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Abstract14

Results concerning green’s relations in ◦-algebra. Here we only consider finite ◦-algebra. Unless15

stated otherwise, M is a finite ◦-algebra.16
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I Lemma 1. Let e, f ∈ E(M). Then eJ f ⇒ eωLfω. In particular, if eRf then eω = fω.20

Proof. eJ f means there exists two elements x, y ∈ M such that xy = e and yx = f . So21

eω = (xy)ω = x(yx)ω = xfω. Hence eω ≤L eω. Similarly we can prove fω ≤L eω and thus22

eωLfω.23

If eRf , then e = fe and f = ef . So eω = (fe)ω = f(ef)ω = ffω = fω. J24

I Lemma 2. Let a ∈M . Then aJ aω implies the following things-25

1. aRaω26

2. a is an idempotent27

3. all H class in J (a) is singleton28

4. for any e ∈ E(M) ∩ J (a), eJ eω29

5. there is a special column in J (a) whose every element is ω power of some idempotent in30

J (a). Also for any e ∈ E(M) ∩ J (a), eω resides in this special column.31

Proof. 1. aω = aaω, and so aω ≤R a. Since M is finite, aJ aω and aω ≤R a implies aRaω.32

2. Since aRaω and ρaω (a) = aω where recall that ρx(y) = yx, from Green’s relations over33

semigroups, we know that ρaω : H(a)→ H(aω) is a bijection.34

Note that since aJ aω, it must be that for all n ∈ N≥1, anJ a. Also for any n ≥ 2, we35

have an = aan−1 = an−1a. So anHa for all n ∈ N≥1.36

Suppose a is not an idempotent, then a2 ∈ H(a) and a2 6= a. But ρaω (a) = ρaω (a2) and37

so ρaω : H(a)→ H(aω) is not a bijection. Contradiction. Hence a must be an idempotent.38

3. Suppose H(a) is not singleton, and there exists b ∈ H(a) where b 6= a. Since a is an39

idempotent, by Green’s relations, we know that H(a) is a group with a as its identity.40

Hence there exists n ∈ N≥2 such that bn = a. But this means bω = aω which implies41

ρaω (b) = ρaω (a) and so again we get a contradiction. Hence H(a) must be singleton.42

Since all H-class in a J -class are of same cardinality, we get what we wanted to prove.43

4. By lemma 1, since aJ e and since a is an idempotent, we know that eωLaω. That in44

addition to the fact that aJ aω means that eJ eω.45
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23:2 Green’s Relations for o-Algebra

5. Since a is an idempotent, J (a) is a regular J -class. By Green’s relations, every row in46

J (a) has an idemptent. By the previous result, the ω-power of all those idempotents are47

in J (a). Furthermore by lemma 1, all these ω-power elements are in one column of J (a).48

So all elements of this special column, called ω-column, are ω-powers of idempotents from49

the corresponding row.50

In addition by lemma 1, any idempotent in J (a) will have its ω-power in this ω-column.51

J52

I Lemma 3. Let a ∈M . Then aJ aω∗ implies the following things-53

1. aLaω∗
54

2. a is an idempotent55

3. all H class in J (a) is singleton56

4. for any e ∈ E(M) ∩ J (a), eJ eω∗
57

5. there is a special row in J (a) whose every element is ω∗ power of some idempotent in58

J (a). Also for any e ∈ E(M) ∩ J (a), eω∗ resides in this special row.59

I Lemma 4. Consider R,S ∈ 2M \ ∅. Then SηJRη implies Sη = Rη60

Proof. Note that Sη is a ω-idempotent, ω∗-idempotent and η-idempotent. So J (Sη) has a61

ω-column and a ω∗-row and Sη is in the intersection of these two. Similarly, Rη is also in62

the same H-class. But all H-classes in this J -class are singleton. Hence Sη = Rη. J63

I Lemma 5. Let J be a regular J -class. Then the following are equivalent.64

1. J contains an ordinal idempotent65

2. J contains an idempotent e such that eω ∈ J .66

3. Every R class in J contains an idempotent e such that eω ∈ J67

Proof. 1 =⇒ 2 by definition and 3 =⇒ 2 is obvious. 2 =⇒ 3 because if J conains an68

idempotent e, then every R class of J contains an idempotent. Furthermore since eJ eω, all69

these idempotents have their ω-power in the ω-column of J . Now 2 =⇒ 1 because if J70

conains an idempotent e, then every L class of J contains an idempotent. In particular, the71

ω-column of J must have an idempotent and its ω-power must be itself as the H-classes are72

singleton. J73

A J -class satisfying one of the clauses of the previous lemma is said ordinal regular.74

Similarly, a J -class J is called ordinal∗ regular (resp. shuffle regular and scattered regular)75

if J contains a ordinal∗ idempotent (resp. shuffle idempotent and scattered idempotent).76

I Lemma 6. Let J be a regular J -class. Then the following are equivalent.77

1. J contains an ordinal∗ idempotent78

2. J contains an idempotent e such that eω∗ ∈ J .79

3. Every L class in J contains an idempotent e such that eω∗ ∈ J80

I Lemma 7. Let J be a regular J -class. Then the following are equivalent.81

1. J is scattered regular82

2. for all idempotents e in J , eω.eω∗ = e83

3. there exists an idempotent e in J such that eω.eω∗ = e.84

Proof. 1 =⇒ 3 and 2 =⇒ 3 are obvious. We prove 3 =⇒ 2 and 3 =⇒ 1. Let 3 hold.85

Then eJ eω and eJ eω∗ . This means by lemma 2 and lemma 3 that for every idempotent86

f ∈ J (e), fJ fω and fJ fω∗ . Now since e = eω.eω
∗ , by Green’s relations on semigroups, we87

know that the element g “in the opposite corner”, i.e. in the intersection of the ω-column88
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and the ω∗-row is an idempotent. Clearly g must be a scattered idempotent. Thus 3 =⇒ 189

is proved. Furthermore since g is an idempotent, for any idempotent f , fω.fω∗ must be “in90

the opposite corner” and H(f) being singleton, this means f = fω.fω
∗ . Thus 3 =⇒ 2. J91

I Lemma 8. Let J be a regular J -class. Then the following are equivalent.92

1. J is shuffle regular93

2. for all idempotents e in J , (eω∗
.eω)η = eω

∗
.eω and eω∗

.eω ∈ J (e)94

3. there exists an idempotent e in J such that (eω∗
.eω)η = eω

∗
.eω and eω∗

.eω ∈ J (e)95

Proof. Again 2 =⇒ 3 is obvious, and 1 =⇒ 3 because a shuffle idempotent is also an96

ordinal idempotent as well as an ordinal∗ idempotent. Now we prove 3 =⇒ 1 and 3 =⇒ 2.97

Let 3 hold. Then eω∗
.eω ∈ J (e) is a shuffle idempotent. Thus 3 =⇒ 1 is proved. Let us98

call this shuffle idempotent g. By previous lemmas, it should be clear that g = fω
∗
.fω for99

any idempotent f ∈ J (e). Hence 3 =⇒ 2. J100
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