Green's Relations for o-Algebra

Bharat Adsul
Indian Institute of Technology Bombay, India
http://www.cse.iitb.ac.in/~adsul
adsul@cse.iitb.ac.in
\section*{Saptarshi Sarkar}
Indian Institute of Technology Bombay, India
http://www.cse.iitb.ac.in/~sapta
sapta@cse.iitb.ac.in
A.V. Sreejith
Indian Institute of Technology Goa, India
http://www.iitgoa.ac.in/~sreejithav
sreejithav@gmail.com

```
Abstract
Results concerning green's relations in o-algebra. Here we only consider finite o-algebra. Unless stated otherwise, \(M\) is a finite o-algebra.
2012 ACM Subject Classification General and reference \(\rightarrow\) General literature; General and reference
Keywords and phrases Green's relations, o-algebra
Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23
- Lemma 1. Let \(e, f \in E(M)\). Then \(e \mathcal{J} f \Rightarrow e^{\omega} \mathcal{L} f^{\omega}\). In particular, if e \(\mathcal{R} f\) then \(e^{\omega}=f^{\omega}\).
Proof. \(e \mathcal{J} f\) means there exists two elements \(x, y \in M\) such that \(x y=e\) and \(y x=f\). So \(e^{\omega}=(x y)^{\omega}=x(y x)^{\omega}=x f^{\omega}\). Hence \(e^{\omega} \leq_{\mathcal{L}} e^{\omega}\). Similarly we can prove \(f^{\omega} \leq_{\mathcal{L}} e^{\omega}\) and thus \(e^{\omega} \mathcal{L} f^{\omega}\).
If \(e \mathcal{R} f\), then \(e=f e\) and \(f=e f\). So \(e^{\omega}=(f e)^{\omega}=f(e f)^{\omega}=f f^{\omega}=f^{\omega}\).
```

- Lemma 2. Let $a \in M$. Then $a \mathcal{J} a^{\omega}$ implies the following things-

1. $a \mathcal{R} a^{\omega}$
2. a is an idempotent
3. all \mathcal{H} class in $\mathcal{J}(a)$ is singleton
4. for any $e \in E(M) \cap \mathcal{J}(a)$, $e \mathcal{J} e^{\omega}$
5. there is a special column in $\mathcal{J}(a)$ whose every element is ω power of some idempotent in $\mathcal{J}(a)$. Also for any $e \in E(M) \cap \mathcal{J}(a)$, e^{ω} resides in this special column.

Proof. 1. $a^{\omega}=a a^{\omega}$, and so $a^{\omega} \leq_{\mathcal{R}} a$. Since M is finite, $a \mathcal{J} a^{\omega}$ and $a^{\omega} \leq_{\mathcal{R}} a$ implies $a \mathcal{R} a^{\omega}$. 2. Since $a \mathcal{R} a^{\omega}$ and $\rho_{a^{\omega}}(a)=a^{\omega}$ where recall that $\rho_{x}(y)=y x$, from Green's relations over semigroups, we know that $\rho_{a^{\omega}}: \mathcal{H}(a) \rightarrow \mathcal{H}\left(a^{\omega}\right)$ is a bijection.
Note that since $a \mathcal{J} a^{\omega}$, it must be that for all $n \in \mathbb{N} \geq 1, a^{n} \mathcal{J} a$. Also for any $n \geq 2$, we have $a^{n}=a a^{n-1}=a^{n-1} a$. So $a^{n} \mathcal{H} a$ for all $n \in \mathbb{N} \geq 1$.
Suppose a is not an idempotent, then $a^{2} \in \mathcal{H}(a)$ and $a^{2} \neq a$. But $\rho_{a^{\omega}}(a)=\rho_{a^{\omega}}\left(a^{2}\right)$ and so $\rho_{a^{\omega}}: \mathcal{H}(a) \rightarrow \mathcal{H}\left(a^{\omega}\right)$ is not a bijection. Contradiction. Hence a must be an idempotent.
3. Suppose $\mathcal{H}(a)$ is not singleton, and there exists $b \in \mathcal{H}(a)$ where $b \neq a$. Since a is an idempotent, by Green's relations, we know that $\mathcal{H}(a)$ is a group with a as its identity. Hence there exists $n \in \mathbb{N} \geq 2$ such that $b^{n}=a$. But this means $b^{\omega}=a^{\omega}$ which implies $\rho_{a^{\omega}}(b)=\rho_{a^{\omega}}(a)$ and so again we get a contradiction. Hence $\mathcal{H}(a)$ must be singleton. Since all \mathcal{H}-class in a \mathcal{J}-class are of same cardinality, we get what we wanted to prove.
4. By lemma 1 , since $a \mathcal{J} e$ and since a is an idempotent, we know that $e^{\omega} \mathcal{L} a^{\omega}$. That in addition to the fact that $a \mathcal{J} a^{\omega}$ means that $e \mathcal{J} e^{\omega}$.
5. Since a is an idempotent, $\mathcal{J}(a)$ is a regular \mathcal{J}-class. By Green's relations, every row in $\mathcal{J}(a)$ has an idemptent. By the previous result, the ω-power of all those idempotents are in $\mathcal{J}(a)$. Furthermore by lemma 1, all these ω-power elements are in one column of $\mathcal{J}(a)$. So all elements of this special column, called ω-column, are ω-powers of idempotents from the corresponding row.
In addition by lemma 1 , any idempotent in $\mathcal{J}(a)$ will have its ω-power in this ω-column.

- Lemma 3. Let $a \in M$. Then $a \mathcal{J} a^{\omega^{*}}$ implies the following things-

1. $a \mathcal{L} a^{\omega^{*}}$
2. a is an idempotent
3. all \mathcal{H} class in $\mathcal{J}(a)$ is singleton
4. for any $e \in E(M) \cap \mathcal{J}(a)$, $e \mathcal{J} e^{\omega^{*}}$
5. there is a special row in $\mathcal{J}(a)$ whose every element is ω^{*} power of some idempotent in $\mathcal{J}(a)$. Also for any $e \in E(M) \cap \mathcal{J}(a), e^{\omega^{*}}$ resides in this special row.

- Lemma 4. Consider $R, S \in 2^{M} \backslash \emptyset$. Then $S^{\eta} \mathcal{J} R^{\eta}$ implies $S^{\eta}=R^{\eta}$

Proof. Note that S^{η} is a ω-idempotent, ω^{*}-idempotent and η-idempotent. So $\mathcal{J}\left(S^{\eta}\right)$ has a ω-column and a ω^{*}-row and S^{η} is in the intersection of these two. Similarly, R^{η} is also in the same \mathcal{H}-class. But all \mathcal{H}-classes in this \mathcal{J}-class are singleton. Hence $S^{\eta}=R^{\eta}$.

- Lemma 5. Let J be a regular \mathcal{J}-class. Then the following are equivalent.

1. J contains an ordinal idempotent
2. J contains an idempotent e such that $e^{\omega} \in J$.
3. Every \mathcal{R} class in J contains an idempotent e such that $e^{\omega} \in J$

Proof. $1 \Longrightarrow 2$ by definition and $3 \Longrightarrow 2$ is obvious. $2 \Longrightarrow 3$ because if J conains an idempotent e, then every \mathcal{R} class of J contains an idempotent. Furthermore since $e \mathcal{J} e^{\omega}$, all these idempotents have their ω-power in the ω-column of J. Now $2 \Longrightarrow 1$ because if J conains an idempotent e, then every \mathcal{L} class of J contains an idempotent. In particular, the ω-column of J must have an idempotent and its ω-power must be itself as the \mathcal{H}-classes are singleton.

A \mathcal{J}-class satisfying one of the clauses of the previous lemma is said ordinal regular. Similarly, a \mathcal{J}-class J is called ordinal* regular (resp. shuffle regular and scattered regular) if J contains a ordinal* ${ }^{*}$ idempotent (resp. shuffle idempotent and scattered idempotent).

- Lemma 6. Let J be a regular \mathcal{J}-class. Then the following are equivalent.

1. J contains an ordinal* idempotent
2. J contains an idempotent e such that $e^{\omega^{*}} \in J$.
3. Every \mathcal{L} class in J contains an idempotent e such that $e^{\omega^{*}} \in J$

- Lemma 7. Let J be a regular \mathcal{J}-class. Then the following are equivalent.

1. J is scattered regular
2. for all idempotents e in $J, e^{\omega} \cdot e^{\omega^{*}}=e$
3. there exists an idempotent e in J such that $e^{\omega} \cdot e^{\omega^{*}}=e$.

Proof. $1 \Longrightarrow 3$ and $2 \Longrightarrow 3$ are obvious. We prove $3 \Longrightarrow 2$ and $3 \Longrightarrow 1$. Let 3 hold. Then $e \mathcal{J} e^{\omega}$ and $e \mathcal{J} e^{\omega^{*}}$. This means by lemma 2 and lemma 3 that for every idempotent $f \in \mathcal{J}(e), f \mathcal{J} f^{\omega}$ and $f \mathcal{J} f^{\omega^{*}}$. Now since $e=e^{\omega} . e^{\omega^{*}}$, by Green's relations on semigroups, we know that the element g "in the opposite corner", i.e. in the intersection of the ω-column
and the ω^{*}-row is an idempotent. Clearly g must be a scattered idempotent. Thus $3 \Longrightarrow 1$ is proved. Furthermore since g is an idempotent, for any idempotent $f, f^{\omega} . f^{\omega^{*}}$ must be "in the opposite corner" and $\mathcal{H}(f)$ being singleton, this means $f=f^{\omega} . f^{\omega^{*}}$. Thus $3 \Longrightarrow 2$.

Lemma 8. Let J be a regular \mathcal{J}-class. Then the following are equivalent.

1. J is shuffle regular
2. for all idempotents e in $J,\left(e^{\omega^{*}} . e^{\omega}\right)^{\eta}=e^{\omega^{*}} . e^{\omega}$ and $e^{\omega^{*}} . e^{\omega} \in \mathcal{J}(e)$
3. there exists an idempotent e in J such that $\left(e^{\omega^{*}} . e^{\omega}\right)^{\eta}=e^{\omega^{*}} . e^{\omega}$ and $e^{\omega^{*}} . e^{\omega} \in \mathcal{J}(e)$

Proof. Again $2 \Longrightarrow 3$ is obvious, and $1 \Longrightarrow 3$ because a shuffle idempotent is also an ordinal idempotent as well as an ordinal ${ }^{*}$ idempotent. Now we prove $3 \Longrightarrow 1$ and $3 \Longrightarrow 2$. Let 3 hold. Then $e^{\omega^{*}} . e^{\omega} \in \mathcal{J}(e)$ is a shuffle idempotent. Thus $3 \Longrightarrow 1$ is proved. Let us call this shuffle idempotent g. By previous lemmas, it should be clear that $g=f^{\omega^{*}}$.f f^{ω} for any idempotent $f \in \mathcal{J}(e)$. Hence $3 \Longrightarrow 2$.

