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Definition: Class Ratio Estimation

**» Estimate fraction of instances belonging to each class in unlabelled set
** Need not estimate per-instance labels

*** Pose as supervised Learning problem
**» Labelled training instances
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Existing methods

< Multi-class classification
¢ Optimized for instance level accuracy
¢ Class shift is not well-studied
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Existing methods

< Multi-class classification
¢ Optimized for instance level accuracy
¢ Class shift is not well-studied

< Class ratio estimation
** F-divergence based [PS12]
“* Maximum mean discrepancy [Zh13]
** No theoretical analysis



Notation

< Given:
< Labelled training set L. = {(xy,v¢), ..., (x;, v)}, v € {1, ...,c}
% Unlabelled set U = {7z, ..., 7, }
“* Universal Kernel k, its feature map ¢, and its RKHS H

*¢* Goal: Find fraction of each class in U
“ie., find0q,...,0,




Notation

< Given:
< Labelled training set L. = {(xy,v¢), ..., (x;, v}, v; € {1, ..., c}.
% Unlabelled set U = {7z, ..., 7, }
“* Universal Kernel k, its feature map ¢, and its RKHS H

*¢* Goal: Find fraction of each class in U
“ie., find0q,...,0,

o Key assumption: P)l(l/y — P)((J/Y
< PY need not be P£

< PY may be de-generate!
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MMD based method
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MMD based method

+ |ldea:
U _ \C L -
“Py (x) = Xi=q 0iPx/y (x/1)
*2*Find @ minimizes dist. between above
% Use MMD as distance

** Maximum Mean Discrepancy (MMD) [FM53]
<+ MMD (P, P,) = ||Ep1 [(X)] — Ep, [gb(X)]”H, where k is universal
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MMD based method

% |dea:
U _ \¢C L ,
“Py (x) = Xi=q 0iPx/y (x/1)
“**Find 8 minimizes dist. between above
% Use MMD as distance

Simple
** Maximum Mean Discrepancy (MMD) [FM53] convex QP
< MMD(Py,P,) = ||Ep1 [(X)] — Ep, [gb(X)]”H, where k is universal




MMD based method

% |dea:

“Py (x) = Xi_1 0;Px vy (x/1)

*2*Find @ minimizes dist. between above

% Use MMD as distance

** Maximum Mean Discrepancy (MMD) [FM53]
< MMD(Py,P,) = ||Ep1 [(X)] — Ep, [gb(X)]”H, where k is universal
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MMD based method

% |dea:
U _ \¢C L ,
“Py (x) = Xi=q 0iPx/y (x/1)
“**Find 8 minimizes dist. between above
% Use MMD as distance

Learning
** Maximum Mean Discrepancy (MMD) [FM53] bounds!

< MMD(Py,P,) = ||Ep1 [(X)] — Ep, [gb(X)]”H, where k is universal
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Key Contributions

*** Theoretical Analysis
+** Derive learning bounds
** Simple proof
< Works with de-generate P

¢ Hints at right kernel
*»» SDP formulation for kernel learning

** Improved generalization
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Proof sketch

~ ) P
aTST: {h(6*) — h(8)} >0,as L, u >
1 h(87) satisfies bounded difference property
] Follows from Mc Diarmid’s inequality and upper bounding E[h(6™)]

Na _ oxl|2 - h@)H-h®)
ATST: |6 —6 ZSmineig(ATA)

) Optimality conditions at 8

! Elementary properties of quadratic
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Kernel Learning

*** Pre-processing step

“* Given: Universal k4, ..., k,,

* Goal: optimize w = 0 for “best” k = }.°*; w;k;

*** Two objectives:
“*» w that minimizes terms in bound
**» w that minimizes an empirical term



Kernel Learning — bound terms

n
mineig(AT A) = mineig (2 w; AiTAi>
i=1

** Maximization of above term is convex
** Infact, expressible as LMI




Kernel Learning — bound terms

R? =YY"  wfR? = ||W||22 (normalized kernels)

** Minimization of above term is convex
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Kernel Learning — empirical term

**» Empirical term: w is indeed good for several unlabelled sets
*** Unlabelled sets generated from L

L Conditional sampling
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Kernel Learning — empirical term

*** Won't work:

|67 —6;|| <evi

@ [ (0Y)—hY(6)| <evi
** Both non-convex in w

+¢» Both do not avoid extraneous solutions

*%* Our idea:
Cwlu; =p(0,0) =& V|0—06]]| >¢¢& =0
+s» Convex and avoids extraneous solutions



SDP formulation for Kernel Learning

n m
wegg,ifrézzm lwl|l, + B maxeig (— Z w; AiTAl-) + C Z &
i=1 =1

s. t. wlu; > p(0,0;) =& V|0 -0/ >¢€é =0




SDP formulation for Kernel Learning

min lwl||7+ B maxeig < Z w; A A; ) + Cz §;
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s. t. wlu; = p(0,0]) — €l‘v’||9 9||>e€l>0




SDP formulation for Kernel Learning

. T
Wel{g’lfréRm lwl|l, + B maxelg< Z w; A; A; ) + Cz &
s. t. wlu; = p(0,0]) — €l‘v’||9 9||>e€l>0

Solved using cutting planes algorithm [Ar14]



Results: Binary Class Dataset (UCI)
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Other binary classification results
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Variation with data size
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Summary

“* MMD based estimator for class ratio estimation
¢ Learning bounds for it

¢ Bounds provide insight for kernel learning

*** SDP formulation for kernel learning

*** MMD+MKL improves state-of-the-art
**» Upto 60% overall
¢ Upto 40% because of kernel learning



Thanks for listening.
Questions?
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