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Definition: Class Ratio Estimation

x Estimate fraction of instances belonging to each class in unlabelled set
x Need not estimate per-instance labels

x Pose as supervised Learning problem
x Labelled training instances
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Existing methods

x Multi-class classification
X Optimized for instance level accuracy

x Class shift is not well-studied




Existing methods

x Multi-class classification
X Optimized for instance level accuracy
% Class shift is not well-studied

x Class ratio estimation
x F-divergence based [PS12]
*x Maximum mean discrepancy [Zh13]
* No theoretical analysis
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x i.e., find —M8 h—
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x Key assumption: 0 ¥ U ¢
x 0 need not be 0
x 0 may be de-generate!
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MMD based method
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MMD based method

x |ldea: .
X Find —minimizes dist. between above
x  Use MMD as distance

Simple
x Maximum Mean Discrepancy (MMD) [FM53] convex QP
x0 0@ )k ||% [%D)] % [%(oo)]” , where Qs universal
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MMD based method

x |dea: .
x Find —minimizes dist. between above
x Use MMD as distance

x Maximum Mean Discrepancy (MMD) [FM53]
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MMD based method

x |ldea: .
X Find —minimizes dist. between above
x  Use MMD as distance

Learning
X Maximum Mean Discrepancy (MMD) [FM53] bounds!

x 00 '@ )k ||% [%D)] % [%(oo)]” , where Qs universal
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x Theoretical Analysis
x Derive learning bounds
% Simple proof
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Key Contributions

x Theoretical Analysis
x Derive learning bounds
% Simple proof
x Works with de-generate U

% Hints at right kernel
x SDP formulation for kernel learning

% Improved generalization
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Proof sketch
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Proof sketch

CTST: {d—=) "Q—}O mhasdB O Hb
C ") satisfies bounded difference property
C Follows from Mc Diarmid’s inequality and upper bounding %" (—)]

CTST: ||— = -

C Optimality conditions at —
( Elementary properties of quadratic
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Kernel Learning

X Pre-processing step

x Given: Universal QM hQ

x Goal: optimize 0 Tifor “best” Q B 0 Q

x Two objectives:
X w that minimizes terms in bound

X w that minimizes an empirical term



Kernel Learning — bound terms
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X Maximization of above term is convex
X Infact, expressible as LMI




Kernel Learning — bound terms

Y B 0O Y ||0]l (normalized kernels)

X Minimization of above term is convex



Kernel Learning — empirical term

x Empirical term: U is indeed good for several unlabelled sets
x Unlabelled sets generated from 0




Kernel Learning — empirical term

x Empirical term: U is indeed good for several unlabelled sets
x Unlabelled sets generated from 0

i) Conditional sampling
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Kernel Learning — empirical term

x Won’t work:
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% Both non-convex in U
x Both do not avoid extraneousolutions
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X Qur idea:
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X Convex and avoids extraneousolutions



SDP formulation for Kernel Learning
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SDP formulation for Kernel Learning
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Solved using cutting planes algorithm [Ar14]



Results: Binary Class Dataset (UCI)
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Other binary classification results
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Variation with data size
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Summary

x MMD based estimator for class ratio estimation
% Learning bounds for it

x Bounds provide insight for kernel learning

x SDP formulation for kernel learning

x MMD+MKL improves state-of-the-art
x Upto 60% overall
x Upto 40% because of kernel learning



Thanks for listening.
Questions?
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