

Overview

Goal: To determine if a given English target word or phrase in its context is complex or not for nonnative English speakers. **Contribution**:

- We use a set of eight classifiers based on WordNet lexical, size, and vocabulary features.
- Our system outperforms multiple other models and falls within 0.042 to 0.026 percent of the best model's score.

Motivation

- Our proposed model will help people with language disabilities such as Aphasia and Alexia understand the text completely.
- Complex Word Identification (CWI) is also an essential sub-task for Lexical Simplification.

Figure 1: Lexical Simplification Pipeline

Shared Task Dataset

• 10 native and 10 non-native English speakers annotated a set of target words and phrases as complex or not, from Wikipedia, news reports, and amateur news reports (WikiNews)[3].

Dataset	Total Sents.	Unique Sents.
NEWS-TRAIN	14002	1016
NEWS-TEST	2095	175
WIKINEWS-TRAIN	7746	652
WIKINEWS-TEST	1287	105
WIKIPEDIA-TRAIN	5551	387
WIKIPEDIA-TEST	870	61
		-

 Table 1: Shared Task Dataset - Descriptive Statistics

The Whole is Greater than the Sum of its Parts: Towards the Effectiveness of Voting **Ensemble Classifiers for Complex Word Identification**

Nikhil Wani, Sandeep Mathias, Jayashree Aanand Gajjam, Pushpak Bhattacharyya

Center for Indian Language Technology, Department of Computer Science and Engineering, Indian Institute of Technology Bombay, India nikhilwani@outlook.com, {sam,pb}@cse.iitb.ac.in, jayashree_aanand@iitb.ac.in

WordNet[1] Lexical Features

Degree of Polysemy (DP) - Number of	Size-based features		
senses.	Feature	Definition (Number of)	
- Unnonum (Uo) and Unnonnum (Uo)	Word Count (WC)	Words in the target word	
• nyponym (no) and nypernym (ne)	Word Length (WL)	Letters in the target word	
Tree Depth (TD) - Distance from the root	Vowels Count (VC)	Vowels in the target word	
(hypernym) and the longest path to a leaf	Syllable Count (SC)	Syllables in the target word	
(hyponym).	Vocabulary-based features		
$(\mathbf{I}_{j} \mathbf{P}) = \mathbf{I}_{j} \mathbf{I}_{j} \mathbf{I}_{j}$	Feature	Definition (Word is in)	
- Holonym Count (HC) and Meronym	Ogden's Basic Lexicons ((OB) Ogden's Basic Word List	
Count (MC) - Number of holoynyms and	Ogden's Freq. Lexicons ((OF) Ogden's Frequent Word List	
meronyms.	Barron's Lexicons (BW)	Barron's GRE Word List	
• Verb Entailments (VE) - Number of verb	Table 2: Size-based and Vocabulary-based features that we use.		

System Architecture and Experiments

entailments.

Table 3: Results of ten-fold cross-validation on the training for each Figure 2: System architecture. Output of each of the classifiers of the classifiers on the *complex class only*. This was used to goes to the voter. In case of a tie, we use GloVe [2]. Out of 4252 choose our top classifiers. instance, a tie occurred 173 times.

References

Other Features

Classifier	Precision	Recall	F1-Score			
Selected Classifiers						
Random Forest	0.792	0.781	0.787			
J48 Decision Tree	0.777	0.777	0.777			
Logistic Model Tree	0.778	0.762	0.770			
REP Tree	0.768	0.765	0.766			
Random Tree	0.796	0.717	0.754			
SVM	0.745	0.780	0.762			
PART	0.715	0.793	0.752			
JRip Rules Tree	0.754	0.737	0.745			
Rejected Classifiers $(F1 < 0.70)$						
Decision Table	0.739	0.652	0.693			
Decision Stump	0.665	0.696	0.680			
Hoeffding Tree	0.686	0.666	0.676			
Logistic Regression	0.732	0.591	0.654			
SMO	0.751	0.550	0.635			
OneR	0.735	0.550	0.629			
ZeroR	0.000	0.000	0.000			

Figure 3: Feature significance observed by ranking them from highest to lowest using Attribute Evaluation based on Info-Gain

 Table 4: F1-Score for each of the datasets for the top 10 teams
 on the corresponding test dataset.

• **Conclusion**: Ensemble classifiers with hard voting and GloVe is more effective than individual classifiers for CWI. Our Code is available here.^a • **Future Work**: Incorporation of Parts of Speech (POS) tags, Named Entity Recognition (NER) tags and word position features.

Analysis and Discussion

Results

Datacot					
Team	W IKINEWS	WIKIPEDIA	NEWS		
camb	0.8430	0.8115	0.8792		
ajason08	0.8368	0.7736	0.8625		
nathansh	0.8329	0.7996	0.8706		
nikhilwani	0.8213	0.7770	0.8554		
dirkdh	0.8151	0.7816	0.8721		
daalft	0.8050	0.7839	0.8391		
TMU	0.7910	0.7621	0.8706		
pom	0.7723	0.7460	0.8277		
natgillin	0.7498	0.6690	0.8363		

Conclusion and Future Work

^[1] Christiane Fellbaum. WordNet, Wiley Online Library. Wiley Online Library, 1998.

^[2] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/D14-1162.

^[3] Seid Muhie Yimam, Chris Biemann, Shervin Malmasi, Gustavo Paetzold, Lucia Specia, Sanja Štajner, Anaïs Tack, and Marcos Zampieri. A Report on the Complex Word Identification Shared Task 2018. In Proceedings of the 13th Workshop on Innovative Use of NLP for Building Educational Applications, New Orleans, United States, June 2018. Association for Computational Linguistics.