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Definition: Class Ratio Estimation

×Estimate fraction of instances belonging to each class in unlabelled set
×Need not estimate per-instance labels

×Pose as supervised Learning problem
×Labelled training instances



A key issue
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A key issue

×Training, test distr. may  be different
×Class ratios vary

×Class-conditionals are same
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Existing methods

×Multi-class classification (Baseline)
×Optimized for instance level accuracy

×Class shift is not well-studied

×Class ratio estimation (train, test class conditionals are same)
×F-divergence based [PS12]

×Maximum mean discrepancy [Zh13]

×No theoretical analysis
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×Unlabelled set Ὗ ᾀȟȣȟᾀ

×Universal KernelὯ, its feature map ‰, and its RKHS Ὄ

×Goal: Find fraction of each class in Ὗ
× i.e., find —ȟȣȟ—

×Key assumption: ὖȾ ὖȾ
×ὖ need not be ὖ

×ὖ may be de-generate!
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MMD based method
× Idea:
×ὖ ὼ В —ὖȾ ὼȾὭ
×Find —minimizes dist. between above
× Use MMD as distance

×Maximum Mean Discrepancy (MMD) [FM53]
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×Theoretical Analysis
×Derive learning bounds

×Simple proof
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Key Contributions

×Theoretical Analysis
×Derive learning bounds

×Simple proof

×Works with de-generate ὖ

×Hints at right kernel
×SDP formulation for kernel learning (convex!)

× Improved generalization
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Proof sketch

ÇTST: Ὤ—ᶻ Ὤ— ᴼπȟas ὰȟόᴼЊ
ÇὬ—z satisfies bounded difference property

ÇFollows from Mc Diarmid’s inequality and upper bounding %Ὤ—ᶻ

ÇTST: — —ᶻ
ᶻ

ÇOptimality conditions at —

ÇElementary properties of quadratic
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Kernel Learning
×Pre-processing step (otherwise also possible)

×Given: Universal ὯȟȣȟὯ

×Goal: optimize ύ πfor “best” Ὧ В ύὯ

×Two objectives:
×w that minimizes terms in bound

×w that minimizes an empirical term
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Kernel Learning – bound terms

άὭὲὩὭὫὃὃ άὭὲὩὭὫύὃὃ

Ὑ В ύὙ ύ (normalized kernels)

× Maximization of above term is convex
× Infact, expressible as LMI

× Minimization of above term is convex
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Kernel Learning – empirical term
×Won’t work:

× — —ᶻ ‭ᶅ Ὥ

× Ὤ — Ὤ —ᶻ ‭ᶅ Ὥ

×Both non-convex in ύ

×Both do not avoid extraneoussolutions

×Our idea:

×ύ ό ”—ȟ—ᶻ ‚ᶪ — —ᶻ ‭ȟ‚ π

×Convex and avoids extraneoussolutions



SDP formulation for Kernel Learning

ÍÉÎ
ᶰ ȟɴ

ύ ὄάὥὼὩὭὫ ύὃὃ ὅ ‚

ÓȢÔȢ ύ ό ”—ȟ—ᶻ ‚ᶪ — —ᶻ ‭ȟ‚ π



SDP formulation for Kernel Learning

ÍÉÎ
ᶰ ȟɴ

ύ ὄάὥὼὩὭὫ ύὃὃ ὅ ‚

ÓȢÔȢ ύ ό ”—ȟ—ᶻ ‚ᶪ — —ᶻ ‭ȟ‚ π

Sparsity



SDP formulation for Kernel Learning
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ÓȢÔȢ ύ ό ”—ȟ—ᶻ ‚ᶪ — —ᶻ ‭ȟ‚ π

Solved using cutting planes algorithm [Ar14]
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Other binary classification results
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Variation with data size
E

s
ti
m

a
ti
o

n
 E

rr
o

r

Per class train size

(proportion in D and U fixed) Baselines need 
not improve with 

data size!

Multi-class 
datasets



Summary

×MMD based estimator for class ratio estimation

×Learning bounds for it

×Bounds provide insight for kernel learning

×SDP formulation for kernel learning

×MMD+MKL improves state-of-the-art
×Upto 60% overall

×Upto 40% because of kernel learning



Thanks for listening. 
Questions?
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