Green's Relations for o-Algebra

Bharat Adsul 2

- Indian Institute of Technology Bombay, India
- http://www.cse.iitb.ac.in/~adsul
- adsul@cse.iitb.ac.in

Saptarshi Sarkar

- Indian Institute of Technology Bombay, India 7
- http://www.cse.iitb.ac.in/~sapta 8
- sapta@cse.iitb.ac.in 9

A.V. Sreejith 10

- Indian Institute of Technology Goa, India 11
- http://www.iitgoa.ac.in/~sreejithav 12
- sreejithav@gmail.com 13

---- Abstract 14

- Results concerning green's relations in o-algebra. Here we only consider finite o-algebra. Unless 15
- stated otherwise, M is a finite \circ -algebra. 16
- **2012 ACM Subject Classification** General and reference \rightarrow General literature; General and reference 17
- Keywords and phrases Green's relations, o-algebra 18
- Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23 19

▶ Lemma 1. Let $e, f \in E(M)$. Then $e\mathcal{J}f \Rightarrow e^{\omega}\mathcal{L}f^{\omega}$. In particular, if $e\mathcal{R}f$ then $e^{\omega} = f^{\omega}$. 20

Proof. $e\mathcal{J}f$ means there exists two elements $x, y \in M$ such that xy = e and yx = f. So 21 $e^{\omega} = (xy)^{\omega} = x(yx)^{\omega} = xf^{\omega}$. Hence $e^{\omega} \leq_{\mathcal{L}} e^{\omega}$. Similarly we can prove $f^{\omega} \leq_{\mathcal{L}} e^{\omega}$ and thus 22 $e^{\omega} \mathcal{L} f^{\omega}$. 23

If $e\mathcal{R}f$, then e = fe and f = ef. So $e^{\omega} = (fe)^{\omega} = f(ef)^{\omega} = ff^{\omega} = f^{\omega}$. 24

- **Lemma 2.** Let $a \in M$. Then $a \mathcal{J} a^{\omega}$ implies the following things-25
- 1. $a\mathcal{R}a^{\omega}$ 26
- **2.** *a* is an idempotent 27
- **3.** all \mathcal{H} class in $\mathcal{J}(a)$ is singleton 28
- **4.** for any $e \in E(M) \cap \mathcal{J}(a)$, $e\mathcal{J}e^{\omega}$ 29

5. there is a special column in
$$\mathcal{J}(a)$$
 whose every element is ω power of some idempotent in $\mathcal{J}(a)$. Also for any $e \in E(M) \cap \mathcal{J}(a)$, e^{ω} resides in this special column.

Proof. 1.
$$a^{\omega} = aa^{\omega}$$
, and so $a^{\omega} \leq_{\mathcal{R}} a$. Since M is finite, $a\mathcal{J}a^{\omega}$ and $a^{\omega} \leq_{\mathcal{R}} a$ implies $a\mathcal{R}a^{\omega}$.
2. Since $a\mathcal{R}a^{\omega}$ and $\rho_{a^{\omega}}(a) = a^{\omega}$ where recall that $\rho_x(y) = yx$, from Green's relations over
semigroups, we know that $\rho_{a^{\omega}} : \mathcal{H}(a) \to \mathcal{H}(a^{\omega})$ is a bijection.

Note that since $a\mathcal{J}a^{\omega}$, it must be that for all $n \in \mathbb{N}^{\geq 1}$, $a^n\mathcal{J}a$. Also for any $n \geq 2$, we 35 have $a^n = aa^{n-1} = a^{n-1}a$. So $a^n \mathcal{H}a$ for all $n \in \mathbb{N}^{\geq 1}$. 36

Suppose a is not an idempotent, then
$$a^2 \in \mathcal{H}(a)$$
 and $a^2 \neq a$. But $\rho_{a^{\omega}}(a) = \rho_{a^{\omega}}(a^2)$ and
so $\rho_{a^{\omega}} : \mathcal{H}(a) \to \mathcal{H}(a^{\omega})$ is not a bijection. Contradiction. Hence a must be an idempotent.
3. Suppose $\mathcal{H}(a)$ is not singleton, and there exists $b \in \mathcal{H}(a)$ where $b \neq a$. Since a is an

- idempotent, by Green's relations, we know that $\mathcal{H}(a)$ is a group with a as its identity. 40 Hence there exists $n \in \mathbb{N}^{\geq 2}$ such that $b^n = a$. But this means $b^{\omega} = a^{\omega}$ which implies 41 $\rho_{a^{\omega}}(b) = \rho_{a^{\omega}}(a)$ and so again we get a contradiction. Hence $\mathcal{H}(a)$ must be singleton. 42
- Since all \mathcal{H} -class in a \mathcal{J} -class are of same cardinality, we get what we wanted to prove. 43 4. By lemma 1, since $a\mathcal{J}e$ and since a is an idempotent, we know that $e^{\omega}\mathcal{L}a^{\omega}$. That in 44
- addition to the fact that $a\mathcal{J}a^{\omega}$ means that $e\mathcal{J}e^{\omega}$. 45

licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).

Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:3 Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 Green's Relations for o-Algebra

- ⁴⁶ 5. Since *a* is an idempotent, $\mathcal{J}(a)$ is a regular \mathcal{J} -class. By Green's relations, every row in ⁴⁷ $\mathcal{J}(a)$ has an idemptent. By the previous result, the ω -power of all those idempotents are
- J(a) has an idemptent. By the previous result, the ω -power of an those idempttents are
- ⁴⁸ in $\mathcal{J}(a)$. Furthermore by lemma 1, all these ω -power elements are in one column of $\mathcal{J}(a)$. ⁴⁹ So all elements of this special column, called ω -column, are ω -powers of idempotents from
- ⁵⁰ the corresponding row.
- In addition by lemma 1, any idempotent in $\mathcal{J}(a)$ will have its ω -power in this ω -column.
- **53 •** Lemma 3. Let $a \in M$. Then $a \mathcal{J} a^{\omega^*}$ implies the following things-
- 54 **1.** $a\mathcal{L}a^{\omega^*}$
- 55 **2.** *a is an idempotent*
- 56 3. all \mathcal{H} class in $\mathcal{J}(a)$ is singleton
- 57 **4.** for any $e \in E(M) \cap \mathcal{J}(a)$, $e\mathcal{J}e^{\omega^*}$
- 58 5. there is a special row in $\mathcal{J}(a)$ whose every element is ω^* power of some idempotent in 59 $\mathcal{J}(a)$. Also for any $e \in E(M) \cap \mathcal{J}(a)$, e^{ω^*} resides in this special row.
- **Lemma 4.** Consider $R, S \in 2^M \setminus \emptyset$. Then $S^\eta \mathcal{J} R^\eta$ implies $S^\eta = R^\eta$

⁶¹ **Proof.** Note that S^{η} is a ω -idempotent, ω^* -idempotent and η -idempotent. So $\mathcal{J}(S^{\eta})$ has a ⁶² ω -column and a ω^* -row and S^{η} is in the intersection of these two. Similarly, R^{η} is also in ⁶³ the same \mathcal{H} -class. But all \mathcal{H} -classes in this \mathcal{J} -class are singleton. Hence $S^{\eta} = R^{\eta}$.

Lemma 5. Let J be a regular \mathcal{J} -class. Then the following are equivalent.

- ⁶⁵ **1.** J contains an ordinal idempotent
- 66 2. J contains an idempotent e such that $e^{\omega} \in J$.
- ⁶⁷ **3.** Every \mathcal{R} class in J contains an idempotent e such that $e^{\omega} \in J$

Proof. $1 \implies 2$ by definition and $3 \implies 2$ is obvious. $2 \implies 3$ because if J conains an idempotent e, then every \mathcal{R} class of J contains an idempotent. Furthermore since $e\mathcal{J}e^{\omega}$, all these idempotents have their ω -power in the ω -column of J. Now $2 \implies 1$ because if Jconains an idempotent e, then every \mathcal{L} class of J contains an idempotent. In particular, the ω -column of J must have an idempotent and its ω -power must be itself as the \mathcal{H} -classes are singleton.

⁷⁴ A \mathcal{J} -class satisfying one of the clauses of the previous lemma is said ordinal regular. ⁷⁵ Similarly, a \mathcal{J} -class J is called ordinal^{*} regular (resp. shuffle regular and scattered regular) ⁷⁶ if J contains a ordinal^{*} idempotent (resp. shuffle idempotent and scattered idempotent).

Lemma 6. Let J be a regular \mathcal{J} -class. Then the following are equivalent.

- 78 1. J contains an ordinal^{*} idempotent
- 79 **2.** J contains an idempotent e such that $e^{\omega^*} \in J$.
- 30 3. Every \mathcal{L} class in J contains an idempotent e such that $e^{\omega^*} \in J$
- **Lemma 7.** Let J be a regular \mathcal{J} -class. Then the following are equivalent.
- ⁸² 1. J is scattered regular
- ⁸³ 2. for all idempotents e in J, $e^{\omega}.e^{\omega^*} = e$
- ⁸⁴ 3. there exists an idempotent e in J such that $e^{\omega} \cdot e^{\omega^*} = e$.

Proof. 1 \implies 3 and 2 \implies 3 are obvious. We prove 3 \implies 2 and 3 \implies 1. Let 3 hold. Then $e\mathcal{J}e^{\omega}$ and $e\mathcal{J}e^{\omega^*}$. This means by lemma 2 and lemma 3 that for every idempotent $f \in \mathcal{J}(e), f\mathcal{J}f^{\omega}$ and $f\mathcal{J}f^{\omega^*}$. Now since $e = e^{\omega}.e^{\omega^*}$, by Green's relations on semigroups, we

- ⁸⁸ know that the element g "in the opposite corner", i.e. in the intersection of the ω -column

S. Sarkar

and the ω^* -row is an idempotent. Clearly g must be a scattered idempotent. Thus $3 \implies 1$ is proved. Furthermore since g is an idempotent, for any idempotent $f, f^{\omega}.f^{\omega^*}$ must be "in

- ⁹¹ the opposite corner" and $\mathcal{H}(f)$ being singleton, this means $f = f^{\omega} f^{\omega^*}$. Thus $3 \implies 2$.
- ▶ **Lemma 8.** Let J be a regular \mathcal{J} -class. Then the following are equivalent.
- $_{93}$ 1. J is shuffle regular
- ⁹⁴ 2. for all idempotents e in J, $(e^{\omega^*} \cdot e^{\omega})^{\eta} = e^{\omega^*} \cdot e^{\omega}$ and $e^{\omega^*} \cdot e^{\omega} \in \mathcal{J}(e)$
- **3.** there exists an idempotent e in J such that $(e^{\omega^*} \cdot e^{\omega})^{\eta} = e^{\omega^*} \cdot e^{\omega}$ and $e^{\omega^*} \cdot e^{\omega} \in \mathcal{J}(e)$
- **Proof.** Again 2 \implies 3 is obvious, and 1 \implies 3 because a shuffle idempotent is also an ordinal idempotent as well as an ordinal^{*} idempotent. Now we prove 3 \implies 1 and 3 \implies 2. Let 3 hold. Then $e^{\omega^*} \cdot e^{\omega} \in \mathcal{J}(e)$ is a shuffle idempotent. Thus 3 \implies 1 is proved. Let us call this shuffle idempotent g. By previous lemmas, it should be clear that $g = f^{\omega^*} \cdot f^{\omega}$ for any idempotent $f \in \mathcal{J}(e)$. Hence 3 \implies 2.