k(z,y)
o Kernel Trick: Replace dot-product with kernel

o Essentially working in H
o f(x) =sign(32;2; cyik(xi,x) — b)
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SUCCESS STORY

o SVMs achieve state-of-the-art performance in many
applications
o Text Classification
o Object Categorization
o Bio-informatics tasks
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SUCCESS STORY

o SVMs achieve state-of-the-art performance in many
applications
o Text Classification
o Object Categorization
o Bio-informatics tasks

o Choice of kernel is crucial

o Application specific highly tuned kernels

o Own merits and demerits
o Trade-off discriminative-power vs. invariance
o Utilize different aspects of data
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MUuULTIPLE KERNEL LEARNING

o Given base kernels: k1, ko, ..., ky
o Combine them to achieve better generalization ?
o Convex or linear or non-linear combinations
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MUuULTIPLE KERNEL LEARNING

o Given base kernels: k1, ko, ..., ky
o Combine them to achieve better generalization ?
o Convex or linear or non-linear combinations

MKL FRAMEWORK: [LANCKRIET ET.AL., 04]

Simultaneously optimize for “best” combination of kernels as well
as the discriminating hyperplane in context of SVMs
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COMBINATIONS OF KERNELS

o Conic combinations of positive kernels are positive
o k =mki+...+vkn, v >0

¢ ¢1 ¢n
o ¢ can be taken as concatenation of ¢1,..., ¢,

o Convex combinations are positive
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COMBINATIONS OF KERNELS

o Conic combinations of positive kernels are positive
o k =mki+...+vkn, v >0

¢ ¢1 ¢n
o ¢ can be taken as concatenation of ¢1,..., ¢,
o Convex combinations are positive
o Products are positive

o k=kiks
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COMBINATIONS OF KERNELS

o Conic combinations of positive kernels are positive
o k =mki+...+vkn, v >0

¢ ¢1 ¢n
o ¢ can be taken as concatenation of ¢1,..., ¢,

o Convex combinations are positive
o Products are positive

o k=kiko
o Polynomials are positive

o k= (2 wki)? d>1,7% >0
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COMBINATIONS OF KERNELS

(4]

Conic combinations of positive kernels are positive
o k Z’ylkl-‘r...—l-’)/nkn, Y >0

¢ ¢1 ¢n
o ¢ can be taken as concatenation of ¢1,..., ¢,

o Convex combinations are positive
o Products are positive
o k=kiky
Polynomials are positive
o k= (ki) d>1,7>0
Exponentials are positive
o k=exp{> ,viki}, >0

©

©

SAKETH DM2010 - TALK oN MKL



RADEMACHER COMPLEXITY

o Recall, R(F) o ||w]|2
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RADEMACHER COMPLEXITY

o Recall, R(F) o ||w||2
o Modification in feature space (with kernel k):
o R(F) o ||w[#+/trace(K)
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RADEMACHER COMPLEXITY

o Recall, R(F) o ||w||2
o Modification in feature space (with kernel k):
o R(F) o< [[w|l#+/trace(K)
o If K= Z?:l v K;,v; > 0, then
R(F) o ||wl3y/n max;{trace(K;)}
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RADEMACHER COMPLEXITY

o Recall, R(F) o ||w||2
o Modification in feature space (with kernel k):
o R(F) o< [[w|l#+/trace(K)
o If K= Z?:l v K;,v; > 0, then
R(F) o ||wl3y/n max;{trace(K;)}
o Tighter bound: R(F)  [|w]|#/log(n) [Cortes et.al., 10]
o Weak dependence on n
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RADEMACHER COMPLEXITY

o Recall, R(F) o ||w||2
o Modification in feature space (with kernel k):
o R(F) o< [[w|l#+/trace(K)
o If K= Z?:l v K;,v; > 0, then
R(F)  ||[wll3\/n max;{trace(K;)}
o Tighter bound: R(F)  [|w]|#/log(n) [Cortes et.al., 10]
o Weak dependence on n

Maximization of margin (min. of || w/||4%) will lead to good
generalization as long as trace(K) is bounded (finite number of
kernels)
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MKL FORMULATION

Deals with conic combination of kernels k = Y7 | ki, v >0
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MKL FORMULATION

Deals with conic combination of kernels k = "7 | ki, v >0

[LANCKRIET ET.AL., 04]:

min sllwll, +C 3, &
w7b76i

st yi(<w,o(x;) > —b)>1-§&, §>0
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MKL FORMULATION

Deals with conic combination of kernels k = Y7 | ki, v >0

[LANCKRIET ET.AL., 04]:

max 1Ta — %aTYKYoz
(6%

st. 0<a<Cl,yla=0
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MKL FORMULATION

Deals with conic combination of kernels k = Y7 | ki, v >0

[LANCKRIET ET.AL., 04]:

o T 1. T n 1.
I$1>151 max l'a—50'Y) " nKiYa

s.t. 0<a<Cl ya=0
trace(Y i viKi) < d
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MKL FORMULATION

Deals with conic combination of kernels k = Y7 | ki, v >0

[LANCKRIET ET.AL., 04]:

o T 1. T n 1.
I$1>151 max l'a—50'Y) " nKiYa

s.t. 0<a<Cl ya=0
Z?:l vitrace(K;) < d
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MKL FORMULATION

Deals with conic combination of kernels k = Y7 | ki, v >0

[LANCKRIET ET.AL., 04]:

o T 1. T n 1.
I$1>151 max l'a—50'Y) " nKiYa

s.t. 0<a<Cl ya=0
Z?:l vitrace(K;) < d

K

oy . H . . g
@ Unit-trace Normalization: K; — trace(K;)
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MKL FORMULATION

Deals with conic combination of kernels k = Y7 | ki, v >0

[LANCKRIET ET.AL., 04]:

c T d. T n K.
r7n>1101 max 1'a-5a' Y)Y ' nKiYa

s.t. 0<a<Cl, yla=0
dic1vi <1

@ Unit-trace Normalization: K; — convex

trace(K;)
com bination)
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MKL FORMULATION

Deals with conic combination of kernels k = Y7 | ki, v >0

[LANCKRIET ET.AL., 04]:

c T d. T n K.
r7n>1101 max 1'a-5a' Y)Y ' nKiYa

s.t. 0<a<Cl, yla=0
Do v <1

@ Unit-trace Normalization: K; — convex

trace(K;)
combination)
o Application of min-max thm. helps pose as QCQP

o Can be solved using SeDuMi or Mosek
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OBJECT CATEGORIZATION RESULTS
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Source: [Vedaldi et.al., 09]
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BIOINFORMATICS RESULTS
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Source: [Bleakley et.al., 07]
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TECHNIQUES FOR SOLVING MKL

o SMO algorithm [Bach et.al., 04]
@ Pose as SILP, solve series of SVMs [Sonnenburg et.al., 06]

SAKETH DM2010 - TALK oN MKL



TECHNIQUES FOR SOLVING MKL

©

SMO algorithm [Bach et.al., 04]
Pose as SILP, solve series of SVMs [Sonnenburg et.al., 06]

©

(]

SimpleMKL: projected gradient descent [Rakotomamonjy
et.al., 08]

o Extended level-set method [Xu et.al., 08]
@ Mirror descent based alg. [Nath et.al., 09]
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TECHNIQUES FOR SOLVING MKL

©

SMO algorithm [Bach et.al., 04]
Pose as SILP, solve series of SVMs [Sonnenburg et.al., 06]

©

(]

SimpleMKL: projected gradient descent [Rakotomamonjy
et.al., 08]

o Extended level-set method [Xu et.al., 08]
@ Mirror descent based alg. [Nath et.al., 09] highly scalable
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PROJECTED (SUB)GRADIENT DESCENT

o Extension of steepest descent alg. for constrained problems

o mingex f(x) (f is convex, Lipschitz, X’ is compact)
o At iteration k:

o fis approx. by linear func. f(x) = f(xx) + Vf(xx) " (x — xz)
o valid only when ||x — x| is small

. 1
Xp+1 = argmin stV (xk) " (x —xp) + §||X —xxl3

. 1
= arg min §||X — (xk — sk Vf(xi))I3

=y (xp — sV f(xx)))

o Convergence guarantees with some choices of step-sizes (s)

o "Optimal” for Euclidean geometry
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S1IMPLEMKL

n

1
i 1Ta—a'Y K.Y
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S1IMPLEMKL

n

1

i ax 1la—-a'Y K,)Y

L Ve 5o Y nKaYa
ngr)
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S1IMPLEMKL

min  max 1" oz——a Z%
WeAn OéESm(C)

a(v)

@ Danskin's theorem provides Vg() (need to solve SVM
problem)

o Apply projected gradient descent

o Step-sizes chosen by line-search (involves some more SVM
solving)
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MIRROR DESCENT BASED ALGORITHM

KEY ADVANTAGES [NATH ET.AL, 09]:

o No. iterations is O(log(n))
o No expensive projection step

o Step-sizes can be easily computed

700 2500
—&— mirrorVSKL —&— mirrorVSKL
—+— simpleMKL-Total Time —+— simpleMKL-Total Time
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600
2000 7
¥
500!
i
% g 1500
2 400, .
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= / =
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200 i
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log10{No. Kernels) log10(No. Kernels)
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MIRROR DESCENT

o Similar to projected gradient descent

o Per-step problem has Bregman divergence based regularizer:
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MIRROR DESCENT

o Similar to projected gradient descent

o Per-step problem has Bregman divergence based regularizer:

. 1
Xj+1 = argnin sEV f(xn) T (x — xp) + §HX — xxl13
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MIRROR DESCENT

o Similar to projected gradient descent

o Per-step problem has Bregman divergence based regularizer:

. 1
Xj+1 = argmin seV f(x) T (x — xp) + §||X — x5

|
Breg.Div.
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MIRROR DESCENT

o Similar to projected gradient descent

o Per-step problem has Bregman divergence based regularizer:

. 1
Xj+1 = arg Inin seVF(xp) " (x = xz) + llx = |3

|
Breg.Div.

o Regularizer chosen such that per-step problem has closed form
solution

o For simplex geometry, entropy function based reg. can be
employed [Ben-Tal & Nemirovski, 01]
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NEGATIVE RESULTS — BIO-INFORMATICS
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Source: [Vert, 09]
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MKL LEADS TO SPARSE SELECTION!

o Analyze the primal view [Bach et.al., 04; Rakotomamonjy
et.al., 07]
o Consider f(x) = sign(< w, $(x) >y —b) =sign(3_7_; <
Wja(bj(x) >7‘lj _b)
o MKL is same as:
vanll)fé %(E?:l [willag,)? +C Y &
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MKL LEADS TO SPARSE SELECTION!

o Analyze the primal view [Bach et.al., 04; Rakotomamonjy
et.al., 07]

o Consider f(x) = sign(< w, $(x) >y —b) =sign(3_7_; <
Wja¢j(x) >7‘lj _b)
o MKL is same as:
min SO0 Iwjllag )? + O X &

o [Iwliz, # (i1 Iw;lla,)

o If regularizer were ||w||3,, we would get back SVM i.e.
k=Fki+ko+ ...+ k!

o Current regularizer is Iy, ls-norm (block lasso) hence promotes
sparsity — selection of kernels!
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i REGULARIZATION (LASSO) LEADS TO SPARSITY

Consider miny,x|,<1 f (%)

C\
@
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i REGULARIZATION (LASSO) LEADS TO SPARSITY

Consider miny,x|,<1 f (%)
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i REGULARIZATION (LASSO) LEADS TO SPARSITY

Consider miny, x|, <1 f(x)
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i REGULARIZATION (LASSO) LEADS TO SPARSITY

Consider miny, x|, <1 f(x)
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i REGULARIZATION (LASSO) LEADS TO SPARSITY

Consider miny. . <1 f(X)

al i
2 7
=0 i
2t i
4t i
-6 Il Il L L L L
'8 6 4 2 0 2 4 6 8
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MKL FOR NON-LINEAR FEATURE SELECTION

o Hierarchical Kernel Learning [Bach, 08]

o Composite Kernel Learning [Szafranski et.al., 08]
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MKL FOR NON-LINEAR FEATURE SELECTION

o Hierarchical Kernel Learning [Bach, 08]

©

Composite Kernel Learning [Szafranski et.al., 08]
o Multi-class MKL [Zien & Ong, 07]
o Feature Selection for Density Level-Sets |Kloft et.al., 09]
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NON-SPARSE MKL

o [y-regularization for learning kernels [Cortes et.al., 09]

o l,-norm multiple kernel learning [Kloft et.al., 09]

"http://www.cse.iitb.ac.in/saketh/research.html
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NON-SPARSE MKL

o [y-regularization for learning kernels [Cortes et.al., 09]
o l,-norm multiple kernel learning [Kloft et.al., 09]
o MKL for multi-modal tasks [Nath et.al., 09; Nath et.al., 10]*

"http://www.cse.iitb.ac.in/saketh/research.html
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Pl CE Fepwemmos e TINA. A Conlmn & o
Tl ity Rl Univecsiry of B, 1583

Source: [Vert, 09]
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MKL FOR MULTI-MODAL TASKS

©

Kernels are generated from different sources (modes)

©

Natural grouping:
o Atleast one kernel in each group in important
o Not all kernels in a group may be crucial
o Each source may not be “equally” critical

(]

Propose an MKL formulation which exploits this group
structure!

©

Let there be n groups and n; kernels in Gt group
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MKL FOR MULTI-MODAL TASKS

o Kernels are generated from different sources (modes)
o Natural grouping:
o Atleast one kernel in each group in important

o Not all kernels in a group may be crucial
o Each source may not be “equally” critical

o Propose an MKL formulation which exploits this group
structure!

o Let there be n groups and n; kernels in Gt group

NEW REGULARIZER:
1
. 2 -
L (T Iwille} 7}, a2 1

DM2010 - TALK oN MKL




VARIABLE SPARSITY KERNEL LEARNING

FORMULATION

PRIMAL FORM:

min 3 (T Iwaell2) ) * + € 26

ij:zb:gi

sty (Z?:1 S Whbik(x) — b) >1-¢, &>0V4
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VARIABLE SPARSITY KERNEL LEARNING

FORMULATION

PRIMAL FORM:

min 3 (T Iwaell2) ) * + € 26

ij:zb:gi

sty (Z?:1 S Whbik(x) — b) >1-¢, &>0V4

Ialeyy)
n II/
) ]; f&]]
min max 17a — —a E E
AEAR; QESm YEA, o* T
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MIRROR DESCENT BASED SOLVER

©

miny; ea,, G(A) (min. convex function over compact set)

©

Entropy function based reg. also works for product of
simplices
Again, Danskin's theorem provides VG(\)

o Need to solve maxqes,, ven, - fr(a,7)
o Alternating minimization alg. with convergence guarantee
o In practice, solve 4-5 SVM problems

(]

Overall complexity O(m?not 10g(Mmaz))

©
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PERFORMANCE ON OBJECT CATEGORIZATION

B vKL Bsvm OvskL
90
86.67

85

1.
80.33 8133

80
75
70

65

60
Bass Vs Mandolin
Bass Vs Guitar Gramaphone Vs Ceiling Fan
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PERFORMANCE ON OBJECT CATEGORIZATION

I | MKL | SVM | CKL | VSKL |
Caltech-101 | 32.25% | 33.47% | 34.48% | 35.62%
Caltech-5 | 92.76% | 93.84% | 94.88% | 96.12%
Oxford flowers | 81.76% | 80.12% | 80.65% | 83.94%
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NON-LINEAR COMBINATIONS

o DC-Programming algorithm [Argyriou et al., 05]
o Generalized MKL [Varma & Babu, 09]

o Polynomial combinations [Cortes et.al., 09]
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CONCLUSIONS AND OPEN PROBLEMS

(4]

MKL is a powerful framework for learning kernels

Great tool for non-linear feature selection

©

©

Promise in combining kernels from multiple modes

©

State-of-the-art performance in many applications
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CONCLUSIONS AND OPEN PROBLEMS

o MKL is a powerful framework for learning kernels
o Great tool for non-linear feature selection
o Promise in combining kernels from multiple modes

o State-of-the-art performance in many applications

o In some cases, performance comparable to simple addition of
kernels

o Minimization of alternative bounds ?

o Better interpretation of mixed-norm from learning theory view
7

o Non-convexity issues in non-linear combinations of kernels
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Questions ?
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Thank You
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