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Definition: Class Ratio Estimation

 Estimate fraction of instances belonging to each class in unlabelled set
 Need not estimate per-instance labels

 Pose as supervised Learning problem
 Labelled training instances



A key issue

0 50 100

Negative

Positive

50/60
10/60

0 50 100

Negative

Positive

20/100
80/100

0 50

Negative

Positive

45/75
30/75



A key issue

 Training, test distr. may  be different
 Class ratios vary

 Class-conditionals are same
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Existing methods

Multi-class classification (Baseline)
 Optimized for instance level accuracy

 Class shift is not well-studied

 Class ratio estimation (train, test class conditionals are same)
 F-divergence based [PS12]

Maximum mean discrepancy [Zh13]

 No theoretical analysis
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 Unlabelled set 𝑈 = 𝑧1, … , 𝑧𝑢

 Universal Kernel 𝑘, its feature map 𝜙, and its RKHS 𝐻

 Goal: Find fraction of each class in 𝑈
 i.e., find 𝜃1, … , 𝜃𝑐

 Key assumption: 𝑃𝑋/𝑌
𝐿 = 𝑃𝑋/𝑌

𝑈

 𝑃𝑌
𝑈 need not be 𝑃𝑌

𝐿

 𝑃𝑌
𝑈 may be de-generate!
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Key Contributions

 Theoretical Analysis
 Derive learning bounds

 Simple proof

Works with de-generate 𝑃𝑌
𝑈

 Hints at right kernel
 SDP formulation for kernel learning (convex!)

 Improved generalization
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 ℎ 𝜃∗ satisfies bounded difference property

 Follows from Mc Diarmid’s inequality and upper bounding E ℎ 𝜃∗

 TST:  𝜃 − 𝜃∗
2

2
≤

ℎ 𝜃∗ −ℎ( 𝜃)

𝑚𝑖𝑛𝑒𝑖𝑔(𝐴𝑇𝐴)

Optimality conditions at  𝜃

 Elementary properties of quadratic
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 Pre-processing step (otherwise also possible)

 Given: Universal 𝑘1, … , 𝑘𝑛

 Goal: optimize 𝑤 ≥ 0 for “best” 𝑘 =  𝑖=1
𝑛 𝑤𝑖𝑘𝑖

 Two objectives:
 w that minimizes terms in bound

 w that minimizes an empirical term
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𝑛

𝑤𝑖 𝐴𝑖
𝑇𝐴𝑖

𝑅2 =  𝑖=1
𝑛 𝑤𝑖

2𝑅𝑖
2 = 𝑤 2

2
(normalized kernels)

 Maximization of above term is convex
 Infact, expressible as LMI

 Minimization of above term is convex
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Conditional sampling

𝜃𝑖
∗ known
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 Both do not avoid extraneous solutions
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𝑤  𝜃𝑖

𝑤 − ℎ𝑖
𝑤 𝜃𝑖

∗ ≤ 𝜖 ∀ 𝑖

 Both non-convex in 𝑤

 Both do not avoid extraneous solutions

 Our idea:

𝑤𝑇𝑢𝑖 ≥ 𝜌 𝜃, 𝜃𝑖
∗ − 𝜉𝑖 ∀ 𝜃 − 𝜃𝑖

∗ > 𝜖, 𝜉𝑖 ≥ 0

 Convex and avoids extraneous solutions
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𝑤 1 + 𝐵 𝑚𝑎𝑥𝑒𝑖𝑔 −  

𝑖=1

𝑛

𝑤𝑖 𝐴𝑖
𝑇𝐴𝑖 + 𝐶  

𝑖=1

𝑚

𝜉𝑖

s. t. 𝑤𝑇 𝑢𝑖 ≥ 𝜌 𝜃, 𝜃𝑖
∗ − 𝜉𝑖 ∀ 𝜃 − 𝜃𝑖

∗ > 𝜖, 𝜉𝑖 ≥ 0

Sparsity



SDP formulation for Kernel Learning

min
𝑤∈R𝑛,𝜉∈𝑅𝑚

𝑤 1 + 𝐵 𝑚𝑎𝑥𝑒𝑖𝑔 −  

𝑖=1

𝑛

𝑤𝑖 𝐴𝑖
𝑇𝐴𝑖 + 𝐶  

𝑖=1

𝑚

𝜉𝑖

s. t. 𝑤𝑇 𝑢𝑖 ≥ 𝜌 𝜃, 𝜃𝑖
∗ − 𝜉𝑖 ∀ 𝜃 − 𝜃𝑖

∗ > 𝜖, 𝜉𝑖 ≥ 0

Solved using cutting planes algorithm [Ar14]
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Direct methods are 
flat and instance 

based is not!
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Instance based is 
good only when 

𝑃𝑈 ≈ 𝑝𝐿



Results: Binary Class Dataset (UCI)
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Flatness and acc.:
MMD-MKL > MMD 

> PE-DR



Other binary classification results
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Same trend!



Variation with data size
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(proportion in D and U fixed) Baselines need 
not improve with 

data size!

Multi-class 
datasets



Summary

MMD based estimator for class ratio estimation

 Learning bounds for it

 Bounds provide insight for kernel learning

 SDP formulation for kernel learning

MMD+MKL improves state-of-the-art
 Upto 60% overall

 Upto 40% because of kernel learning



Thanks for listening. 
Questions?
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