Semidirect Product of \oplus-algebra

Bharat Adsul

Indian Institute of Technology, Bombay

Saptarshi Sarkar

Indian Institute of Technology, Bombay

A. V. Sreejith
Indian Institute of Technology, Goa

\qquad

2012 ACM Subject Classification Dummy classification
Keywords and phrases Dummy keyword

Digital Object Identifier 10.4230/LIPIcs...

1 Algebra for countable words

A \oplus-algebra $\left(S, \cdot, \tau, \tau^{*}, \kappa\right)$ consists of a set S with $\cdot: S^{2} \rightarrow S, \tau: S \rightarrow S, \tau^{*}: S \rightarrow S, \kappa$: $\mathcal{P}(S) \backslash\{\emptyset\} \rightarrow S$ such that (with infix notation for • and superscript notation for τ, τ^{*}, κ)

A-1 (S, \cdot) is a semigroup.
A-2 $(a \cdot b)^{\tau}=a \cdot(b \cdot a)^{\tau}$ and $\left(a^{n}\right)^{\tau}=a^{\tau}$ for $a, b \in S$ and $n>0$.
A-3 $(b \cdot a)^{\tau^{*}}=(a \cdot b)^{\tau^{*}} \cdot a$ and $\left(a^{n}\right)^{\tau^{*}}=a^{\tau^{*}}$ for $a, b \in S$ and $n>0$.
A-4 For every non-empty subset P of S, every element c in P, every subset P^{\prime} of P, and every non-empty subset $P^{\prime \prime}$ of $\left\{P^{\kappa}, a . P^{\kappa}, P^{\kappa} . b, a . P^{\kappa} . b \mid a, b \in P\right\}$, we have $P^{\kappa}=P^{\kappa} . P^{\kappa}=$ $P^{\kappa} . c . P^{\kappa}=\left(P^{\kappa}\right)^{\tau}=\left(P^{\kappa} . c\right)^{\tau}=\left(P^{\kappa}\right)^{\tau^{*}}=\left(c . P^{\kappa}\right)^{\tau^{*}}=\left(P^{\prime} \cup P^{\prime \prime}\right)^{\kappa}$.

For any $m \in S$, any $a \in \mathbb{N}$, we'll use m^{a} to denote the finite product \cdot being applied to a-many m. If $a=0$, it refers to the neutral element of S^{1}.

Consider a \oplus-algebra $\left(N,+, \hat{\tau}, \hat{\tau}^{*}, \hat{\kappa}\right)$. Since in $N,+$ or finite product is not commutative in general, we will use notations like $\sum_{i=1}^{3} n_{i}$ to represent $n_{1}+n_{2}+n_{3}$ and $\sum_{i=3}^{1} n_{i}$ to represent $n_{3}+n_{2}+n_{1}$.

2 Semidirect Product Construction

In this section, we propose a generalization of semidirect product from semigroups to \oplus-semigroups. We first define this construction for \oplus-algebras.

We begin by introducing the setup of two commuting actions of a \oplus-algebra on another.
Consider two \oplus-algebra $\left(M, \cdot, \tau, \tau^{*}, \kappa\right)$ and $\left(N,+, \hat{\tau}, \hat{\tau}^{*}, \hat{\kappa}\right)$. Note that \cdot and + need not be commutative. A function $\delta_{l}: M^{1} \times N \rightarrow N$ is said to be a left action of M on N if it satisfies the following conditions. $\delta_{l}(m, n)$ is denoted by $m * n$ for convenience.

L-1 $1 * n=n$
L-2 $\left(m_{1} \cdot m_{2}\right) * n=m_{1} *\left(m_{2} * n\right)$
$\mathbf{L}-3 m *\left(n_{1}+n_{2}\right)=m * n_{1}+m * n_{2}$
$\mathbf{L}-4 m * n^{\hat{\gamma}}=(m * n)^{\hat{\gamma}}$
L-5 $m * n^{\hat{\tau}^{*}}=(m * n)^{\hat{\tau}^{*}}$

© Bharat Adsul, Saptarshi Sarkar and A. V. Sreejith;
licensed under Creative Commons License CC-BY
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
$\mathbf{L - 6} m *\left\{n_{1}, \ldots, n_{j}\right\}^{\hat{\kappa}}=\left\{m * n_{1}, \ldots, m * n_{j}\right\}^{\hat{\kappa}}$
Similarly, a function $\delta_{r}: N \times M^{1} \rightarrow N$ is said to be a right action of M on N if it satisfies the following conditions. $\delta_{r}(n, m)$ is denoted by $n * m$ for convenience.

R-1 $n * 1=n$
R-2 $n *\left(m_{1} \cdot m_{2}\right)=\left(n * m_{1}\right) * m_{2}$
$\mathbf{R - 3}\left(n_{1}+n_{2}\right) * m=n_{1} * m+n_{2} * m$
$\mathbf{R}-4 n^{\hat{\gamma}} * m=(n * m)^{\hat{\gamma}}$
R-5 $n^{\hat{\tau}^{*}} * m=(n * m)^{\hat{\tau}^{*}}$
R-6 $\left\{n_{1}, \ldots, n_{j}\right\}^{\hat{\kappa}} * m=\left\{n_{1} * m, \ldots, n_{j} * m\right\}^{\hat{\kappa}}$
δ_{l} and δ_{r} are compatible with each other if they satisfy the following condition.
$\mathbf{L R}\left(m_{1} * n\right) * m_{2}=m_{1} *\left(n * m_{2}\right)$.
We define the semidirect product of the two \oplus-algebras as $M \ltimes N=\left(M \times N, \tilde{\cdot}, \tilde{\tau}, \tilde{\tau}^{*}, \tilde{\kappa}\right)$ where

1. $\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)=\left(m_{1} \cdot m_{2}, n_{1} * m_{2}+m_{1} * n_{2}\right)$
2. $(m, n)^{\tilde{\tau}}=\left(m^{\tau}, \sum_{i=0}^{k-1} m^{i} * n * m^{\tau}+\left(\sum_{i=k}^{k+p-1} m^{i} * n * m^{\tau}\right)^{\hat{\tau}}\right)$ where k and p are respectively index ${ }^{1}$ and period ${ }^{2}$ of m
3. $(m, n)^{\tilde{\tau}^{*}}=\left(m^{\tau^{*}},\left(\sum_{i=k+p-1}^{k} m^{\tau^{*}} * n * m^{i}\right)^{\hat{\tau}^{*}}+\sum_{i=k-1}^{0} m^{\tau^{*}} * n * m^{i}\right)$ where k and p are respectively index and period of m
4. $\left\{\left(m_{1}, n_{1}\right), \ldots,\left(m_{p}, n_{p}\right)\right\}^{\tilde{\kappa}}=\left(m,\left\{m * n_{1} * m, \ldots, m * n_{p} * m\right\}^{\hat{\kappa}}\right)$ where $m=\left\{m_{1}, \ldots, m_{p}\right\}^{\kappa}$

3 Verification that $M \ltimes N$ is a \oplus-algebra

3.1 Axiom A-1

$\forall a, b, c \in M \ltimes N, \quad(a \sim b) \sim c=a \sim(b \sim c)$
$\left(\left(m_{1}, n_{1}\right) \simeq\left(m_{2}, n_{2}\right)\right) \sim\left(m_{3}, n_{3}\right)$
$=\left(m_{1} m_{2}, n_{1} * m_{2}+m_{1} * n_{2}\right) \tilde{\sim}\left(m_{3}, n_{3}\right)$
$=\left(m_{1} m_{2} m_{3}, n_{1} * m_{2} m_{3}+m_{1} * n_{2} * m_{3}+m_{1} m_{2} * n_{3}\right) \quad[$ by R-3 and R-2 $]$

$$
\begin{aligned}
& \left(m_{1}, n_{1}\right) \approx\left(\left(m_{2}, n_{2}\right) \tilde{\sim}\left(m_{3}, n_{3}\right)\right) \\
& =\left(m_{1}, n_{1}\right) \simeq\left(m_{2} m_{3}, n_{2} * m_{3}+m_{2} * n_{3}\right) \\
& =\left(m_{1} m_{2} m_{3}, n_{1} * m_{2} m_{3}+m_{1} * n_{2} * m_{3}+m_{1} m_{2} * n_{3}\right)
\end{aligned}
$$

[by L-3 and L-2]

[^0]
3.2 Axiom A-2

3.2.1 $\quad(a . b)^{\tau}=a .(b . a)^{\tau}$

Consider $a=\left(m_{1}, n_{1}\right)$ and $b=\left(m_{2}, n_{2}\right)$. Let k (resp. $\left.k^{\prime}\right)$ and p (resp. $\left.p^{\prime}\right)$ be the index and period, respectively of $m_{1} m_{2}$ (resp. $m_{2} m_{1}$). We show that k and k^{\prime} cannot differ by more than 1 and p equals p^{\prime}.

Lemma 1. $\left|k-k^{\prime}\right| \leq 1$ and $p=p^{\prime}$
Proof. By the definition of index and period, we have $\left(m_{1} m_{2}\right)^{k}=\left(m_{1} m_{2}\right)^{k+p}$. Multiplying by m_{2} on the left and by m_{1} on the right, we get

$$
\begin{aligned}
& m_{2}\left(m_{1} m_{2}\right)^{k} m_{1}=m_{2}\left(m_{1} m_{2}\right)^{k+p} m_{1} \\
& \Longrightarrow\left(m_{2} m_{1}\right)^{k+1}=\left(m_{2} m_{1}\right)^{k+p+1} \\
& \Longrightarrow k^{\prime} \leq k+1 \text { and } p \bmod p^{\prime}=0
\end{aligned}
$$

Similarly, $k \leq k^{\prime}+1$ and $p^{\prime} \bmod p=0$ So, $\left|k-k^{\prime}\right| \leq 1$ and $p=p^{\prime}$.
In 3.2.1, we'll write p to denote period of both $m_{1} m_{2}$ and $m_{2} m_{1}$.
By our semidirect product definition

$$
\begin{aligned}
& \left(\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)\right)^{\tilde{\tau}}=\left(m_{1} m_{2}, n_{1} * m_{2}+m_{1} * n_{2}\right)^{\tilde{\tau}} \\
& =\left(\left(m_{1} m_{2}\right)^{\tau}, \sum_{i=0}^{k-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\right. \\
& \left.\quad\left(\sum_{i=k}^{k+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}\right) \\
& =(x, y) \\
& \left.\left.\left(m_{1}, n_{1}\right) \sim\left(\left(m_{2}, n_{2}\right) \tilde{(} m_{1}, n_{1}\right)\right)^{\tilde{\tau}}=\left(m_{1}, n_{1}\right) \tilde{}\right)^{k^{\prime}}\left(m_{2} m_{1}, n_{2} * m_{1}+m_{2} * n_{1}\right)^{\tilde{\tau}} \\
& =\left(m_{1}, n_{1}\right) \tilde{\sim}\left(\left(m_{2} m_{1}\right)^{\tau}, \sum_{i=0}^{k^{\prime}-1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}+\right. \\
& \left.\left.\sum_{i=k^{\prime}}^{k^{\prime}+p-1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right)\right) \\
& =\left(m_{1}\left(m_{2} m_{1}\right)^{\tau}, n_{1} *\left(m_{2} m_{1}\right)^{\tau}+\sum_{i=0}^{k^{\prime}-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}+\right. \\
& =\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

Since A-2 holds in M, we have $x=x^{\prime}$. So we now need to prove $y=y^{\prime}$. For this we prove the following two lemmas.

Lemma 2. $n_{1} *\left(m_{2} m_{1}\right)^{\tau}+\sum_{i=0}^{j} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}$ is equal to $\sum_{i=0}^{j}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{j+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}$
Proof. When $j=0$, we have

$$
\begin{aligned}
& n_{1} *\left(m_{2} m_{1}\right)^{\tau}+m_{1} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& =n_{1} * m_{2}\left(m_{1} m_{2}\right)^{\tau}+m_{1} * n_{2} * m_{1}\left(m_{2} m_{1}\right)^{\tau}+\left(m_{1} m_{2}\right) * n_{1} * m_{2}\left(m_{1} m_{2}\right)^{\tau} \\
& =\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right) *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
\end{aligned}
$$

Assuming the lemma to be true for j by induction hypothesis, we prove it for $j+1$.

$$
\begin{aligned}
& n_{1} *\left(m_{2} m_{1}\right)^{\tau}+\sum_{i=0}^{j+1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& =n_{1} *\left(m_{2} m_{1}\right)^{\tau}+\sum_{i=0}^{j} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& \quad+m_{1}\left(m_{2} m_{1}\right)^{j+1} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}
\end{aligned}
$$

[by induction hypothesis]

$$
\begin{aligned}
&= \sum_{i=0}^{j}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{j+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&+m_{1}\left(m_{2} m_{1}\right)^{j+1} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
&= \sum_{i=0}^{j}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{j+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
& \quad+\left(m_{1} m_{2}\right)^{j+1} m_{1} * n_{2} * m_{1}\left(m_{2} m_{1}\right)^{\tau}+\left(m_{1} m_{2}\right)^{j+1} m_{1} m_{2} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&= \sum_{i=0}^{j+1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{j+2} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
\end{aligned}
$$

This proves the lemma by induction.
Lemma 3. For any $j \in\left[k^{\prime}, k^{\prime}+p-1\right], \sum_{i=j}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}$ is equal to
$\left(m_{1} m_{2}\right)^{j} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\sum_{i=j+1}^{k^{\prime}+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}$
$+\left(m_{1} m_{2}\right)^{k^{\prime}+p} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}$
Proof. Induction on the range of the summation. When j is $k^{\prime}+p-1$, we have

$$
\begin{aligned}
& m_{1}\left(m_{2} m_{1}\right)^{k^{\prime}+p-1} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& =\left(m_{1} m_{2}\right)^{k^{\prime}+p-1} m_{1} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& =\left(m_{1} m_{2}\right)^{k^{\prime}+p-1} *\left(m_{1} * n_{2}\right) * m_{1}\left(m_{2} m_{1}\right)^{\tau}+\left(m_{1} m_{2}\right)^{k^{\prime}+p-1} m_{1} m_{2} * n_{1} * m_{2}\left(m_{1} m_{2}\right)^{\tau} \\
& =\left(m_{1} m_{2}\right)^{k^{\prime}+p-1} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{k^{\prime}+p} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
\end{aligned}
$$

Assuming true for $j+1$, we prove for j.

$$
\begin{aligned}
& \sum_{i=j}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
&= m_{1}\left(m_{2} m_{1}\right)^{j} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
&+\sum_{i=j+1}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
&=\left(m_{1} m_{2}\right)^{j} m_{1} * n_{2} * m_{1}\left(m_{2} m_{1}\right)^{\tau}+\left(m_{1} m_{2}\right)^{j} m_{1} m_{2} * n_{1} * m_{2}\left(m_{1} m_{2}\right)^{\tau} \\
&+\sum_{i=j+1}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
&=\left(m_{1} m_{2}\right)^{j} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{j+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
& \quad+\sum_{i=j+1}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
&=\left(m_{1} m_{2}\right)^{j} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{j+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&+\left(m_{1} m_{2}\right)^{j+1} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\sum_{i=j+2}^{k^{\prime}+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&+\left(m_{1} m_{2}\right)^{k^{\prime}+p} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&= \quad\left(m_{1} m_{2}\right)^{j} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\sum_{i=j+1}^{k^{\prime}+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
\end{aligned}
$$

This completes the proof of the lemma.

Continuing with the verification of the axiom A-2, we now have

$$
\begin{aligned}
& y^{\prime} \\
& \begin{aligned}
=n_{1} *\left(m_{2} m_{1}\right)^{\tau}+ & \sum_{i=0}^{k^{\prime}-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& +\left(\sum_{i=k^{\prime}}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right)^{\hat{\tau}}
\end{aligned}
\end{aligned}
$$

[by lemma 2]

$$
\begin{gathered}
=\sum_{i=0}^{k^{\prime}-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{k^{\prime}} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
+\left(\sum_{i=k^{\prime}}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right)^{\hat{\tau}}
\end{gathered}
$$

[by lemma 3]

$$
\begin{aligned}
=\sum_{i=0}^{k^{\prime}-1}\left(m_{1} m_{2}\right)^{i} * & \left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{k^{\prime}} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
& +\left(\left(m_{1} m_{2}\right)^{k^{\prime}} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right. \\
& +\sum_{i=k^{\prime}+1}^{k^{\prime}+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
& \left.+\left(m_{1} m_{2}\right)^{k^{\prime}+p} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}
\end{aligned}
$$

Now by lemma 1, we have to consider three cases.
Case 1: $k=k^{\prime}$
If $k=k^{\prime}$, then since $\left(m_{1} m_{2}\right)^{k}=\left(m_{1} m_{2}\right)^{k+p}$ and since axiom A-2 holds in N, we have

$$
\begin{aligned}
& y^{\prime} \\
& \begin{aligned}
&=\sum_{i=0}^{k-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&+\left(\left(m_{1} m_{2}\right)^{k} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{k} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right. \\
&\left.\quad+\sum_{i=k+1}^{k+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}
\end{aligned} \\
& \begin{aligned}
&=\sum_{i=0}^{k-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
& \quad+\left(\sum_{i=k}^{k+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}} \\
&=y
\end{aligned}
\end{aligned}
$$

Case 2: $k^{\prime}=k+1$
If $k^{\prime}=k+1$, we have
y^{\prime}
$=\sum_{i=0}^{k}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{k+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}$ $\left(\left(m_{1} m_{2}\right)^{k+1} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right.$
$+\sum_{i=k+2}^{k+p}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}$ $\left.+\left(m_{1} m_{2}\right)^{k+1+p} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}$
$=\sum_{i=0}^{k-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}+\left(m_{1} m_{2}\right)^{k} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}$

$$
+\left(m_{1} m_{2}\right)^{k+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
$$

$$
\left(\left(m_{1} m_{2}\right)^{k+1} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right.
$$

$$
+\sum_{i=k+2}^{k+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
$$

$$
+\left(m_{1} m_{2}\right)^{k+p} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
$$

$$
\left.+\left(m_{1} m_{2}\right)^{k+1+p} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}
$$

Since $\left(m_{1} m_{2}\right)^{k}=\left(m_{1} m_{2}\right)^{k+p}$ and $\left(m_{1} m_{2}\right)^{k+1}=\left(m_{1} m_{2}\right)^{k+1+p}$ and since axiom A-2 holds in N, we have

$$
\begin{aligned}
& y^{\prime} \\
& \begin{aligned}
&=\sum_{i=0}^{k-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&+\left(\left(m_{1} m_{2}\right)^{k} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right. \\
&+\left(m_{1} m_{2}\right)^{k+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&+\left(m_{1} m_{2}\right)^{k+1} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&\left.+\sum_{i=k+2}^{k+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}
\end{aligned} \\
& \begin{aligned}
&=\sum_{i=0}^{k-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
&+\left(\sum_{i=k}^{k+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}
\end{aligned}
\end{aligned}
$$

$$
=y
$$

Case 3: $k=k^{\prime}+1$

If $k=k^{\prime}+1$, then
y
$=\sum_{i=0}^{k^{\prime}}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}$

$$
+\left(\sum_{i=k^{\prime}+1}^{k^{\prime}+p}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}
$$

$$
=\sum_{i=0}^{k^{\prime}}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
$$

$$
+\left(\left(m_{1} m_{2}\right)^{k^{\prime}+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right.
$$

$$
+\left(m_{1} m_{2}\right)^{k^{\prime}+1} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\top}
$$

$$
+\sum_{i=k^{\prime}+2}^{k^{\prime}+p-1}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
$$

$$
+\left(m_{1} m_{2}\right)^{k^{\prime}+p} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}
$$

$$
\left.+\left(m_{1} m_{2}\right)^{k^{\prime}+p} *\left(m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}
$$

[by lemma 3]

$$
\begin{array}{rl}
=\sum_{i=0}^{k^{\prime}}\left(m_{1} m_{2}\right)^{i} & *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau} \\
& +\left(\left(m_{1} m_{2}\right)^{k^{\prime}+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right. \\
& +\sum_{i=k^{\prime}+1}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& \left.+m_{1}\left(m_{2} m_{1}\right)^{k^{\prime}+p} *\left(n_{2} * m_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right)^{\hat{\tau}}
\end{array}
$$

Since $k=k^{\prime}+1$, we have $\left(m_{1} m_{2}\right)^{k^{\prime}+1}=\left(m_{1} m_{2}\right)^{k^{\prime}+p+1}$. Now because axiom A-2 holds in N, we can next write y as

$$
\begin{aligned}
& =\left(\sum_{i=0}^{k^{\prime}}\left(m_{1} m_{2}\right)^{i} *\left(n_{1} * m_{2}+m_{1} * n_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right. \\
& \\
& \left.+\left(m_{1} m_{2}\right)^{k^{\prime}+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right) \\
& \\
& +\left(\sum_{i=k^{\prime}+1}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right. \\
& \\
& +m_{1}\left(m_{2} m_{1}\right)^{k^{\prime}+p} *\left(n_{2} * m_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& \\
& \left.+\left(m_{1} m_{2}\right)^{k^{\prime}+p+1} *\left(n_{1} * m_{2}\right) *\left(m_{1} m_{2}\right)^{\tau}\right)^{\hat{\tau}}
\end{aligned}
$$

[by lemma 2]

$$
\begin{aligned}
= & n_{1} *\left(m_{2} m_{1}\right)^{\tau}+\sum_{i=0}^{k^{\prime}} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& +\left(\sum_{i=k^{\prime}+1}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right. \\
& +m_{1}\left(m_{2} m_{1}\right)^{k^{\prime}+p} *\left(n_{2} * m_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& \left.+m_{1}\left(m_{2} m_{1}\right)^{k^{\prime}+p} *\left(m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right)^{\hat{\tau}} \\
= & n_{1} *\left(m_{2} m_{1}\right)^{\tau}+\sum_{i=0}^{k^{\prime}-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& +m_{1}\left(m_{2} m_{1}\right)^{k^{\prime}} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& +\left(\sum_{i=k^{\prime}+1}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right. \\
& \left.+m_{1}\left(m_{2} m_{1}\right)^{k^{\prime}+p} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right)^{\hat{\tau}}
\end{aligned}
$$

[by axiom A-2 in N]

$$
\begin{aligned}
= & n_{1} *\left(m_{2} m_{1}\right)^{\tau}+\sum_{i=0}^{k^{\prime}-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& +\left(m_{1}\left(m_{2} m_{1}\right)^{k^{\prime}} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right. \\
& \left.+\sum_{i=k^{\prime}+1}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right)^{\hat{\tau}} \\
= & n_{1} *\left(m_{2} m_{1}\right)^{\tau}+\sum_{i=0}^{k^{\prime}-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau} \\
& +\left(\sum_{i=k^{\prime}}^{k^{\prime}+p-1} m_{1}\left(m_{2} m_{1}\right)^{i} *\left(n_{2} * m_{1}+m_{2} * n_{1}\right) *\left(m_{2} m_{1}\right)^{\tau}\right)^{\hat{\tau}} \\
= & y^{\prime}
\end{aligned}
$$

3.2.2 $\quad\left(m^{a}\right)^{\tau}=m^{\tau}$

Consider a random element $(m, n) \in M \ltimes N$ and some random positive integer $a \in \mathbb{N} \backslash\{0\}$. We have to show that $\left((m, n)^{a}\right)^{\tilde{\tau}}=(m, n)^{\tilde{\tau}}$.

Let index and period of m be k and p respectively, and that of m^{a} be k^{\prime} and p^{\prime}.

- Lemma 4. $k \leq a k^{\prime}$ and $a p^{\prime} \bmod p=0$.

Proof. By definition of index and period, we have $\left(m^{a}\right)^{k^{\prime}}=\left(m^{a}\right)^{k^{\prime}+p^{\prime}}$ that is, $m^{a k^{\prime}}=$ $m^{a k^{\prime}+a p^{\prime}}$. So $k \leq a k^{\prime}$ and p divides $a p^{\prime}$.

We can show (by induction) that $(m, n)^{a}=\left(m^{a}, \sum_{j=0}^{a-1} m^{j} * n * m^{a-1-j}\right)$.
So we have

$$
\begin{aligned}
\left((m, n)^{a}\right)^{\tilde{\tau}}=\left(\left(m^{a}\right)^{\tau},\right. & \sum_{i=0}^{k^{\prime}-1}\left(\left(m^{a}\right)^{i} *\left[\sum_{j=0}^{a-1} m^{j} * n * m^{a-1-j}\right] *\left(m^{a}\right)^{\tau}\right) \\
& \left.+\left(\sum_{i=k^{\prime}}^{k^{\prime}+p^{\prime}-1}\left(\left(m^{a}\right)^{i} *\left[\sum_{j=0}^{a-1} m^{j} * n * m^{a-1-j}\right] *\left(m^{a}\right)^{\tau}\right)\right)^{\hat{\tau}}\right)
\end{aligned}
$$

[by axiom A-2 in M]

$$
\begin{aligned}
=\left(m^{\tau},\right. & \sum_{i=0}^{k^{\prime}-1} \sum_{j=0}^{a-1} m^{i a+j} * n * m^{\tau} \\
& \left.+\left(\sum_{i=k^{\prime}}^{k^{\prime}+p^{\prime}-1} \sum_{j=0}^{a-1} m^{i a+j} * n * m^{\tau}\right)^{\hat{\tau}}\right) \\
= & \left(m^{\tau}, \sum_{i=0}^{a k^{\prime}-1} m^{i} * n * m^{\tau}+\left(\sum_{i=a k^{\prime}}^{a k^{\prime}+a p^{\prime}-1} m^{i} * n * m^{\tau}\right)^{\hat{\tau}}\right)
\end{aligned}
$$

Since p divides $a p^{\prime}$, let $a p^{\prime}=x p$, Rewriting above equation, we get

$$
\begin{aligned}
\left((m, n)^{a}\right)^{\tilde{\tau}} & =\left(m^{\tau}, \sum_{i=0}^{a k^{\prime}-1} m^{i} * n * m^{\tau}+\left(\sum_{i=a k^{\prime}}^{a k^{\prime}+x p-1} m^{i} * n * m^{\tau}\right)^{\hat{\tau}}\right) \\
& =\left(m^{\tau}, \sum_{i=0}^{a k^{\prime}-1} m^{i} * n * m^{\tau}+\left(\left(\sum_{i=a k^{\prime}}^{a k^{\prime}+p-1} m^{i} * n * m^{\tau}\right)^{x}\right)^{\hat{\tau}}\right)
\end{aligned}
$$

[by axiom A-2 in N]

$$
=\left(m^{\tau}, \sum_{i=0}^{a k^{\prime}-1} m^{i} * n * m^{\tau}+\left(\sum_{i=a k^{\prime}}^{a k^{\prime}+p-1} m^{i} * n * m^{\tau}\right)^{\hat{\tau}}\right)
$$

If $a k^{\prime}-1 \geq k$, then $m^{a k^{\prime}-1}=m^{a k^{\prime}+p-1}$, and since axiom A-2 holds in N, we can rewrite
above equation as

$$
\left((m, n)^{a}\right)^{\tilde{\tau}}=\left(m^{\tau}, \sum_{i=0}^{a k^{\prime}-2} m^{i} * n * m^{\tau}+\left(\sum_{i=a k^{\prime}-1}^{a k^{\prime}+p-2} m^{i} * n * m^{\tau}\right)^{\hat{\tau}}\right)
$$

We can keep doing this until we reach the following equation

$$
\begin{aligned}
\left((m, n)^{a}\right)^{\tilde{\tau}} & =\left(m^{\tau}, \sum_{i=0}^{k-1} m^{i} * n * m^{\tau}+\left(\sum_{i=k}^{k+p-1} m^{i} * n * m^{\tau}\right)^{\hat{\tau}}\right) \\
& =(m, n)^{\tilde{\tau}}
\end{aligned}
$$

This completes the verification of axiom A-2.

3.3 Axiom 3

Similar to verification of axiom A-2.

3.4 Axiom 4

Let $P=\left\{\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right), \ldots,\left(m_{i}, n_{i}\right)\right\}$ be some non-empty subset of $M \ltimes N$.
To prove, $\forall c \in P, \forall Q \subseteq P, \forall R \subseteq\left\{P^{\tilde{\kappa}}, a \sim P^{\tilde{\kappa}}, P^{\tilde{\kappa}} \sim b, a \sim P^{\tilde{\kappa}} \sim b \mid a, b \in P\right\}, R \neq \phi$, $P^{\tilde{\kappa}}=P^{\tilde{\kappa}} \sim P^{\tilde{\kappa}}=P^{\tilde{\kappa}} \tilde{c} c \cdot P^{\tilde{\kappa}}=\left(P^{\tilde{\kappa}}\right)^{\tilde{\tau}}=\left(P^{\tilde{\kappa}} \sim c\right)^{\tau}=\left(P^{\tilde{\kappa}}\right)^{\tau^{*}}=\left(c \tilde{r} P^{\tilde{\kappa}}\right)^{\tau^{*}}=(Q \cup R)^{\tilde{\kappa}}$ $P^{\tilde{\kappa}}=(m, n)$ where $m=\left\{m_{1}, m_{2}, \ldots, m_{i}\right\}^{\kappa}$ and $n=\left\{m * n_{1} * m, m * n_{2} * m, \ldots, m * n_{i} * m\right\}^{\hat{\kappa}}$ Note

$$
\begin{array}{rlr}
n * m & =\left\{m * n_{1} * m, m * n_{2} * m, \ldots, m * n_{i} * m\right\}^{\hat{\kappa}} * m & \\
& =\left\{m * n_{1} * m^{2}, m * n_{2} * m^{2}, \ldots, m * n_{i} * m^{2}\right\}^{\hat{\kappa}} \quad \quad \text { [by action axiom R-6] } \\
& =\left\{m * n_{1} * m, m * n_{2} * m, \ldots, m * n_{i} * m\right\}^{\hat{\kappa}} \quad \text { [since axiom A-4 holds in } M \text {] } \\
& =n &
\end{array}
$$

Similarly, we can show that $m * n=n, n * m^{\tau}=n, m^{\tau^{*}} * n=n, n * m_{j} m=n$ and $m m_{j} * n=n$ for any $j \in\{1, \ldots, i\}$

$$
\begin{aligned}
& (m, n) \sim(m, n) \\
& =\left(m^{2}, n * m+m * n\right) \\
& =(m, n+n) \\
& =(m, n)
\end{aligned}
$$

$$
=(m, n+n) \quad[\text { since axiom A-4 holds in } M \text { and } m * n=n * m=n]
$$

$$
\text { [since axiom A-4 holds in } N \text {] }
$$

$$
\begin{aligned}
& (m, n) \sim\left(m_{j}, n_{j}\right) \sim(m, n) \\
& =\left(m m_{j} m, n * m_{j} m+m * n_{j} * m+m m_{j} * n\right) \\
& =\left(m, n+m * n_{j} * m+n\right) \\
& =(m, n)
\end{aligned}
$$

[since axiom A-4 holds in M and $m m_{j} * n=n * m_{j} m=n$] [since axiom A-4 holds in N]

$$
\begin{array}{lr}
(m, n)^{\tilde{\tau}} \\
=\left(m^{\tau}, \sum_{i=0}^{k-1} m^{i} * n * m^{\tau}+\left(\sum_{i=k}^{k+p-1} m^{i} * n * m^{\tau}\right)^{\hat{\tau}}\right) \\
=\left(m, n * m+\sum_{i=1}^{k-1} m * n * m+\left(\sum_{i=k}^{k+p-1} m * n * m\right)^{\hat{\tau}}\right) & \text { [since axiom A-4 holds in } M] \\
=\left(m, n+\sum_{i=1}^{k-1} n+\left(\sum_{i=k}^{k+p-1} n\right)^{\hat{\tau}}\right) & \quad[\text { since } m * n=n * m=n] \\
=\left(m, n^{\hat{\tau}}\right) & \\
=(m, n) & {[\text { since axiom A-4 holds in } N]}
\end{array}
$$

Let index and period of $m m_{j}$ be k^{\prime} and p^{\prime} respectively. Note that $\left(m m_{j}\right)^{2}=m m_{j} m m_{j}=$ $m m_{j}$.

$$
\begin{aligned}
& \left((m, n) \tilde{}\left(m_{j}, n_{j}\right)\right)^{\tilde{\tau}} \\
& =\left(m m_{j}, n * m_{j}+m * n_{j}\right)^{\tilde{\tau}} \\
& =\left(\left(m m_{j}\right)^{\tau}, \sum_{i=0}^{k^{\prime}-1}\left(m m_{j}\right)^{i} * n *\left(m m_{j}\right)^{\tau}+\left(\sum_{i=k^{\prime}}^{k^{\prime}+p^{\prime}-1}\left(m m_{j}\right)^{i} * n *\left(m m_{j}\right)^{\tau}\right)^{\hat{\tau}}\right) \\
& =\left(m^{\tau}, \sum_{i=0}^{k^{\prime}-1} m m_{j} * n * m m_{j}+\left(\sum_{i=k^{\prime}}^{k^{\prime}+p^{\prime}-1} m m_{j} * n * m m_{j}\right)^{\hat{\tau}}\right) \\
& =\left(m^{\tau}, \sum_{i=0}^{k^{\prime}-1} n+\left(\sum_{i=k^{\prime}}^{k^{\prime}+p^{\prime}-1} n\right)^{\hat{\tau}}\right) \\
& =\left(m, n^{\hat{\tau}}\right) \\
& =(m, n)
\end{aligned}
$$

Similarly, we can show $(m, n)=\left((m, n)^{\tilde{\kappa}}\right)^{\tau^{*}}=\left(\left(m_{j}, n_{j}\right) \sim(m, n)^{\tilde{\kappa}}\right)^{\tau^{*}}$.
So we are left to show $(m, n)=(Q \cup R)^{\tilde{\kappa}}$.
$Q \subseteq P$. Let

$$
Q=\left\{\left(m_{x 1}, n_{x 1}\right),\left(m_{x 2}, n_{x 2}\right), \ldots\left(m_{x i}, n_{x i}\right)\right\}
$$

where $\{x 1, x 2, \ldots x i\} \subseteq\{1,2, \ldots, i\}$.
Also let $\left\{m_{1}, m_{2}, \ldots, m_{i}\right\}=P_{1}$ and $\left\{m * n_{1} * m, m * n_{2} * m, \ldots, m * n_{i} * m\right\}=P_{2}$. So,

$$
m=P_{1}^{\kappa}, \quad n=P_{2}^{\hat{\kappa}}
$$

We have

$$
\begin{aligned}
& R \subseteq\left\{(m, n),\left(m_{j}, n_{j}\right) \sim(m, n),(m, n) \sim\left(m_{j^{\prime}}, n_{j^{\prime}}\right),\right. \\
& \\
& \left.\quad\left(m_{j}, n_{j}\right) \sim(m, n) \sim\left(m_{j^{\prime}}, n_{j^{\prime}}\right) \mid j, j^{\prime} \in\{1,2, \ldots, i\}\right\} \\
& =\left\{(m, n),\left(m_{j} m, n_{j} * m+m_{j} * n\right),\left(m m_{j^{\prime}}, n * m_{j^{\prime}}+m * n_{j^{\prime}}\right),\right. \\
& \\
& \left.\quad\left(m_{j} m m_{j^{\prime}}, n_{j} * m m_{j^{\prime}}+m_{j} * n * m_{j^{\prime}}+m_{j} m * n_{j^{\prime}}\right) \mid j, j^{\prime} \in\{1,2, \ldots, i\}\right\}
\end{aligned}
$$

R is non-empty. Consider $(Q \cup R)^{\tilde{\kappa}}=\left(x^{\kappa}, y^{\hat{\kappa}}\right)$. Then

$$
\begin{aligned}
& x \subseteq P_{1} \cup\left\{m, m_{j} m, m m_{j^{\prime}}, m_{j} m m_{j^{\prime}} \mid j, j^{\prime} \in\{1,2, \ldots, i\}\right\} \\
& \Rightarrow x=Q_{1} \cup R_{1}
\end{aligned}
$$

where $Q_{1} \subseteq P_{1}$ and $R_{1} \subseteq\left\{P_{1}^{\kappa}, m_{j} P_{1}^{\kappa}, P_{1}^{\kappa} m_{j^{\prime}}, m_{j} P_{1}^{\kappa} m_{j^{\prime}}\right\}$ and R_{1} is non-empty. Since axiom A-4 holds in M,

$$
x^{\kappa}=P_{1}^{\kappa}=m
$$

Similarly,

$$
\begin{aligned}
y \subseteq & P_{2} \cup\left\{m * n * m, m * n_{j} * m+m m_{j} * n * m, m * n * m_{j^{\prime}} m+m * n_{j^{\prime}} * m,\right. \\
& \left.m * n_{j} * m+m m_{j} * n * m_{j^{\prime}} m+m * n_{j^{\prime}} * m \mid j, j^{\prime} \in\{1,2, \ldots, i\}\right\} \\
= & P_{2} \cup\left\{n, m * n_{j} * m+n, n+m * n_{j^{\prime}} * m,\right. \\
& \left.m * n_{j} * m+n+m * n_{j^{\prime}} * m \mid j, j^{\prime} \in\{1,2, \ldots, i\}\right\} \\
\Rightarrow y= & Q_{2} \cup R_{2}
\end{aligned}
$$

where $Q_{2} \subseteq P_{2}$ and $R_{2} \subseteq\left\{P_{2}^{\hat{\kappa}}, m * n_{j} * m+P_{2}^{\hat{\kappa}}, P_{2}^{\hat{\kappa}}+m * n_{j^{\prime}} * m, m * n_{j} * m+P_{2}^{\hat{\kappa}}+m *\right.$ $\left.n_{j^{\prime}} * m \mid j, j^{\prime} \in\{1,2, \ldots, i\}\right\} . R_{2}$ is non-empty.

Since axiom A-4 holds in N, we get $y^{\hat{\kappa}}=P_{2}^{\hat{\kappa}}=n$
This concludes verification of axiom A-4.

[^0]: ${ }^{1}$ index of m is the smallest positive integer k for which $m^{k}=m^{k+p}$ for some positive integer p
 2 period of m is the smallest positive integer p for which $m^{k}=m^{k+p}$ for index k of m

