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Lecture 1

• Closer look at an optimization problem

– Provided an example of real-world machine learning problem: that of
support estimation1.

– Discussed how the machine learning problem is typically posed as an
optimization problem. Infact, we discussed three different ones2.

– Each English language description of the optimization was converted into
one in Math language, which is called as a Mathematical Program.

• Formal definition of Mathematical Program (MP): A symbol that is of one of
the following (equivalent) forms:

min
x∈X

O(x)(1.1)

s.t. x ∈ F

or

min
x∈X

f(x)(1.2)

s.t. gi(x) ≤ 0, ∀ i = 1, . . . ,m

• Defined various components of an MP :

1Interested students may look at research.microsoft.com/pubs/69731/tr-99-87.pdf
2Hence there might be multiple ways of posing a real-world problem as an optimization problem.

Each may have its own merits and de-merits from the application’s perspective.
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1. Domain of the MP (X ) — the domain in which the variable(s) lives.
This is also the domain for the functions O/f and all gi i.e., O : X 7→ R,
f : X 7→ R and gi : X 7→ R. In the examples, the domain was once
set of Euclidean vectors, once a mix of Euclidean vectors and matrices,
once a set of functions. In this course we will focus on domains that are
sets of vectors in what are known as “Hilbert Spaces”. Hilbert spaces
are straight-forward generalizations of Euclidean spaces. This will be our
first topic of technical discussion.

2. Feasibility set (F = {x ∈ X | gi(x) ≤ 0 ∀ i = 1, . . . ,m}) — this is a
subset of the domain in which the variables are restricted to lie in. We
will study special subsets3 of the domain, which have nice properties and
are easy to deal with. The focus in this course is on MPs with Feasibility
set as a “convex set”. Again, gi : X 7→ R.

3. Objective function (O/f) — the function of the variable which is to be
minimized O : X 7→ R, f : X 7→ R. We will study some special real-
valued functions on X which have some interesting properties. The focus
of this course is on MPs with “convex” objective functions.

• Defined the value or optimal value of the MP : as infimum (greatest lower
bound)4 of the set of objective function values on the feasibility set i.e., (15.1) =
inf ({O(x) | x ∈ F}).Similarly, (15.2) = inf ({f(x) | x ∈ X , gi(x) ≤ 0 ∀ i = 1, . . . ,m}).
By convention we define −∞ as the value of the MP for which this set of func-
tion values is not bounded below. Again, by convention, we define value of an
MP with F = φ (feasibility set is empty) as ∞. With this convention, note
that all MPs have a well-defined (optimal) value.

• Identified and defined the related problem (argmin/argmax):

arg min
x∈X

O(x),(1.3)

s.t. x ∈ F ,

which is defined as that x∗ ∈ F such that O(x∗) is equal to the optimal value
of the corresponding MP. Note that such an x∗ may not always exist.

• In course of the lectures, we will:

1. analyze each component of a (convex) MP in detail (this subject goes
with the name “convex analysis”)

3For us, subset means subset or equal to.
4Please revise notions of maximum, minimum, GLB(infimum), LUB(supremum) and their exis-

tence results, atleast for sets of real numbers. http://en.wikipedia.org/wiki/Supremum should
be enough.
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2. analyze MPs with convex objective functions and convex Feasibility sets
in finite dimensional “Hilbert spaces” (Euclidean spaces for now) — which
are called as Convex Programs (CPs). Some of the key questions we will
answer are: when is an MP bounded, solvable? Can we characterize an
optimal solution? Is it unique? etc.

3. understand the very important and useful notion of duality which gives
ways of arriving at equivalent optimization problems for the given prob-
lem — this may lead to deep insights into the problem/solution-structure
or may lead to efficient solving techniques.

4. Study standard CPs for which off-the-shelf generic solvers are available.

5. Study special (scalable?) optimization techniques which work on generic
CPs.

• We started revising vector spaces5:

– Given a non-empty set V endowed with two operations +V (vector addi-
tion: +V : V ×V 7→ V ) and ·V (scalar multiplication: ·V : R×V 7→ V ),
if (V,+V ) form an Abelian group, and the operator ·V is associative such
that v ∈ V ⇒ 1.V v = v and the distributive laws governing the interac-
tion of +V and ·V hold, then the triplet V = (V,+V , ·V ) is called a vector
space and elements of V are called as vectors.

– We gave a lot of examples of vector spaces — those with matrices, polyno-
mials, random variables, functions etc. We identified the additive identity
(0V ) in each case. We gave a couple of examples of spaces that are not
vector spaces.

5Go through pages 1–12 in [Sheldon Axler, 1997]. Also go through related exercises.
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Lecture 2

• Defined notion of linear combination of two vectors: given λ1, λ2 ∈ R and
v1, v2 ∈ V , then, λ1v1 + λ2v2 is the linear combination of v1 and v2 with
weights λ1 and λ2. By induction, one can define linear combination of a finite
number of vectors.

• Defined linear span1 of set S:

LIN(S) =

{
m∑
i=1

λivi | λi ∈ R ∀ i = 1, . . . ,m, vi ∈ S ∀ i = 1, . . . ,m,m ∈ N

}
;

this is the set of all possible linear combinations with the elements of the set
S.

• A set S is called a spanning set of vector space V = (V,+V , ·V ) iff LIN(S) = V .

• Let V = (V,+V , ·V ) be a vector space and W ⊂ V such that W = (W,+V , ·V )
is itself a vector space2, then W is said to be a sub-space of V and the set W
is known as a linear set or linear variety.

• We gave many examples of linear sets.

• We then talked about compact representations of vector spaces. The first
answer was spanning set3.

• A vector space is finite-dimensional if there exists a spanning set of finite
size/cardinality. A vector space is infinite-dimensional if there exists no span-
ning set of finite size.

• Obvious question was whether we can get some kind of minimal spanning set?
We outlined a procedure:

1|S| represents cardinality of the set S.
2this condition is equivalent to: W being closed under linear combinations.
3Atleast one spanning set always exists: the set itself.
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– Start with a spanning set S.

– If 0V ∈ S, then remove it from S.

– Verify if v1 can be written as lin. comb. of the others. If yes, then remove
it; else let it remain.

– Repeat this for all elements of S.

• Note that at the end of the procedure one is left with a spanning set. More
importantly, the spanning set is special: it is a linearly independent set4. A
set S = {v1, . . . , vm} is said to be linearly independent iff λ1v1 + . . .+λmvm =
0⇒ λ1 = λ2 = . . . = λm = 0.

• A spanning set that is linearly independent is called as a basis. Infact, we just
showed that every finite-dimensional vector space has a basis.

• Theorem 2.6 in Sheldon Axler [1997] says that cardinality of a linearly inde-
pendent set is always lesser than that of a spanning set. From this it easily
follows that cardinality of any basis of a vector space is the same. Hence basis
is indeed the smallest spanning set.

• The common cardinality of all bases is called the dimensionality of the vector
space. In other words, to describe a n-dimensional vector space using linear
combinations we will require n (linearly independent) vectors5.

• Interestingly, basis also give a way to strike an equivalence between any n-
dimensional vector space and the n-dimensional Euclidean space:

– Let B = {v1, . . . , vn} denote the basis of the n-dimensional vector space
in question. Let v = λ1v1 + . . . λnvn and w = α1v1 + . . . + αnvn. It is
easy to show that v = w ⇔ λi = αi ∀ i = 1, . . . , n. This shows that every
vector in the vector space can be mapped to exactly one vector in Rn i.e.,
there exists a bijection from V to Rn.

– What is more interesting is: linear combinations are preserved under
this bijective map i.e., γ ·V v +V δ ·V w is mapped to the Euclidean
vector corresponding to the same linear combination of the corresponding

images i.e., mapped to γ

 λ1
...
λn

+ δ

 α1
...
αn

.

4Take this as an exercise.
5Further compression using linear combinations is not possible
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• Hence a basis is like a pair of goggles, through which the vector space looks
like a Euclidean space (of same dimension). This statement should help us in
visualizing spaces of matrices, polynomials etc. and hopefully also in solving
MPs involving them as variables.

• We noted basis for all examples of vector/sub-spaces we considered. In each
case we noted the dimensionality too.

• A basis gives an inner/constitutional/compositional/primal description (a de-
scription of an object with help of parts in it) of the vector space it spans.
Looking at the example of x-y plane in R3, the question arose: can we give
an alternate description of x-y plane that is not constitutional ? and per-
haps which is simpler ? One way out is to define x-y plane as all those vec-
tors “orthogonal” to the unit vector on the z-axis. This description uses a
vector not in the subspace under question (and hence we get a outer/non-
compositional/dual description). Since the notion of orthogonality in Eu-
clidean spaces springs out from the notion of dot product, we went ahead
generalizing this notion to arbitrary vector spaces. This generalization of dot-
product is called an inner product: given a vector space V̂ = (V,+V , ·V ), a
function 〈〉V : V × V 7→ R is called an inner-product iff:

– v ∈ V ⇒ 〈v, v〉V ≥ 0, 〈v, v〉V = 0⇔ v = 0 (positive-definiteness).

– v, w ∈ V ⇒ 〈v, w〉V = 〈w, v〉V (symmetry).

– u, v, w ∈ V and α, β ∈ R⇒ 〈α ·V u+V β ·V v, w〉V = α〈u,w〉V + β〈v, w〉V
(distributive law).

The quadruple V = (V,+V , ·V , 〈〉V ) is known as an inner-product space.

• We gave many examples of inner-products6:

– Euclidean Spaces (Rn,+, ·) :

∗ Dot product: 〈x, y〉 = x>y

∗ 〈x, y〉W = x>Wy, where W is a given diagonal matrix with positive
entries

∗ 〈x, y〉W = x>Wy, where W is a given positive-definite matrix7.

– Space of matrices (Rn×n,+, ·) :

6Student should prove correctness of each example. Some may require Cauchy-Schwartz in-
equality to be proved in next lecture..

7With this we said a sphere in this space will actually look like ellipse. In special case where W
is also diagonal, the ellipse will actually be axis-parallel. Nikunj conjectured that all inner-products
on Euclidean space are of this form. Bonus marks will be awarded to the student who (correctly)
proves or disproves it.
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∗ Frobenius inner-product8: 〈M,N〉F =
∑n

i=1

∑n
j=1MijNij.

∗ 〈M,N〉W =
∑n

i=1

∑n
j=1 MijNijWij, where Wij > 0 ∀ i, j.

∗ 〈M,N〉W =
∑n

i=1

∑n
j=1

∑n
k=1

∑n
l=1MijNklWijkl, where W is a n ×

n× n× n matrix/tensor that is positive definite9.

– Space of all L2 functions10 f : R 7→ R :

∗ 〈f, g〉 =
∫
R f(x)g(x) dx

∗ 〈f, g〉w =
∫
R f(x)g(x)w(x) dx, where w is a function that takes on

positive values only.

∗ 〈f, g〉w =
∫
R

∫
R f(x)g(y)w(x, y) dxdy, where w is a positive-definite

function11.

– Space of all mean zero random variables with finite second moment
(E[X2] <∞):

∗ 〈X, Y 〉 = E[XY ]

• The W matrix or the w function that plays a key role in defining the geometry
of the space is called the kernel12.

8resembles the dot product.
9The condition on W for this expression being inner-product is the natural definition of positive-

definiteness for tensors.
10Refer en.wikipedia.org/wiki/Lp_space
11The condition on w for the expression being an inner-product is the natural definition of

positive definite function. Refer en.wikipedia.org/wiki/Mercer’s_theorem for a key result
about positive-definite functions. Similar to positive-definite matrices, for positive-definite ten-
sors/functions one can talk about eigen-value-decomposition, with positive eigen-values!

12Observe that the kernel in case of the random variables example is the joint probability density
function (assuming continuous random variables).
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Lecture 3

• We began by proving an important result that follows from the definition of
an inner-product: Cauchy-Schwartz inequality1.

• We then generalized the notion of norm to abstract vector spaces: Given a
vector space V̂ = (V,+V , ·V ) and a function ‖ · ‖V : V 7→ R, we say that the
function ‖ · ‖V is a norm in the vector space V̂ iff:

– v ∈ V ⇒ ‖v‖V ≥ 0, ‖v‖V = 0⇔ v = 0V (Non-negativity)

– v ∈ V, α ∈ R⇒ ‖α ·V v‖V = |α|‖v‖V (Distribution with ·V )

– v, w ∈ V ⇒ ‖v+V w‖V ≤ ‖v‖V +‖w‖V (Distribution with +V or triangle
inequality)

The quadruple V = (V,+V , ·V , ‖ · ‖V ) is known as a normed vector space.

• We showed2 that the function ‖v‖V defined by ‖v‖V =
√
〈v, v〉V is infact a

valid norm as per the above definition3. It is called the (inner-product) induced
norm.

• We noted the expressions for induced norms in the various examples of inner-
product spaces: e.g., Euclidean norm (induced by dot product), Frobenius
norm (induced by Frobenius inner-product), standard deviation of random
variable (induced by the inner-product in space of mean zero random vari-
ables). We noted expressions for spheres, ellipsoids in all these spaces.

• We gave examples of norms that are not induced norms4: e.g., for Euclidean

vector x, ‖x‖p = (
∑n

i=1 |xi|p)
1
p , p ≥ 1, x∞ = maxi∈{1,...,n} |xi| etc. From now

1Refer pg. 104 in Sheldon Axler [1997]. Note that the proof in the book is different from the
one that is done in the lecture.

2Refer pg.105 in Sheldon Axler [1997] for a proof.
3It now follows that every inner-product space has an associated normed vector space, formed

with the induced norm.
4Interested students may attempt proving this.
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onwards, wherever we say norm or write norm it means the induced norm
unless specifically mentioned otherwise.

• It is natural to now define distance dist(u, v) = ‖u− v‖V .

• One can define projection of a vector v ∈ V onto a set S ⊂ V : PS(v) =
arg minx∈S ‖v − x‖V , i.e., the vector in S that is closest to v.

• We define cosine of angle between two vectors5: cos(∠u, v) ≡ 〈u,v〉V
‖u‖V ‖v‖V

. Ac-
cording to this, angle ∠u, v = 0o ⇔ u = αv, α > 0, ∠u, v = 180o ⇔ u =
−αv, α > 0 and ∠u, v = 90o ⇔ 〈u, v〉V = 0. This defines orthogonality for two
vectors (vectors with angle between them as 90o).

• We gave examples of orthogonal vectors: e.g., any pair of symmetric matrix
and skew-symmetric matrix are orthogonal; any function having a root at c is
orthogonal to the function taking zero value everywhere except at c; any pair
of un-correlated random variables are orthogonal6 etc.

• We then realized that when provided with a basis where each element is of
unit length and every pair of elements are orthogonal to each other, any finite
dimensional inner-product space is equivalent to the Euclidean space with dot
product as the inner-product. Such a special basis is called orthogonal or
orthonormal basis.

• We outlined the Gram-Schmidt procedure7 for inductively constructing an
orthogonal basis from a basis. Hence any finite dimensional inner-product
space (IPS) has an orthogonal basis and is equivalent to the Euclidean one.
As a corollary, all geometric results true in Euclidean IPS hold in all IPSs8.

• We then went ahead to answer the question of compact representation of
vector space (now using notion of orthogonality rather than that of linear
combinations): let S ⊂ V be a linear set andB be a basis of it. Let dim(V ) = n
and dim(S) = m ≤ n. Consider the set S⊥ ≡ {v ∈ V | 〈v, u〉V = 0 ∀ u ∈ S},
called as the orthogonal complement (or Dual space/set) of S. We the noted
the following results9:

– S⊥ is a linear set and hence forms a subspace of V . Let B⊥ be a basis
for S⊥.

5Cauchy-Schwartz inequality guarantees that this is a valid definition of cosine.
6We also noted that the cosine of angle between random vectors is commonly known as Pearson’s

correlation coefficient
7Refer section 6.20 in Sheldon Axler [1997].
8Take proving parallelogram law, Pythagoras theorem as exercises.
9Students should take proving each result as an exercise. The proof of the complementarity in

terms of dimension follows from the Rank-Nullity theorem.

12



– {0V } = S ∩ S⊥, which forms the smallest subspace10.

– dim(S) + dim(S⊥) = n (hence the name includes the word complement).

– B ∪B⊥ is a basis for V .

–
(
S⊥
)⊥

= S.

– S = {v ∈ V | 〈v, u〉V = 0 ∀ u ∈ B⊥} (we will refer to this representation
of S in terms of B⊥ as the dual/outer/sculptor’s representation of a linear
set) and S⊥ = {v ∈ V | 〈v, u〉V = 0 ∀ u ∈ B}.

• Hence, the basis of S⊥ is called the dual basis of S and vice-versa.

• Note that when m ≤ bn
2
c the basis is the most compact representation for S;

whereas in the other case the dual basis is the most compact representation.

• We will call a linear set of dimension one less than that of the entire vector
space as a hyperplane (through origin)11.

• Mandatory reading:

– Sections A.1.1-A.1.4, A.2, A.4.1, A.7 in Nemirovski [2005].

10Infact, if {Sλ | λ ∈ Λ} is a collection (possibly uncountable) of linear sets indexed by elements
in the index set Λ, then ∩λ∈ΛSλ is itself a linear set.

11This is generalization of concept of line (through origin) in a plane and that of plane through
origin in 3-d space etc. Needless to say, the dual representation is the most efficient representation
(unless vector space is trivial) for a hyperplane. This is the reason from school days we are always
taught to describe planes using equations (like w>x = 0) and rarely using the vectors in the plane!
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Lecture 4

• We re-emphasized on the usefulness of primal and dual representations. We
illustrated the example of symmetric matrices where the dual representation
is definitely more compact than the primal representation.

• Once the notion of norm exists one can define limits/convergence: Let {xn}
be a sequence of vectors. If for any given ε > 0,∃N 3 ∀n ≥ N, we have:
‖x − xn‖ < ε, then the sequence is said to converge to x i.e., {xn} → x. x is
called the limit of the sequence {xn} i.e., limn→∞ xn = x.

• We know that Euclidean spaces have no gaps (they are complete spaces) i.e.,
every Cauchy sequence converges. Because of our equivalence, all finite dim.
inner-product spaces are also complete and hence qualify to be called as Hilbert
spaces1 (complete normed vector spaces are called as Banach spaces).

• We talked about an operation called direct summing that will enable us
to “join” a Hilbert space of say Euclidean vectors with that of say matri-
ces: Given two inner-product/Hilbert spaces V1 = (V1,+1, ·1, 〈〉1) and V2 =
(V2,+2, ·2, 〈〉2), we defined the direct sum of those, V = V1 ⊕ V2, which is
another inner-product space defined as V = (V,+, ·, 〈〉), where V ≡ V1 × V2 =
{(v1, v2) | v1 ∈ V1, v2 ∈ V2} i.e., V is the Cartesian product (or sometimes called
as direct product) of the sets V1 and V2. Given two vectors v = (v1, v2), w =
(w1, w2) ∈ V , we have: v+w ≡ (v1 +1w1, v2 +2w2), α ·v ≡ (α ·1 v1, α ·2 v2) and
〈v, w〉 ≡ 〈v1, w1〉1 + 〈v2, w2〉2. This is the natural way of stacking up arbitrary
spaces to form big space. Note that with such a direct sum, the following two
sub-spaces are orthogonal complements of each other: V̂1 = {(v1, 02) | v1 ∈ V1}
and V̂2 = {(01, v2) | v2 ∈ V2} (here, 01, 02 denote the identity elements in V1,V2

respectively).

• This completed our study/review of domain of an MP. We then began with
study of the next component of an MP, which is the feasibility set (as noted

1Refer http://en.wikipedia.org/wiki/Hilbert_space.
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earlier, is a subset of the domain). In other words, we began a study of special
subsets of Hilbert spaces: linear sets, Affine sets, conic sets, convex sets. In
case of each of these category of subsets, we will study the definition, primal
and dual representations, some algebra and topology results.

• We will be concerned with the following algebraic operations over sets2:

Union: ∪λ∈ΛSλ ≡ {v | v ∈ Sλ for some λ ∈ Λ}.
Intersection: ∩λ∈ΛSλ ≡ {v | v ∈ Sλ ∀ λ ∈ Λ}. In the following we assume

Λ = {1, . . . , n}.
Direct/Cartesian Product: S1 × . . . × Sn ≡ {(v1, . . . , vn) | vi ∈ Si ∀ i =

1, . . . , n}.
Linear Combination: α1S1 + . . . + αnSn ≡ {α1 · v1 + . . . + αn · vn | vi ∈

Si ∀ i = 1, . . . , n}. Here αi ∈ R.

Complement: Sc1 = {v ∈ V | v /∈ S1}.
SetDifference: The set difference of S1 and S2 (denoted by S1\S2) is defined

as S1 ∩ Sc2.

• We will be concerned with the following topological concepts:

Closed Set: A set S ⊂ V is said to be closed iff the limit of every convergent
sequence in S belongs to S.

Open Set: A set S ⊂ V is said to be open iff for every s ∈ S, there exists a
ε > 0 such that Nε(s) ⊂ S. Here, Nε(s) ≡ {v ∈ V | ‖s− v‖ ≤ ε} is the ε
neighborhood of s or equivalently a ball of radius ε centered at s.

Bounded Set: A set S ⊂ V is said to be bounded iff there exists a finite
radius r > 0 such that a ball of that radius centered at origin contains
the set i.e., S ⊂ Nr(0V ).

Interior: The set of all interior points of S is called the interior: int(S). A
vector/point s ∈ S is called an interior point of S iff there exists a ε > 0
such that Nε(s) ⊂ S. A set S is said to have interior or is said to have
volume iff the interior is non-empty i.e., int(S) 6= φ.

Boundary: Boundary of S is those vectors in S that are not in the interior
of S: δ(S) ≡ S\int(S).

Compact Set: A set that is closed and bounded is called a compact set.

2We will assume {Sλ | λ ∈ Λ} is a collection of subsets of V , indexed by the set Λ. This index
set could be uncountable.
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• We also noted some standard results3 regarding these topological concepts:

1. Complementarity of open and closedness: S is closed if and only if Sc is
open.

2. Intersection of (possibly uncountable no.) closed sets is closed; union of
(possibly uncountable no.) open sets is open.

3. Union of finite number of closed sets is closed and intersection of finite
number of open sets is open.

4. Heine-Borel theorem4.

5. Bolzano-Weierstrass theorem5.

• We took up Linear sets first as we already know its definition and primal, dual
representations6:

– We noted that intersection of (possibly uncountable no.) linear sets is
linear.

– Union of linear sets need not be linear.

– Linear combinations of linear sets are linear.

– Complement of linear set is not linear.

– Cartesian product of linear sets is linear.

– Linear sets are always closed (since they form spaces equivalent to Eu-
clidean ones)

– All linear sets except that with the entire set of vectors are not open (and
don’t have volume).

– All linear sets except the trivial one are not bounded.

• We modeled linear sets looking at planes/lines through origin. We then defined
Affine sets to model those that may not contain the origin: A set A ⊂ V is
said to be an Affine set iff it can be written as A = {a0} + L, where a0 ∈ V
and L ⊂ V is a linear set.

• We noted the following results for Affine sets:

3Again, since we deal with domains equivalent to Euclidean ones, we will take these as standard
Analysis results and not prove them here.

4Refer en.wikipedia.org/wiki/Heine-Borel_theorem
5Refer en.wikipedia.org/wiki/Bolzano-Weierstrass_theorem. Also section A.4.4 in Ne-

mirovski [2005]
6Students should prove these claims.
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– Given A, the associated linear set L is fixed. Infact, L = A−A. However
a0 can be replaced by any a ∈ A.

– Suppose L is the linear set associated with A and its basis is {l1, . . . , lm},
then a ∈ A ⇒ a = a0 +

∑m
i=1 λili. Further, it is easy to see any li can

be written as ai − a0 (for some ai ∈ A). So, a = (1−
∑m

i=1 λi) a0 +∑m
i=1 λiai. In other words, any vector in an Affine set in a vector space

can be uniquely written as [ρ0 ρ1 . . . ρm]> where
∑m

i=1 ρi = 1 (and hence
equivalent to a hyperplane that does not pass through origin in Rm+1).

• Mandatory reading:

– Sections A.4 and A.3 in Nemirovski [2005].

• Optional reading: section 1 in Rockafellar [1996].
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Lecture 5

• We summarized the results with Affine sets detailed in section A.3 in Ne-
mirovski [2005]

– Definition is shifted linear set. In particular, all linear sets are Affine.

– Primal view is set closed under Affine combination. The notion of Affine
basis is immediate (Infact, we write this using the basis of the linear set
associated with the Affine set).

– Dual view is (finite) intersection of hyperplanes that need not pass through
origin.

– Dimension of an Affine set is that of the associated linear set and it
requires n+ 1 elements to form a n-dimensional Affine set.

– All Affine sets are closed (follows from the result with linear sets) and
none except the entire set of vectors is an open set. Affine sets except
the trivial ones (i.e., singleton vectors) are un-bounded.

– Sum and intersection of Affine sets is Affine; whereas union need not be.
Complement will not be an Affine set.

• We next looked at two special sets associated with a hyperplane (through
origin): If the hyperplane is given by H = {u ∈ V | 〈vH , u〉 = 0}, then we
call the set H+ = {u ∈ V | 〈vH , u〉 ≥ 0} as its positive half-space and the set
H− = {u ∈ V | 〈vH , u〉 ≤ 0} as its negative half-space. We then wished to
study sets which are intersections of such half-spaces:

• We defined cone as a set that is closed under conic combinations of its elements.∑n
i=1 λivi, where each λi ≥ 0, is called as the conic combination of the vectors

v1, . . . , vn with weights λ1, . . . , λn.

• Conic hull of a set S is defined as: CONIC(S) = {
∑n

i=1 λivi | vi ∈ S, λi ≥
0 ∀ i, n ∈ N}.
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• Hence K is a cone iff K = CONIC(K).

• S is called a conicly spanning set of K iff K = CONIC(S). We then took
many examples of cones: i) cones in Euclidean spaces: we constructed them by
taking some set S and looking at CONIC(S) e.g., was the half-space (through
origin), ice-cream cone, infinite wedge etc. ii) set of all psd matrices1 iii) set
of all kernels over a given L2 space2.

• We noted that in some examples the conicly spanned set was finite and in
some it was not possible to get a finite-sized conicly spanning set. The cones
that have finite-sized conicly spanning sets are called as polyhedral cones3.

• The obvious question now is can we get compact representations of a cone K:
one way is to look for the smallest4 conicly spanning set of K. The other way
perhaps is to describe cones using inner-products (i.e., dual description)5.

• Drawing an analogy to the notion of orthogonal complement (dual space) of a
linear set, we defined dual cone of a cone K: K∗ = {v ∈ V | 〈v, u〉 ≥ 0 ∀ u ∈
K}. It is an easy exercise to show that K∗ is indeed a cone.

• Meghshyam noted that the notion of dual cone is consistent with that of
orthogonal complement in the sense that in the special case the cone K is a
linear set, then dual cone is nothing but the orthogonal complement of K.

• For all the examples we noted the dual cones.

• We realized interesting cases where dual cone is same as the original cone. Such
cones are called as self-dual cones. e.g., ice-cream cone, cone of psd/kernels
(in the vector space of all symmetric matrices/functions).

• Mandatory reading:

– Section B.1.4, B.2.6.B in Nemirovski [2005], section 2.6.1 in Boyd and
Vandenberghe [2004].

• Optional reading: relevant parts on cones in section 2,14 in Rockafellar [1996].

1The conicly spanning set was the set of all symmetric rank one matrices of the corresponding
dimension.

2The conicly spanning set was the set of all k(x, y) ≡ k̄(x)k̄(y)
3Wedge is polyhedral; whereas ice-cream is not.
4It turns out that the notion of basis or Affine basis cannot be simply carried over to cones.

Hence we will postpone the answer until we discuss convex sets.
5It is easy to see that the description of half-space using inner-products is simply its definition

and requires less number of vectors than its primal description through conic combinations. This
motivates our definition of Dual cone.
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Lecture 6

• We attempted proving an interesting result: for a closed cone1 K, we have
(K∗)∗ = K. While it was easy to see that K ⊂ (K∗)∗, we said it is not straight-
forward to show the converse. We noted that a separation theorem, which
we will state and prove in coming lectures on convex sets, will help proving
it. Infact we mentioned all duality concepts including that of notion of sub-
gradients for convex functions follow from this basic fundamental theorem2.

• For now, we assumed that the above conjecture is true and hence dual de-
scription of a closed cone is immediate: closed cone is always intersection of
some half-spaces. Infact, all sets that are intersections of half-spaces are cones.
Hence, this could have been taken as the definition of closed cones.

• The following results about algebra with cones are true3:

– ∩i∈IKi is a cone; whereas K1 ∪K2 need not be a cone. Complement of
cone is not a cone.

– K1 + . . .+Kn = CONIC(K1 ∪ . . . ∪Kn).

– (∩ni=1Ki)
∗ =

∑n
i=1K

∗
i . (Dubovitski-Milutin lemma)

• We then defined a convex set C: C is convex iff u, v ∈ C ⇒ λ1v + λ2w ∈
C ∀ λ1, λ2 ≥ 0, λ1 + λ2 = 1.

•
∑n

i=1 λivi, where each λi ≥ 0 and
∑n

i=1 λi = 1, is called as the convex com-
bination of the vectors v1, . . . , vn with weights λ1, . . . , λn. By induction, C is
convex iff C = CONV (C), where CONV (C) is the convex-hull of C, which
is the set of all convex combinations with elements of C.

1Rn++ ∪ {0} is an example of a cone that is not closed.
2We may call it the Fundamental theorem of convex analysis.
3Students should take them as exercise. You may need separation theorem. Here, every Ki, i ∈ I

represents a cone (need not be polyhedral unless mentioned otherwise).
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• We then gave many examples of convex sets in Euclidean and matrix spaces:
polygons, spheres, Birkhoff polytope, set of all probability density functions.

• We say C is a polytope iff ∃S ⊂ C 3 C = CONV (S), |S| <∞.

• We then defined a n-dimensional simplex4 as CONV (S), where S is an affinely
independent set of size n+ 1.

• In general, for a set S, dimensionality of S is defined as that of the affine-hull
of it i.e., dim(S) ≡ dim(AFF (S)).

• Mandatory reading:

– Sections B.1.1-B.1.5 in Nemirovski [2005], sections 2.1-2.3 in Boyd and
Vandenberghe [2004].

• Optional reading: sections 2,3 in Rockafellar [1996].

4We will later on note that all convex sets have simplices in them (triangulation of sets) and
hence they have volume (when restricted to the affine hull of the set).
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Lecture 7

• We wished to come-up with a dual description of convex sets. Intuitively we
argued that convex sets are intersections of (arbitrary no.) half-spaces that
need not pass through origin. This motivated the definition of polar of a set
C as C

′ ≡ polar(C) ≡ {x | 〈x, c〉 ≤ 1 ∀ c ∈ C}.

• It is easy to show that C
′

is a convex set for any arbitrary C.

• We noted that in case C is a linear set, then polar is same as orthogonal
complement and in case C is a cone, then polar is same as dual cone. Hence
the definition of polar is a natural extension of those in case of linear and conic
sets.

• Infact, the following interesting duality result can be proved:

Theorem 7.0.1. A set C is closed convex containing origin if and only if
C = polar(polar(C)).

Refer proposition B.2.2 in Nemirovski [2005] for proof..

• Again, like in the case of cones, this duality result also is proved using the (yet
to be proved) separation theorem!

• From this theorem it is clear that C is closed convex if and only if C can
be written as intersection of (perhaps arbitrary no.) half-spaces (that need
not pass through origin)1. In other words, this could have been the alternate
definition of closed convex sets.

• We then illustrated how the polars of various closed convex sets (containing
origin), presented earlier as examples, looked like.

1This can be proved by simply shifting the origin to lie inside the set C and then applying the
duality theorem above and then shifting back the origin.
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• Infact, more duality results as given in Exercise B.14 and B.15 in Nemirovski
[2005] can be proved2.

• Mandatory reading:

– Section B.2.6 in Nemirovski [2005].

• Optional reading: section 14 in Rockafellar [1996].

2This is a student exercise.
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Lecture 8

• We began by giving a brief summary of the primal/dual representations and
results regarding algebra and topology of all special sets we studied till now
(please refer to first page in Appendix).

• We further stressed on an important topological result that every convex set
has volume/interior (when restricted to its dimensionality i.e., when restricted
to its affine-hull; this is the notion of relative interior/volume). Please refer
theorem B.1.1 in Nemirovski [2005]. An easy proof of this is: prove that every
convex set contains a simplex of the same dimension in it. Then showing a
simplex has volume is easy (inscribed circle/hypersphere exists).

• To illustrate the point that sometimes in proving a set is (closed) convex,
neither of the primal or dual definitions are easy to verify: we looked at (non-
empty) C = {x ∈ Rn | x>Ax+ b>x+ c ≤ 0}. The claim was this (non-empty)
set is convex whenever A � 0. We illustrated a very easy proof of this using
the following useful 1-dimensional characterization of convex sets: A set C is
convex if and only if its (non-empty) intersection with any line is convex.

• We then went ahead and gave a simple proof of the separation theorem. Please
refer to the appendix (pages 2-3) for the definition of separation and the proof.
Though we may not use explicitly, the general separation theorem Theorem
B.2.5 in Nemirovski [2005] is a good thing to know.

• We then wrote down the result of separation theorem when applied to a poly-
hedral cone and a vector, slightly differently, leading to the Farkas lemma (refer
sec.B.2.4 in Nemirovski [2005]), and saw that duality sometimes helps us an-
swer difficult questions by posing the difficult question as an easy question on
a dual. Here is one way of writing Farkas lemma:

Lemma 8.0.2. Consider two sets of linear inequalities (S1) given by: Ax =
b, x ≥ 0 (here, x is the dummy variable) and (S2) given by A>y ≥ 0, b>y < 0
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(here, y is the dummy variable). Separation theorem gives that (S1) is solv-
able/consistent/feasible if and only if (S2) is not-solvable/in-consistent/in-
feasible.

There are many ways of writing down such results and in general are called
as “Theorems on Alternative”. Some of them appear in theorem 1.2.1 and
exercises 1.2-1.4 in Nemirovski [2005]. We will realize later that one way of
deriving duals of optimization problems in infact by using such theorems on
alternative.

• We then asked the question are there convex sets where dual description is
more efficient than primal and vice-versa. For a unit circle at origin: C =
{x | ‖x‖ ≤ 1}, the (“smallest”) convexly spanning set is {x | ‖x‖ = 1} and
(efficient) dual description is {x | x>y ≤ 1 ∀ ‖y‖ = 1}. So, this is the case of
self-duality and hence both primal and dual descriptions are equally efficient.
So is the case with polytopes (atleast intuitively), provided the dimensionality
is same as that of the space. In case of polytopes of dimension less than that
of the space, the primal is more efficient than dual.

• However there are striking examples of convex sets where the dual description
is “infinitely better” than the primal: this is the case of half-spaces, cones,
shifted cones etc. We then defined convex sets that are intersections of finite
number of halfspaces as polyhedron or polyhedral set.

• With some examples we conjectured the Minkowski-Weyl theorem1: A set
C is polyhedron if and only if there exist finite sets S, T such that C =
CONIC(S) + CONV (T ).

• While we postponed the proof of this to next lecture, it is easy to see the
following consequence of above result: every polytope is a polyhedron.

• Mandatory reading:

– Section B.1.6, B.2.5 in Nemirovski [2005]. Section 2.5 in Boyd and Van-
denberghe [2004]

• Optional reading: section 11 in Rockafellar [1996].

1This result is analogous to the fact that affine sets are shifted linear sets: polyhedrons are
polyhedral cones shifted with a polytope.
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Lecture 9

• We proved the Minkowski-Weyl theorem using the proof methodology in Lau-
ritzen [2010] (refer theorem 4.5.1 in Lauritzen [2010]). Appendix pages 3-5
provide a proof for the same. Here are the key steps:

1. Consider a cone whose projection is the polyhedron.

2. Assuming a cone with finite dual description is polyhedral, write down
the primal description of the cone.

3. The required projection (that is polyhedral) is already in form of polytope
+ polyhedral cone.

4. Then indeed prove that polyhedral cone has finite dual description. Since
dual of dual cone is the original cone, this statement gives that cones with
finite dual description are polyhedral:

(a) The trick is to write down the polyhedral cone as projection of some
cone with finite dual description.

(b) Since projections of cones with finite dual description have finite
dual description, we have the required result. In our case, the pro-
jection required was onto the last few dimensions. This we obtained
by systematic elimination of variables. Please refer theorem 1.2.2
in Lauritzen [2010].

• We then went ahead to study the final ingredient of mathematical programs,
which is real-valued functions defined on (subsets of finite-dimensional) Hilbert
spaces.

• We began with few examples of such functions f : S 7→ R (here, S ⊂ V ).
Then talked about some important sets associated with functions:

– Graph of f : graph(f) ≡ {(x, y) | x ∈ dom(f), f(x) = y} ⊂ V × R. This
lies in the space that is direct sum of V and R.
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– Epigraph of f : epi(f) ≡ {(x, y) | x ∈ dom(f), f(x) ≤ y} ⊂ V × R. This
lies in the space that is direct sum of V and R.

– Level-set of f at α: Lα(f) ≡ {x ∈ dom(f) | f(x) ≤ α} ⊂ V . This lies is
the space of V itself.

• We said that we will study special functions whose associated sets (graph/epigraph/level-
sets) are special (i.e., convex/conic/affine/linear).

• We began our study with linear functions: f : L 7→ R, where L ⊂ V is a linear
set, is a linear function if and only if linear combinations are preserved under
the function i.e., λ1, λ2 ∈ R, x1, x2 ∈ L⇒ f(λ1x1 +λ2x2) = λ1f(x1)+λ2f(x2).

• After giving some examples we noted the following important result that was
very easy to prove: f is linear if and only if graph(f) is a hyperplane (in direct
sum space of vectors L× R)1 that passes through origin:

1. We first showed f is linear if and only if graph(f) is a linear set. This
was straight-forward to prove.

2. We then argued that dim(graph(f)) is atleast dim(L) (as f must be
defined at atleast dim(L) no. linearly-independent points; infact defining
f at all points/vectors in any basis will completely define the function).
Also, since (x, y) whenever y 6= f(x) is not a point in the graph, the
dimensionality of the linear set is not dim(L) + 1. Hence dim(graph(f))
must be dim(L).

• We then proved the Riesz representation theorem (the set of linear functions
on L is equivalent to L itself)2:

1. For linear f (since graph is a hyperplane), we have that there exists
(u, v) ∈ L × R such that, graph(f) = {(x, y) | 〈(u, v), (x, y) = 0〉}. It is
easy to see that v 6= 0 (otherwise graph is parallel to R axis). Dividing
the entire hyperplane equation by v, we obtain f(x) = 〈−u

v
, x〉.

2. Also any function of the form f(x) = 〈l, x〉 where l ∈ L is a linear function
on L.

3. Moreover, if f1 = 〈l1, x〉 and f2 = 〈l2, x〉, then f1 = f2 if and only if
l1 = l2.

1In the following, whenever we talk about graphs, epi-graphs we will always assume the space
is affine-hull of the domain, which makes arguments easy.

2We commented that this self-duality of set of linear functions with a linear set is special for
finite-dim spaces and not true for the infinite dimensional ones.
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• More importantly this theorem is giving us a dual definition (defn. in terms of
inner-product) of linear functions: linear functions are exactly inner-product
forms with one argument fixed. More specifically, f : L 7→ R if and only if
∃l ∈ L 3 f(x) = 〈l, x〉. With this, one can give many many examples of
linear functions in various spaces.

• Mandatory reading:

– Section B.2.8 in Nemirovski [2005];

• Optional reading: sections B.2.1-B.2.3 in Nemirovski [2005] (these were not
covered in lectures but very useful to know); relevant parts of sections 17,19,21
in Rockafellar [1996].
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Lecture 10

• Once linear functions are studied, affine functions (and results with them) are
immediate:

– f : A 7→ R, where A is an affine set, is affine function if and only if affine
combinations are preserved under f i.e., λ1, λ2 ∈ R, λ1 + λ2 = 1, x1, x2 ∈
L⇒ f(λ1x1 + λ2x2) = λ1f(x1) + λ2f(x2).

– Needless to say, all linear functions are affine.

– Again, f is affine if and only if graph(f) is an affine set of dimensionality
same as A.

– Let LA be the linear set associated with A. Because of the above result,
it turns out that f is affine if and only if there exists a u ∈ LA, b ∈ R
such that f(x) = 〈u, x〉+ b.

• We then noted that the epigraphs of linear and affine functions are halfspaces
that pass through and need not pass through origin1. With this motivation
we defined conic functions:

• f : K 7→ R, where K is a cone, is called a conic function2 if and only if
conic combinations are under-estimated under f i.e., λ1, λ2 ≥ 0, x1, x2 ∈ K ⇒
f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2).

• We gave many examples: all norms are conic, all semi-norms are conic. We
gave examples of conic functions that are not defined on entire V , those that
are not even, that whose value can be negative.

• It was easy to show that f is conic if and only if epi(f) is conic. We say that
f is closed conic if and only if epi(f) is closed conic set.

1Also, the level-sets of linear and affine functions are affine sets.
2Rockafellar uses the term support functions instead of conic functions. We will define support

functions later (and realize to be same as conic functions).
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• Using this, appendix (page 6-7) provides the dual description of closed conic
functions: f : K 7→ R, where K is closed cone, is closed conic if and only
if3 ∃S ⊂ V such that f is maximum4 over set of all linear functions defined
by S i.e., f(x) = maxy∈S〈x, y〉 ∀ x ∈ K. Some books use the term “support
function of S” to describe such functions5.

• The proof in appendix infact gives the form of S in terms of dual cone of epi(f).
In cases where this dual cone is itself an epigraph6 (of some f ∗), we call f ∗ as
dual of f . It follows from the derivation in appendix that:

f ∗(x) = max
u∈V

〈−u, x〉,

s.t. f(u) ≤ 1,

where x ∈ dom(f ∗) = {y ∈ V | 〈y, z〉 ≥ 0 ∀ z 3 f(z) = 0}

• It is easy to see that dual function of f(x) = ‖x‖M (M � 0) is f ∗(x) = ‖x‖M−1 .
Infact, there is a special name for dual of a function that is a norm: it is called
dual norm7. Hence, ‖ · ‖M−1 is the dual of norm of ‖ · ‖M and vice-versa.

• Needlessly to say, by the very defn., we have: f ∗∗ = f (whenever f is closed
conic).

• Optional reading: section 13 in Rockafellar [1996].

3Proof in appendix is for the “only if” part. The “if” part is easy to prove and left as exercise.
4maximum over functions is defined as point-wise maximum i.e., function value of maximum is

equal to maximum of function values.
5So our result is that support function concept is same as closed conic function.
6We gave examples of cones where this does not happen.
7Note that our defn. matches the defn. of dual norm in Boyd and Vandenberghe [2004].
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Lecture 11

• We began by trying to show that the function f : Sn 7→ R given by f(M) =
maximum eigen-value of M is a conic function. We realized that the easiest
way of showing this is through the dual defn. of conics i.e., showing that f is
infact a support function (of some set S):

– We first wrote down the following fact (proved in lecture): f(M) =
max‖x‖≤1 x

>Mx.

– With the above we have that: f is support function of the set S = {X ∈
Sn | X � 0, trace(X) ≤ 1, rank(X) = 1}.

• We then defined the next obvious, the convex functions: f : C 7→ R, where C is
a convex set, is called a convex function if and only if convex combinations are
under-estimated under f i.e., λ1, λ2 ≥ 0, λ1 + λ2 = 1, x1, x2 ∈ C ⇒ f(λ1x1 +
λ2x2) ≤ λ1f(x1) + λ2f(x2).

• It was not difficult to verify that the functions: x2, ‖x‖2 and −log(x) are
convex. Infact in proving each one of them, we used the AM-GM inequality
in some form.

• We then went ahead and said using (non-trivial) induction, one can show
with a convex f : f(

∑n
i=1 λixi) ≤

∑n
i=1 λif(xi), whenever xi ∈ C ∀ i and

λi ≥ 0 ∀ i,
∑n

i=1 λi = 1.

• Defining a random variable X that takes the value xi with probability λi,
the above result says: f(E[X]) ≤ E[f(X)]. A more deeper result is that
this inequality known as the Jensen’s inequality holds for any (perhaps non-
discrete) random variable X. We commented that many fundamental inequal-
ities may be derived from this, including the Holder’s inequality (refer section
3.1.9 in Boyd and Vandenberghe [2004]). From Holder’s inequality it follows
that dual of f(x) = ‖x‖p(p ≥ 1) is f ∗(x) = ‖x‖q where 1

p
+ 1

q
= 1.
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• It was again easy to show f : C 7→ R is convex function if and only if epi(f)
is convex.

• We noted examples of convex functions whose epigraphs are not closed: f(x) =
1, x ∈ (−1, 1) (domain is open convex set); g(x) = 1 if x ∈ (−1, 1) and g(x) = 2
if x ∈ {−1, 1} (domain is closed convex set). Since we give dual defns. for
closed convex sets, we do so for functions too... We define closed convex
functions: f is closed convex iff epi(f) is closed convex. Needless to say, the
domain of closed convex functions must be themselves closed.

• Sections 3.1.1, 3.1.7,3.1.8,3.1.9 in Boyd and Vandenberghe [2004]; C.1 in Ne-
mirovski [2005].

• Optional reading: relevant parts in section 4 in Rockafellar [1996].
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Lecture 12

• We began by realizing the dual defn. for closed convex functions. The deriva-
tion is on page 8 of Appendix.

• Motivated by the dual form, we defined the notion of conjugate: given any
function f : V 7→ R, the conjugate of f is defined as f

′
(x) = maxy∈V 〈x, y〉 −

f(y). Other names for conjugate are: Fenchel dual, Fenchel conjugate, Legen-
dre transform1.

• Pages 9,10 of appendix provide a proof for the following result: Closed convex
functions are exactly those where f

′′
= f .

• We showed that for f(x) = 1
2
x>Qx (where Q � 0), f

′
(x) = 1

2
x>Q−1x.

• We noted that global properties of f are local properties of f
′

and vice-versa.
As an example we said, f

′
(0) = −minx∈V f(x).

• We then noted the fact that for a closed convex function2 f : C 7→ R, at
any point x0 ∈ C, there exists a supporting hyperplane i.e., ∃(ux0 , vx0) ∈
V × R 3 〈(ux0 , vx0), (x − x0, y − f(x0))〉 ≤ 0 ∀ (x, y) ∈ epi(f). One way of
proving this is to simply use the generic separation theorem (theorem B.2.5
in Nemirovski [2005]), that gives that the epi(f) and the point (x0, f(x0)) are
non-strictly separable. The other way, which I prefer, is to recall from the
previous conjugacy proof that f(x) = max(y,α)∈epi(f∗)〈x, y〉 − α. The fact that
there is a supporting hyperplane at (x0, f(x0)) is proved if we prove that this
supremum is attained at some point (y∗, α∗) in the (closed set) epi(f ∗) for x =
x0. This is easy to prove: now there must exist a sequence (yn, αn) ⊂ epi(f ∗)

1One can extend the definition to functions that are limited to some domain that is not the
entire set of vectors by following the trick suggested in section 3.1.2 in Boyd and Vandenberghe
[2004]. In following many times we simplify proofs etc. by assuming functions are always defined
over entire set of vectors.

2To simplify arguments lets assume dim(C) = dim(V ) unless mentioned otherwise.
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such that 〈(x0,−1), (yn, αn)〉 → f(x0) (by the very definition of supremum).
Also, it is easy to see that this sequence itself is bounded and hence by Heine
Borel theorem there must exist a sub-sequence that converges and since epi(f ∗)
is closed, it must converge in the set3. In other words, the supremum is
achieved4.

• It was easy to see that vx0 ≤ 0 (simply use the supporting hyperplane’s in-
equality at points (x0, y) where y ≥ f(x0)).

• We then noted that if x0 ∈ int(C) 5, then vx0 6= 0. This is easy to prove:
since x0 ∈ int(C), x0 + ρux0 ∈ C for some small enough ρ > 0. In case
v = 0, the supporting hyperplane inequality says that ρ〈ux0 , ux0〉 ≤ 0, which
is impossible. Hence dividing the whole inequality by vx0 and re-writing it
at the point (x, y) = (x, f(x)) gives: f(x) ≥ f(x0) + 〈∇f(x0), x − x0〉, where
∇f(x0) ≡ −ux0

vx0
∈ V .

• The above inequality says that at every x0 ∈ int(C), there is an affine function
that is always below the given function and is equal to it at (x0, f(x0)).

• This motivates the following definition: for any function f : S ⊂ V 7→ R and
x0 ∈ S, if there exists a ∇f(x0) ∈ V such that f(x) ≥ f(x0)+〈∇f(x0), x−x0〉,
then f is said to be sub-differentiable6 at x0. The vector ∇f(x0) ∈ V is called
the sub-gradient. The inequality above is called the sub-gradient inequality of
f at x0.

• Needless to say, there might be many vectors satisfying the sub-gradient in-
equality7 of f at x0. The set of all such sub-gradients at a point is called the
sub-differential of f at x0: ∂f(x0). It is easy to see that the sub-differential
set of any function at a point is either empty or a convex, bounded set.

• The discussion above basically shows that a closed convex function is sub-
differentiable at all (relatively) interior points of the domain8.

3This limit provides the required (ux0 , vx0)
4This argument is analogous to the one we made to prove that projection of a point onto a

closed set always exists.
5remember we are always concerned with the “relative” interior i.e., the space is restricted to

affine-hull of C, which with our assumption is V
6Since the RHS expression is analogous to Taylors series expanded to first term, this name

involves the term “differentiable”.
7We gave examples of such cases in lecture. Atleast from the examples, we were hinting at

“non-differentiability” being the cause for this multiplicity.
8Infact, this is true for any convex function and is easy to prove based on above discussion.

Please refer prop. C.6.5 in Nemirovski [2005] for details.
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• The converse, if a function defined on a convex set is sub-differentiable every-
where, then it is convex, is also true and is easy to prove.

• Hence for everywhere sub-differentiable functions, satisfying sub-gradient in-
equality at all points is the definition of a convex function.

• We showed that for the convex (infact, conic) function f(x) = ‖x‖, ∇f(x0) =
x
‖x0‖ for x0 6= 0 and any vector in unit sphere around origin is a sub-gradient
of f at 0.

• Analogous to the case of convex sets, we said the following result is true: a
function f : C 7→ R is convex if and only if its restriction to any line in
C is convex i.e., for any x1, x2 ∈ C, the function g : [0, 1] 7→ R given by
g(t) = f(tx1 + (1− t)x2) is convex.

• We then recalled the college-day result that a function double-differentiable

function f : (a, b) 7→ R is convex if and only if d2f(x)
dx2

≥ 0 ∀ x ∈ (a, b) (Prop.
C.2.1 in Nemirovski [2005]). Also, one can show that if f : [a, b] 7→ R is
continuous everywhere and convex on (a, b), then f is convex on [a, b].

• We then argued that the above two results i) convexity is essentially a 1-d con-
cept ii) non-negative double derivative defines convexity in 1-d, when used in
a combination can turn out to be a powerful tool in proving convexity of func-
tions. As an example we showed that f(x) = x>Ax (where A is symmetric) is
convex if and only if A � 0.

• Also note that, level-sets of convex function are convex. Hence the above
double differential criteria may sometimes help proving convexity of some sets.

• Mandatory reading: sections C.6.3, C.6.2, C.2.2 in Nemirovski [2005]; section
3.3 in Boyd and Vandenberghe [2004]

• Optional reading: section 12, 26, 23 in Rockafellar [1996].
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Lecture 13

• In order to provide a first order (and later second order) characterization of
convexity, we began by extending the notion of differentiability for real-valued
functions defined over Hilbert spaces.

• Since the notion of continuity is more basic than differentiability, we spent
few minutes on it: a function f : S ⊂ V 7→ R is said to be continuous1 at
x0 ∈ S iff for every sequence {xn} ⊂ S → x0 we have {f(xn)} → f(x0). We
commented that convex functions have elegant continuity2 properties. Please
study section C.4 in Nemirovski [2005].

• We then recalled the notion of differentiability for f : R 7→ R as: f is said
to be differentiable at a point x0 ∈ R iff the instantaneous slope given by
limh→0

f(x0+h)−f(x0)
h

exists. In such a case the limit (instantaneous slope) is
called as the derivative of f at x0.

• We also recalled that the above limit exists iff the left limit, limh↑0
f(x0+h)−f(x0)

h
,

known as the left derivative is equal to the right limit, limh↓0
f(x0+h)−f(x0)

h
,

known as the right derivative.

• We then looked at f : V 7→ R and wanted to extended the notion of differen-
tiability. We said one way is to look at instantaneous slope, but now we can
have one such slope in each direction u ∈ V ! We gave the following definition:
the directional derivative of f at x0 ∈ V along the vector (direction) u ∈ V
is given by Df (x0;u) ≡ limh→0

f(x0+hu)−f(x0)
h

, provided the limit exists. One
can also define the corresponding left, right limits and we call them as the left
directional derivative D−f (x0;u) and the right directional derivative D+

f (x0;u).

• We then said, atleast in case of functions on R, the most useful result3 involv-

1This is a simple extension of definition of continuity to functions on Hilbert spaces.
2All convex functions are continuous in the (relative) interior and infact, they are locally Lips-

chitz continuous.
3Taylor series result.
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ing derivative/differentiability is that there exists an affine function that well
approximates the function f in a neighborhood of x0. This was immediate by

re-writing df(x0)
dx

= limh→0
f(x0+h)−f(x0)

h
as limx→x0

f(x)−f(x0)−df(x0)
dx

(x−x0)

|x−x0| = 0,
which is hence an alternate equivalent definition of differentiability in case of
functions on R.

• We then tried to extend this notion of differentiability to functions on Hilbert
spaces: let S ⊂ V and f : S 7→ R be given. Then f is said to be differentiable
at x0 ∈ S iff there exists a affine function A(x) such that A(x0) = f(x0) and

limx→x0
f(x)−A(x)
‖x−x0‖ = 04. Since we know that general form of affine functions

is linear function + constant number, we know that existence of such A(x)
is same5 as existence of gf (x0) ∈ V , called the gradient of f at x0, such that

limx→x0
f(x)−(f(x0)+〈gf (x0),x−x0〉)

‖x−x0‖ = 0.

• It is easy to see that in case V = R, the gradient notion is exactly same as
that of derivative. We next wanted to see if some relation exists, in general
(i.e., if V 6= R), between directional derivative and gradient.

• Interestingly, it turns out that 〈gf (x0), u〉 = Df (x0;u) for any u ∈ V and any
x0 ∈ S, where the function is differentiable. In particular, if the function is
differentiable at a point, then all directional derivatives exist at that point.
This relation between gradient and directional derivative was simple to prove,
but nevertheless as we will see in subsequent lectures, an extremely useful
result for convex optimization.

• The next immediate question was: is it true that if a function has all di-
rectional derivative at a point, then it is differentiable6? Unfortunately, the
answer is NO and http://people.whitman.edu/~hundledr/courses/M225/

Ch14/Example_DirectionalDeriv.pdf provides a counter example.

• In case V = Rn, taking u as unit vectors with all entries zero except one entry,
we realized that the gradient vector is simply the Euclidean vector with entries
as the partial derivatives. Infact, this trick can be repeated for any function on
V (6= Rn) by considering an appropriate orthonormal basis and is most of the
time, the easiest way to compute gradients7. Using this we computed gradient
of f(X) = ‖X‖2

F at X0 as 2X0.

4The conditions basically say that the f(x) is well approximated by A(x) in a neighborhood of
x0.

5General form of affine A(x) such that A(x) = f(x0) is A(x) = f(x0) + 〈gf (x0), x− x0〉.
6Note that this was true for all functions on R.
7In next lecture we will hint of other ways for computing gradients.
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Lecture 14

• We began by noting that the equality 〈gf (x0), u〉 = Df (x0;u) implies that the
instantaneous direction of maximum increase of the function at x0 is gf (x0)
and moreover, no other direction can match the increase. We said that this
motivates greedy algorithms like gradient descent (which we will study later)
for optimization.

• By motivating examples we conjunctured the following two important results:

1. Let f : S ⊂ V 7→ R be a convex function that is sub-differentiable at x0.
Then f is differentiable at x0 if and only if the sub-differential set at x0

has a single element. Infact in this case, gf (x0) is equal to this unique
sub-gradient. The proof for “only if” part is easy1: by the subgradient
inequality, for any sub-gradient ∇f(x0), any u ∈ V and any h > 0, we

must have 〈∇f(x0), u〉 ≤ f(x0+hu)−f(x0)
h

. Taking limits, this implies that
〈∇f(x0), u〉 ≤ D+

f (x0;u) = Df (x0;u) = 〈gf (x0), u〉. Since this is true for
all u ∈ V , we must have that ∇f(x0) = gf (x0). For proof of the “if”
part, please refer theorem 25.1 in Rockafellar [1996].

2. This result talks about whether the direction of sub-gradient instanta-
neously increases the function or not: for this, we define the notion
of tangent cone of a set S at a point s ∈ S, denoted by TS(s), as
{u | ∃h > 0 3 s + hu ∈ S}. It is easy to see that this set is in-
deed a cone, provided the set S is convex. We call the dual cone of the
tangent cone as the normal cone, denoted by NS(s). Let f : C 7→ R
be a convex function and x0 ∈ int(C) (relative interior). Assume that
∂f(x0) 6= {0} (i.e., sub-differential set is not uniquely zero). Then2,
NLf (f(x0))(x0) = −CONIC(∂f(x0)). In lecture, we proved the easy part:
TLf (f(x0))(x0) ⊂ −(∂f(x0))∗.

1Refer prop. C.6.5 in Nemirovski [2005] for an alternate proof.
2Bonus 5marks to the student who proves this conjuncture.
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• One can write down the following from result 1 above:

– For convex functions, we have a new definition of differentiability: sub-
gradient being unique. SO one way to compute gradient is, guess a sub-
gradient and prove it is the only vector that enables satisfaction of sub-
gradient inequality. Then this sub-gradient must be the gradient. In
particular, we now know that f(x) = ‖x‖ is not differentiable at 0.

– Another definition that follows (from midsem question) is: a closed con-
vex function f is differentiable at x0 if and only if the set arg maxy∈V 〈y, x0〉−
f
′
(y) has a single element and in this case, that element is the gradient.

– In particular, it is clear that gradient is a sub-gradient and satisfies the
sub-gradient inequality. This gives a new definition of convexity: for
everywhere differentiable functions, convexity is same as satisfaction of
sub-gradient inequality by the gradient.

• One can write down the following from result 2 above:

– A convex function is differentiable with non-zero gradient at x0 if and
only if, the normal cone NLf (f(x0))(x0) has a single element.

– A sub-gradient direction need not be a direction of instantaneous increase
of a function. But there will exist some sub-gradient that is a direction
of instantaneous increase of the function.

• Owing to the above, from now onwards we will denote a gradient also by
∇f(x0). From the situation it must be understood whether ∇f represents
gradient or sub-gradient.

• We then defined the notion of twice-differentiability3: A function f : S ⊂
Rn 7→ R is said to be twice-differentiable at x0 ∈ S iff there exists a H(x0) ∈
Sn, called the Hessian, such that limx→x0

f(x)−(f(x0)+〈∇f(x0),x−x0〉+ 1
2

(x−x0)>H(x0)(x−x0))
‖x−x0‖2 =

0.

• Taking limit in the above such that x = x0 + hu, h → 0 gives: 1
2
u>H(x0)u =

limh→0
f(x0+hu)−f(x0)−h〈∇f(x0),u〉

h2
. This gives: i) The diagonal entries of Hessian

are simply double partial derivatives wrt. each co-ordinate. One can prove
that the Hessian is infact the matrix all possible double partial derivatives
and this proof is beyond the scope of this course. ii) a twice-differentiable
everywhere f is convex if and only if the Hessian is psd at all interior points.

• Mandatory reading: sections C.3, C.2.2 in Nemirovski [2005]; all sections and
especially 3.1.3 and 3.1.4 in Boyd and Vandenberghe [2004].

3In lecture we noted how to extend defn. to V 6= Rn.
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• Optional reading: relevant parts in sections 23-25 in Rockafellar [1996].
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Lecture 15

• After completing the topic of Convex Analysis, now that we understand each
component of an MP, we wish to study a special class of MPs known as Convex
Programs. This marks the beginning of Convex Optimization theory. We
recalled some definitions:

• Mathematical Program (MP): A symbol that is of the following form1:

min
x∈X

O(x)(15.1)

s.t. x ∈ F

• More specifically, if F is written as {x | gi(x) ≤ 0, ∀ i = 1, . . . ,m}, then the
MP is called a Ordinary Mathematical Program (OMP):

min
x∈X

O(x)(15.2)

s.t. gi(x) ≤ 0, ∀ i = 1, . . . ,m

• A MP/OMP is said to be un-constrained iff F = V .

• We then define the following for a given MP/OMP:

1. Domain — X . This is the domain for the functions O and all gi i.e.,
O : X 7→ R and gi : X 7→ R.

2. Feasibility set — F = {x ∈ X | gi(x) ≤ 0 ∀ i = 1, . . . ,m}. An element
of this set is called as a Feasible solution. If this set is non-empty, then
we say that the MP/OMP is feasible.

1We assume F ⊂ X .
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3. Objective function — O.

4. Optimal value or (simply) value of the MP/OMP is defined as inf ({f(x) | x ∈ F})
whenever the program is feasible. The value is defined as ∞ in case the
program is infeasible. The program is said to be bounded iff its value is
not −∞.

5. Optimal solution or (simply) solution of the MP/OMP is defined as that
x∗ ∈ F such that f(x∗) ≤ f(x) ∀ x ∈ F . The set of all optimal solutions
is called as the optimal set or solution set and is denoted by:

arg min
x∈X

O(x)(15.3)

s.t. x ∈ F

or

arg min
x∈X

O(x)(15.4)

s.t. gi(x) ≤ 0, ∀ i = 1, . . . ,m

The program is said to be solvable iff the solution set is non-empty.

• A MP is said to be a Convex Program (CP) iff O,F are convex.

• An OMP is said to be an Ordinary Convex Program (OCP) iff O, gi ∀ i =
1, . . . ,m are convex.

• Analogous defns. can be given for maximization problems.

• We then went through the five example MPs shown in the first lecture and
determined whether they are convex or not. This provided us with examples
and non-examples of CPs2.

• The most fundamental questions regarding an MP ofcourse are “when is an
MP bounded/feasible3/solvable/uniquely-solvable and can we characterize the
solution set?”. It turns out that the answers (atleast partially) to these ques-
tions are neat and elegant for CPs.

• In particular, we answer the following four fundamental questions:

2Bonus marks to that student who shows that the first example can be written as a CP. You
just need to complete the proceeding in the lecture.

3We will later see that feasibility and boundedness turn out to be some kind of duals and hence
dealing with one of them is enough.
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1. Arrive at suff. cond. for boundedness of CP. We conjunctured that a
CP with bounded feasibility set is itself bounded. The proof follows from
i) the sub-gradient inequality4, which shows that a convex function is
always greater than or equal to an affine function, and ii) linear functions
are bounded on bounded sets.

2. Arrive at suff. cond. for solvability of CP. We conjunctured that a CP
is solvable if the Feasibility set is compact and the objective is closed
convex (or continuous). Refer pg 11 of Appendix for a sketch of proof of
this.

3. Arrive at suff.cond. for unique solvability.

4. Arrive at nec. and suff. cond. for an optimal solution. This will help in
characterizing the optimal set. This, we commented, is the most useful
result of this course.

4Recall that every convex function is sub-differentiable at a (relatively) interior point and such
a point in turn exists for any convex set. (prop. C.6.5 and theorem B.1.1 in Nemirovski [2005].

47



48



Lecture 16

• We began by noting that a convex program with closed strictly convex objec-
tive and a compact feasibility set is uniquely solvable. Please refer pg 12 of
appendix for a proof.

• We then wanted to characterize the optimal set of a CP using something that is
“easy to compute/available” while solving programs. We recalled one charac-
terization already proved in practice problems: ∂f

′
(0) = arg minx∈V f(x). In

particular, this equality shows that the optimal set for any1 CP is either empty
or closed convex. This is because the sub-differential set is closed convex (or
empty). However, we commented that this is NOT a very useful characteriza-
tion in practice as conjugate may not be available and perhaps an optimization
problem is need to be solved to obtain it.

• We then note the following extremely useful (and trivial to prove) theorem:

Theorem 16.0.3. Given an unconstrained CP, x∗ is an optimal solution if
and only if 0 ∈ ∂O(x∗). In other words, the optimal set is {v ∈ V | 0 ∈ ∂O(v)}.
In particular, this gives a characterization for solvability of unconstrained con-
vex programs: an unconstrained CP is solvable if and only if there exists atleast
one v ∈ V such that 0 is a sub-gradient of the objective at that v.

• We then considered applications of this theorem:

1. Consider minx∈Rn
1
2
x>Px+ q>x+ r, where P � 0. This is an example of

an unconstrained convex program and hence the above theorem applies:
x∗ is optimal if and only if Px∗ + q = 0. From linear algebra, we have
that such an x∗ exists if and only if q ∈ C(P ), the column space of P .
And in such a case, one can perform Gaussian elimination to arrive at
x∗. In particular, if P � 0, we have that the CP is uniquely solvable and

1One can include programs that are constrained by defining the function to be ∞ outside the
feasibility set.
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x∗ = −P−1q. Also, in this case, it is easy to see that the optimal value
of the program is −1

2
q>P−1q + r.

2. We proved the Schur complement lemma using this theorem.

• We then conjectured and proved the following theorem:

Theorem 16.0.4. Given a differential CP2, x∗ is optimal if and only if x∗ ∈ F
and ∇f(x∗) ∈ NF(x∗).

Please refer page 14 in the appendix for a proof.

• We commented that this is a fundamental theorem and extremely useful in
convex optimization theory. Infact we said that we will derive may (perhaps)
familiar optimality conditions using this theorem in the subsequent lectures.

• For the sake of completeness, we wish to write an analogous theorem for convex
programs that need not be differentiable (needlessly to say, sub-differentiability
at all feasible points is assumed): given a feasible solution x∗ of CP, x∗ is an
optimal solution of (P) if and only if for every u ∈ TF(x∗) we can identify
a ∇f(x∗) ∈ ∂f(x∗) such that 〈∇f(x∗), u〉 ≥ 0. The proof follows from a
characterization of the support function of the sub-differential set in terms
of one-sided directional derivative. Interested students are requested to read
section 23 from Rockafellar [1996] and specifically theorem 23.4 in it. Though
more general, we wont further use this result as it is not elegant. Henceforth
we will focus on optimality conditions for various differentiable CPs.

• Mandatory reading: Section C.5 in Nemirovski [2005].

• Optional reading: section 27 in Rockafellar [1996]

2A CP with a differentiable (everywhere in the domain) objective.
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Lecture 17

• We began by noting that in the theorem 16.0.4, the gradient is more familiar
to us, even in the sense of computing it1, than the other ingredient namely,
normal cone. Hence we began studying normal cones for some special sets.

• We began with the case of an open feasibility set. Here, it is easy to see that
the tangent cone at any point (since every point is in the interior) contains
all directions and hence the normal cone has only the 0 vector. Hence in this
case, again the gradient being zero characterizes optimality. Infact, we wrote
down the following:

Corollary 17.0.5. Let program (CP) be differential and x∗ ∈ int(F). Then,
x∗ is optimal if and only if ∇f(x∗) = 0.

• We then looked at cases where the constraints are linear inequalities (i.e., define
a polyhedral set), called Polyhedrally Constrained Convex Program (PCCP):

min
x∈X

O(x)(17.1)

s.t. 〈ai, x〉 ≤ bi, ∀ i = 1, . . . ,m

and conjunctured the following result:

Corollary 17.0.6. Let (CP) be a differential PCCP with domain X being an
open set. Then x∗ is optimal if and only if:

1. x∗ ∈ F = {x ∈ X | 〈ai, x〉 ≤ bi, ∀ i = 1, . . . ,m} (Feasibility cond.).

2. ∃ a λ∗ ∈ Rm such that:

(a) λ∗ ≥ 0 (Non-negativity cond.).

(b) ∇f(x∗) +
∑m

i=1 λ
∗
i ai = 0 (Gradient cond.).

1For e.g. we know derivatives of various standard functions etc. Moreover, are familiar with
finite difference methods for numerical differentiation etc.
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(c) λ∗i (〈ai, x∗〉 − bi) = 0 ∀ i = 1, . . . ,m (Complementary-slackness cond.).

Another interesting way of writing the same result is: (CP) is solvable if and
only if there exists a point (x∗, λ∗) ∈ X ×Rm such that the above 4 conditions,
called hence-forth as the KKT conditions hold. For convenience, we will call
a point satisfying these 4 conditions as a KKT point.

• While the proof of this theorem was done in lecture, here we will use the proof
from the subsequent lecture that generalizes this corollary (and not repeated
here). What is more important is the following comments:

– The KKT conditions allow us to pose the problem of verifying whether
a x∗ is optimal, in terms of verifying solvability/feasibility/consistency
of a set of linear inequalities (in terms of λ). This is elegant, as linear
inequalities is a well-understood subject.

– Through the example of maximizing entropy of a distribution with given
moments (and an eg. of a simple MP involving matrices), we made
the point that KKT conditions help in realizing profound facts about
the optimal solution (and sometimes even the analytical expression for
optimal set), without the need to have absolutely any knowledge about
the domain from which the MP originated! This was cool. For e.g., we
obtained the famous thermodynamics relation that p(E) ∝ exp −E

kT
by

simply writing down the KKT conditions.

– We argued that in case there are linear equalities instead of linear in-
equalities, everything in the corollary will remain same except that the
non-negativity conditions on the corresponding λis should not be insisted
upon.

– We defined a PCCP with a linear objective as a Linear Program (LP).
So the above corollary applies to any LP with an open domain.

– We defined a PCCP with a convex quadratic objective as a Quadratic
Program (QP). So the above corollary applies to any QP with an open
domain.

– Suppose it is known that a diff. PCCP (with open domain) is solvable.
Since it is then guaranteed that a KKT point (x∗, λ∗) exists, the first
part of it, which is x∗, we know gives an optimal solution for the PCCP.
The other part, which is λ∗, infact gives an idea about activity of the
constraints: we say a constraint g(x) ≤ 0 is active at x∗ iff g(x∗) = 0.
It is easy to see that if λ∗i > 0 (for some i), then by the complementary
slackness cond., we have that the constraint 〈ai, x〉 ≤ bi is active at x∗.
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And conversely, if the ith constraint is not active at x∗, then λ∗i = 0. In-
fact, because of this complementarity relation, the name complementary
slackness.
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Lecture 18

• We began proving the following corollary that characterizes optimality in case
of differentiable OCPs:

Corollary 18.0.7. Let (15.2) be a regular convex program: an ordinary convex
program with differentiable O, gi defined over an open domain satisfying the
Slater’s condition — there exists a x0 ∈ X 3 gi(x0) < 0 forall i such that gi
is an non-affine function. Then the following statements are true:

– x∗ is optimal iff:

1. x∗ ∈ X , gi(x∗) ≤ 0 ∀ i = 1, . . . ,m. (feasibility cond.)

2. ∃ λ∗ ∈ Rm 3
(a) λ∗ ≥ 0 (non-negativity cond.)

(b) ∇f(x∗) +
∑m

i=1 λ
∗
i∇gi(x∗) = 0 (gradient cond.)

(c) λ∗i gi(x
∗) = 0 ∀ i = 1, . . . ,m (complementary slackness cond.)

(These conditions are hence-forth referred to as the KKT conditions and
they generalize the previous cases).

– The regular CP is solvable iff there exists a KKT point i.e., a point
(x∗, λ∗) ∈ X × Rm satisfying the above KKT conditions.

Please refer Appendix I in the previous year’s notes for a proof.

• We illustrated the power of the KKT conditions using two examples:

– Problem 1 in Quiz2 of the previous year. This was an elegant case KKT
conditions infact gave an analytical expression for the optimal solution.

– Problem 5(c) in section 2.1 in previous year problem-set. Here KKT
conditions were used to compare and related the optimal solutions and
hence the optimal values of two different programs.

• The following comments are noteworthy:
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– Apart from differentiability assumptions, a regular convex program is
as general as any convex program and hence this elegant result (KKT
conditions) is also generic and hence extremely useful. Infact, these pro-
vided necessary (but not sufficient) conditions for optimality for regular
programs (refer theorem 9.1.1 in Fletcher [2000]).

– Historically, Kuhn-Tucker published this result in 1950s; later it was dis-
covered that Karush wrote the same in his MSc thesis in 1930s, which
was unpublished. So now the conditions are named after all the three:
Karush-Kuhn-Tucker (KKT) conditions.

– The books (see below) provided alternate proofs of the same corollary. It
is worth going through them.

• There is one more elegant case where the optimality conditions are simple and
infact look very similar to those in case of Linear Programs. This is the case
of conic program1:

min
x∈Rn

c>x,

s.t. b− A>x ∈ K.(18.1)

Here K ⊂ Rm is a cone. Please refer to the problem in Quiz-2 and its solution
for the derivation of KKT in the case of conic programs:

Corollary 18.0.8. Let (18.1) be a conic program. Then,

– x∗ is optimal iff:

1. x∗ ∈ F = {x ∈ Rn | b− A>x ∈ K}. (feasibility cond.)

2. ∃ λ∗ ∈ Rm 3
(a) λ∗ ∈ K∗ (non-negativity cond.)

(b) c+ Aλ∗ = 0 (gradient cond.)

(c) (b− A>x∗)>λ∗ = 0 (complementary slackness cond.)

(These conditions are hence-forth referred to as the KKT conditions and
they generalize the Linear Program case.).

• Mandatory Reading: Section D.2.3.B in Nemirovski [2005]; Sections 5.5.3 and
5.5.4 (more importantly, the solved examples) in Boyd and Vandenberghe
[2004].

• Optional Reading: Section 28 in Rockafellar [1996].

1We will first define conic programs with Euclidean space as the domain and later on talk about
other extensions.
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Lecture 19

• Analogous to duality in sets, functions, we wanted a notion of duality for MPs.

• Recall that the key thought process in defining duals previously was:

1. Is there an outer/sculptural description of sets? In case of MPs, since
one of the most important aspects is the optimal value a natural inner
and outer description of this number is “it is the infimum of all its upper
bounds” (this is like “inner” description since every feasible point of the
given MP will provide an upper bound; moreover, the given minimization
is simply finding this least upper bound) and “it is the supremum of all
its lower bounds” (this is like “outer” description).

2. Procedurally, recall that in order to answer above question, we defined
dual quantities like: orthogonal complement, dual cone, polar set, dual
and conjugate functions. Hence in case of MPs we are looking for a max-
imization problem, which at every feasible point gives a lower bound and
infact reaches the optimal value of the given (primal) MP at optimality.

3. Additionally, recall that while defining dual cone/polar-set etc. we were
careful so that these quantities were nice (i.e., conic/convex even if the
original sets/functions were not conic/convex). Similarly for MPs, we
would like the dual program to be a convex one (so that the dual atleast
does not pose computational challenges).

• In summary, we basically motivated the following definition of dual for any
given MP (we hence-forth call the given MP as the primal): given a primal
program, dual of it is any program that satisfies the following properties:

1. At feasible point of the dual, its objective value is a lower bound to the
optimal value of the primal. This is known as the principle of weak
duality.

2. The optimal values of the primal and dual are the same. This is called
as the principle of strong duality.
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3. The dual is itself a convex program.

• Given this definition we were in search of schemes/procedures for systemat-
ically writing down duals. We started with the case of DPCCPs (with open
domain), where we already characterized optimality:

Theorem 19.0.9. Let (P), the following program, be a differentiable PCCP
with an open domain:

min
x∈X

f(x),

s.t. 〈ai, x〉 ≤ bi ∀ i = 1, . . . ,m.(19.1)

Assume that (P) is solvable. Then the following is a dual of (P):

(19.2) max
λ∈Rm

+

−
m∑
i=1

λibi − f
′

(
−

m∑
i=1

λiai

)
,

where f
′

is the conjugate of f with domain X .

The proof of this is given in appendix pages 15-17.

• Infact, even if (P) were not convex (i.e., f is arbitrary), one can still write
down the program (19.2) and it is easy to see that in this case weak duality
holds (i.e., (P) ≤ (19.2)) and (19.2) is convex. Hence the above DCCP dual
is useful even for polyhedrally constrained non-convex programs for obtaining
a lower bound.

• We took the example of a strictly convex QP and wrote its dual using the
above technique. Interestingly, the dual of this was again a strictly convex
QP. We call such programs as self-dual.

• From the above we have the following LP duality corollary1:

Corollary 19.0.10. Let (P), the following program, be an LP:

min
x∈V

〈c, x〉,

s.t. 〈ai, x〉 ≤ bi ∀ i = 1, . . . ,m.(19.3)

Assume that (P) is solvable. Then the following is a dual of (P):

max
λ∈Rm

−
∑m

i=1 λibi,

s.t. λ ≥ 0,
∑m

i=1 λiai + c = 0,(19.4)

1proof follows from computing the conjugate of the linear function in the objective.
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• Infact, theorem 1.2.2 in Nemirovski [2005] provides a stronger version of this
theorem. Please refer to it and its proof.

• Looking at LP dual we made few comments about duals (which are true for
any dual):

1. The space of primal variables need not be the same of dual variables.
For e.g. in the case of LP, the primal variable lives in some vector space
V , whereas the dual variables live in Rm. We commented that this can
sometimes be put to use for computational/programming ease.

2. The dimensionality of primal variable determines the number of con-
straints in the dual and vice-versa. Hence there is always a trade-off
in using the forms. Some algorithms might suit primal form and some
dual form. Infact, some of the state-of-the-art algorithms maintain both
primal and dual solutions in order to make the best use of this trade-off.

3. Needless to say, dual gives insight into the optimal solution. Next lecture
we will illustrate this using an example.

4. Most importantly, dual often provides a different view of the problem.
And such an insight could motivate further efficient algorithms. This
we said is the most important use of writing duals — to view the same
optimization problem in different ways. We will illustrate this also with
an example.

• Mandatory Reading: sections 1.1-1.2 in Nemirovski [2005].
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Lecture 20

• We took the program that defines support function of 1-norm ball (i.e., ∞-
norm’s dual form). Wrote down its dual using LP duality result. Two obser-
vations were note worthy: i) writing an optimization problem in the standard
form itself could be non-trivial (and many times it is infact cumbersome) ii)
from the dual perhaps one could easily read-off the optimal value (as it perhaps
is a simple problem).

• We then took the case of DOCPs and proved the following theorem:

Theorem 20.0.11. Given the following ordinary convex program (P):

min
x∈X

f(x),

s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,(20.1)

where all the functions involved are differentiable, the domain is open and the
program is solvable. Then the following is a dual of (P):

(20.2) max
λ∈Rm

+

L(λ),

where L(λ) ≡ minx∈X L(x, λ) and L(x, λ) ≡ f(x) +
∑m

i=1 λigi(x) (the former
function is called as the Lagrange dual function and the latter function is called
as the Lagrange function or simply the Lagrangian).

Please refer appendix pages 18-20 for a proof.

• Infact, the above theorem can be strengthened and for details please refer the-
orem D.2.2 in Nemirovski [2005]. This version is very useful as it does not
assume differentiability!

• Again, it is easy to see that the dual above when written for a (P) that is
not necessarily convex, gives weak duality but perhaps not strong duality.
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However, the dual will remain convex. Hence this trick of writing the Lagrange
dual (sometimes this trick is refered to as Lagrange relaxation) is useful in
obtaining easy-to-compute lower bounds for non-convex programs.

• We also then realized that the primal can also be written in terms of the
Lagrangian function: (P) = minx∈X L(x), where L(x) ≡ maxλ∈Rm

+
L(x, λ) (this

function can be called as the Lagrangian primal function). In other words the
following min-max interchange corollary is immediate:

Corollary 20.0.12. In the context of theorem 20.0.11, the following min-max
interchange is allowed:

min
x∈X

max
λ∈Rm

+

L(x, λ) = max
λ∈Rm

+

min
x∈X

L(x, λ).

Please refer appendix D.3 in Nemirovski [2005] for more on such min-max
theorems.

• Mandatory Reading: appendix section D in Nemirovski [2005], chapter 5 in Boyd
and Vandenberghe [2004].
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Lecture 21

• We began with an example illustrating Lagrange duality scheme. We took the
problem of finding the maximally separating hyperplane between two given
(finite) sets of points. The following points are note-worthy: i) the journey
from the English sentence description of the problem to the DOCP form was
indeed long. We introduced dummy variables etc. ii) thankfully, there was
an analytical expression for Lagrangian dual function1 iii) since we invariably
introduce dummy variables in primal to bring it in DOCP form, the dual
also contains variables/inequalities that perhaps can be eliminated. After this
filtering of the dual, one may find an elegant interpretation for the dual — in
this case the dual is the problem of finding the minimum distance between the
convex hulls of the given sets. We commented that – Lagrange duality gave
this elegant geometrical result and hence must indeed be a useful notion of
duality in practice.

• We then derived the following dual for the conic program case:

Theorem 21.0.13. Given the following conic program (P), which is solvable:

min
x∈Rn

c>x,

s.t. b− A>x ∈ K ⊂ Rm.(21.1)

A dual of the above is:

max
y∈Rm

−b>y,

s.t. Ay + c = 0, y ∈ K∗(21.2)

Please refer appendix pages 21-22 for a proof of this.

1However we had to be smart in writing down terms in compact/vector form etc.; else the
process is cumbersome. Also in many cases, analytical expression for the Lagrange dual may not
exist.
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• We noted that whenever we start with a self-dual cone K. the conic dual is
as elegant and simple as the case of LPs (LP duality is infact a special case of
this); however the conic program is far more generic.

• Needless to say, the above dual can also be written when the K in (P) is not a
cone. In this case, still weak duality is guaranteed and the dual remains convex;
however strong duality many not hold. Hence this conic duality scheme is also
useful in obtaining lower bounds for non-convex programs.

• The Nemirovski [2005] book presents a slightly different conic duality theorem,
which is worth studying (refer theorem 1.7.1).

• Mandatory Reading: chapter 1 in Nemirovski [2005].
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Lecture 22

• For few lectures our objective is to study special sub-classes of convex programs
— their form, dual, examples etc.

• Linear Programs and Quadratic Programs, defined earlier, are the most famil-
iar to all of us and we must be familiar with some examples also. Previously
we wrote down their duals also1. Hence we wont further focus on them. There
are a number of free toolboxes for solving these.

• The next bigger class is convex Quadratically Constrained Quadratic Programs
(convex QCQPs):

min
x∈Rn

1
2
x>Px+ q>x+ r,

s.t. 1
2
x>Pix+ q>i x+ ri ≤ 0 ∀ i = 1, . . . ,m,(22.1)

where all P, Pi � 0. We will later (while dealing with SDPs) write their dual.
CPLEX is an efficient solver for QCQPs and there are many others.

• In this lecture, we will focus on a super class of all of these, called as conic
quadratic programs (CQs) or Second Order Cone Programs (SOCPs):

min
x∈Rn

c>x,

s.t. ‖A>i x+ bi‖ ≤ c>i x+ di ∀ i = 1, . . . ,m.(22.2)

The constraints of the form as those in the above program as called as conic
quadratic constraints or second order cone constraints.

• The first key observation was that the above program can be written as a conic
program with the cone as Cartesian/direct product of ice-cream cones (which

1We leave the case of convex QPs that are non-strictly convex for later analysis. While dealing
with SDPs we will write down dual for (non-convex) QCQPs, which will cover this case.
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is self-dual). Hence by applying conic duality we obtained a dual of it. Please
refer to section 2.1 in Nemirovski [2005] for details. Interestingly, the dual is
also a conic-quadratic and hence self-dual.

• We then gave many examples of sets and functions that can be expressed as
conic quadratics. Please refer section 2.3 in Nemirovski [2005].

• Importantly there are very efficient solvers for CQs: Mosek, SeDuMi and
SDPT3.

• Mandatory Reading: chapter 2 in Nemirovski [2005] and Lobo et al. [1998].
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Lecture 23

• Given that we studied conic programs with ice-cream cones, we next wished to
study those with the cone as the psd cone (which is also self-dual in the space
of symm. matrices). For that we had to first study linear transformations from
one Hilbert space V to another W . The following comments were immediate:

1. If dim(V ) = n and dim(W ) = m and given a set of bases for each space,
then there is a bijection between the set of all linear functions from V to
W and the set of all matrices of size m× n.

2. If Ml is the matrix associated with l : V 7→ W , then we call the linear
function associated with M>

l as the adjoint of l and denote it by l> :
W 7→ V .

3. Moreover, if the bases were orthogonal (for both spaces), then we have
the following: 〈l(v), w〉W = 〈v, l>(w)〉V .

• We then wrote down the expression for conic program in arbitrary spaces:

min
x∈V

〈c, x〉V ,

s.t. b−W l(x) ∈ K ⊂ W(23.1)

• Using the fact that all (finite dim) Hilbert spaces are essentially Euclidean,
the following dual of the conic program was immediate:

max
y∈W

−〈b, y〉W ,

s.t. l>(y) + c = 0, y ∈ K∗.(23.2)

• We then took the special case of (23.1) with V = Rn, l(x) =
∑n

i=1 xiAi (where
all Ai ∈ Sm) and K as the cone of all psd matrices of size m. This we defined
as Semi Definite Program (SDP):

min
x∈Rn

c>x,

s.t. B −
∑n

i=1 xiAi � 0(23.3)
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• The constraints in the form as those in SDP are called as Linear Matrix In-
equalities (LMIs).

• We then computed the adjoint l>(Z) as Euclidean vector with entries as
〈Z,Ai〉F . Using this the following dual for SDP is immediate:

max
Y ∈Sm

−〈B, Y 〉F ,

s.t. 〈Ai, Y 〉F + ci = 0 ∀ i = 1, . . . ,m, Y � 0.(23.4)

Hence SDPs are (in dual form) simply programs with linear objective and
linear constraints with an additional psd constraint.

• We then showed that every CQ constraint can be written as an LMI (refer
pg 109 in Nemirovski [2005]). Moreover, multiple LMIs can be written as a
single LMI by bundling the matrices in a block diagonal fashion. Thus every
CQ program (and hence every LP, QP, QCQP) can be written as an SDP.
Ofcourse the converse is not true.

• We then wrote down the problem of finding the most spherical ellipsoid that
tightly encloses a finite set of given points as an MP. In the subsequent lecture
we will write it as an SDP.

• Finally, Mosek, SeDuMi and SDPT3 all are efficient SDP solvers. Thus SDP
is a very generic class of convex programs, with elegant theoretical results and
freely available efficient toolboxes.

• Mandatory Reading: chapter 3.1 in Nemirovski [2005]; chapters 3,6 in Sheldon
Axler [1997] for a review of linear maps.
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Lecture 24

• Using the examples 18, 20b from chapter 3 in Nemirovski [2005] we have that
the program from the previous lecture can be written as an SDP.

• Students are urged to study all the examples for SDP-representable func-
tions/sets in chapter 3.

• We then set out to write the dual of a (non-convex) QCQP and interestingly
the Lagrange dual turned out be an SDP! Hence SDPs play an important role
in bounding/approximating non-convex programs. Please refer section 3.4
in Nemirovski [2005] for details. As mentioned earlier, the process of writing
the Lagrange dual for a non-convex program is called as Lagrange relaxation.

• We then went on to study another important class of CPs called Geometric
Programs (GPs):

min
x∈Rn

++

f(x),

s.t. gi(x) ≤ 1 ∀ i = 1, . . . ,m1,

hi(x) = 1 ∀ i = 1, . . . ,m2,(24.1)

where f, gi are all posynomials and hi are all monomials. Monomial is of the
form cΠn

i=1x
ai
i (all xi, c are positive and all ai ∈ R). Posynomial is simply a

sum of finite number of monomials.

• We gave an example of problems that can be posed as a GP and realized that
perhaps GPs can indeed model many problems.

• GPs need not be convex, but they can be written as a convex program by
i) replacing xi by eyi and then ii) taking log for all functions. With this the

posynomials turn out as functions of the following form: log
(∑

i e
b>i y+di

)
,

which is convex and the equality constraints become linear equalities.
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• We then argued that the dual of this convexified GP is essentially maximizing
entropy problem that is familiar to us.

• Most importantly, GPs can be efficiently solved and free solvers are available:
e.g., GGPLAB1.

• Mandatory Reading: chapter 3 in Nemirovski [2005] and Vandenberghe and
Boyd [1996]; for GPs section 4.5.2 in Boyd and Vandenberghe [2004] and Boyd
et al. [2007].

1Download from http://www.stanford.edu/~boyd/ggplab/
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Subset (S) Definition Primal rep. Dual rep. Algebra Topology
Linear Forms vector space Basis (B), B⊥ for orth.comp. Int., sum Closed

S = LIN(B) S = {v ∈ V | 〈v, b〉V = 0 ∀ b ∈ B⊥} Union, comp. Open,bounded
Affine Shifted linear set AffineBasis (B), B⊥ for orth.comp. (shift) Int., sum Closed

S = AFF (B) S = {v ∈ V | 〈v, b〉V = rb ∀ b ∈ B⊥} Union, comp. Open,bounded
Cone closed conic comb. Conicly-spanning (B), B∗ for dual cone Int., sum Closed

S = CONIC(B) S = {v ∈ V | 〈v, b〉V ≥ 0 ∀ b ∈ B∗} Union, comp. Open,bounded

Convex closed convex comb. Convexly-spanning (B), B
′

for polar cone1 Int., sum
S = CONV (B) S = {v ∈ V | 〈v, b〉V ≤ 1 ∀ b ∈ B

′} Union, comp. Closed,Open,Bounded
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