
Block products for algebras over countable words
and applications to logic

Bharat Adsul
IIT Bombay, India

Email: adsul@cse.iitb.ac.in

Saptarshi Sarkar
IIT Bombay, India

Email: sapta@cse.iitb.ac.in

A. V. Sreejith
IIT Goa, India

Email: sreejithav@iitgoa.ac.in

Abstract—We propose a seamless integration of the block
product operation to the recently developed algebraic framework
for regular languages of countable words. A simple but subtle
accompanying block product principle has been established.
Building on this, we generalize the well-known algebraic char-
acterizations of first-order logic (resp. first-order logic with
two variables) in terms of strongly (resp. weakly) iterated
block products. We use this to arrive at a complete analogue
of Schützenberger-McNaughton-Papert theorem for countable
words. We also explicate the role of block products for linear
temporal logic by formulating a novel algebraic characterization
of a natural fragment.

I. INTRODUCTION

The seminal works of Büchi and Elgot (see the survey
article [23]) established fundamental connections between
languages, automata and logics. This was achieved via effective
back-and-forth translations between finite-state automata and
monadic second-order (MSO) logic over finite words. These
connections were enriched with the introduction of algebraic
structures such as the syntactic monoids/semigroups (see [12],
[13]). The celebrated theorems of Schützenberger [17] and
McNaughton-Papert [11] showed the equivalence between star-
free regular languages, first-order (FO) logic and recognizability
by finite aperiodic monoids. Many such equivalences have been
established for ‘small’ fragments of FO. See [7] for a survey.

One of the central tools in the algebraic theory of monoids
is the notion of a block product and its related cousin - a
wreath product. The classical Krohn-Rhodes decomposition
theorem (see [18]) asserts that every finite monoid divides (can
be simulated by) block/wreath products of ‘simple’ monoids.
As a special case, every finite aperiodic monoid divides block
products of a simple canonical two-element aperiodic monoid
called U1. In other words, the simple monoid U1 serves as
a basis for generating all aperiodic monoids under the block
product operation!

The famous works of Büchi and McNaughton (see [23])
introduced more intricate automata models working over ω-
words and extended the automata-logic connection to ω-words.
It was established in [25] that the right algebraic structures in
this context are ω-semigroups and Wilke algebras.

Linear temporal logics (LTL) [8] provide a very convenient
formalism for specifying properties of words. They typically
admit decision procedures of low complexity (unlike FO/MSO)
and have high expressive power (LTL has the same expressive

power as FO over finite and ω-words by Kamp’s theorem).
These properties have contributed to the wide-spread use
of temporal logics in formal verification. Underlying these
applications are efficient translations from temporal logic
specifications to automata.

The algebraic approach has also been very useful in
understanding the expressive power of LTL operators such
as since and until. For instance, [22] provides an effective
algebraic characterization (in terms of block products) of the
until-since hierarchy. See the survey [20] for many such results.

Going beyond finite and infinite words, Rabin [14] already
showed that decidability of MSO over countable words
(labelled linear orders with countable domains) can be obtained
using his deep result on the decidability of MSO over infinite
trees. However, an appropriate automaton model naturally
working over countable words was missing. There have been
some earlier works extending the automata-logic connection to
labelled linear orderings beyond finite and infinite words. More
recently, [3], [15], [1] showed such connections for countable
scattered words that is, labelled countable linear orders without
a dense subset. These works introduced appropriate automata,
rational expressions and algebras and showed that they all
equal MSO in expressive power when restricted to countable
scattered words.

In a recent breakthrough, [5] established an algebraic
approach to MSO-definability over countable linear orderings.
It also showed very impressive applications to logic. One such
is the first known (optimal) collapse of the (set)-quantifier
alternation hierarchy of MSO to its second level. This study
restores the beautiful automata-logic connections from the
well-understood settings to the setting of countable words,
albeit in the form of an algebra-logic connection. Further, it
opens up the possibility of characterizing various sublogics
(and their natural fragments) via algebraic means. An elaborate
study over a variety of sublogics of MSO over countable
words was carried out in [6] where FO, weak MSO etc. were
characterized algebraically. It is important to note that all these
characterizations are decidable. In a similar vein, a decidable
algebraic characterization of the two variable fragment of FO
was obtained in [10].

Our investigations in this work are directed towards enriching
the algebraic framework of [5]. Motivated by the decisive
role played by block products in the standard settings, we
introduce block products in the countable setting. The block978-1-7281-3608-0/19/$31.00 c©2019 IEEE

product construction in the standard setting associates to a pair
of monoids (M,N) a new monoid M�N . From a formal-
language theoretic viewpoint, the importance of the block
product construction is best described by the accompanying
block product principle. Roughly speaking the block product
principle (see [18], [13]) says that evaluating a finite word u
in M�N can be achieved by the following two-stage process:
1) evaluate the word u in M and label every position x of u
with the additional information about evaluations of u<x and
u>x in M where u<x and u>x are such that u = u<xu[x]u>x
(that is, u<x and u>x are the left and right factors/contexts
at position x); 2) now evaluate this extended word (with the
additional information) in N . Said differently, M ‘operates’
on u as usual; while when N ‘operates’ on u, it has access,
at every position, to evaluations of M on left-right contexts at
that position.

Our generalization of the block product operation and the
accompanying block product principle extend this intuitively ap-
pealing ‘operational’ description from finite words to countable
words. More specifically, we work with the central algebraic
objects in [5] such as finite ~-monoids and ~-algebras. As
shown in [5], a ~-algebra is an effective version of a ~-monoid
and captures its essence through finitely presentable operators.

As ~-monoids allow evaluations of arbitrary countable
words, we first define the block product operation for ~-
monoids. We further show that this operation descends to
the level of ~-algebras and remains effective.

Other sources of difficulties when working with countable
words are dense subsets and the presence of gaps in the
underlying linear ordering. A gap in a countable word u is
a factorization of u as u1u2 such that the word u1 (resp. u2)
has no last (resp. first) position. The above mentioned (point-
based) operational description of the block product principle
is oblivious to left-right contexts at gaps. In spite of this, we
provide first algebraic characterizations of some natural logics
in terms of the newly defined block products.

Our first application is in the context of first-order logic.
We provide generalizations of the well-known algebraic char-
acterizations of FO (resp. FO2, first-order logic with two
variables) in terms of strongly (resp. weakly) iterated block
products of a natural two-element ~-algebra. We crucially
use this result to show the equivalence between languages
definable in FO and those which admit marked star-free regular
expressions. Combining our result with an equational algebraic
characterization of FO from [6], we get a complete analogue
of Schützenberger-McNaughton-Papert theorem for countable
words. An interesting consequence of these results is a suitable
version of the aforementioned special case of the Krohn-Rhodes
theorem.

Our next application concerns LTL. It is known [9] that
over countable words, Kamp’s theorem does not hold! That is,
LTL[S,U] (with natural strict since-until temporal operators)
is not as expressive as FO. We provide a very natural
characterization of LTL[S,U] in terms of weakly iterated block
products of two canonical ~-algebras. This result is delicate as
the weak iteration of the standard block product (of monoids) of

the underlying monoids of these two ~-algebras is as expressive
as FO over finite words! This supports our hypothesis that the
block product construction proposed in this work will allow a
fine-grained distinction of several natural fragments of LTL.

Structure of the paper: In the next section we define
countable linear orderings and countable words, followed by a
section on ~-monoids and the block product operation on them.
We end the section with the block product principle. Section
IV talks about the application of block product principle to first
order logic and its two variable sub-class. Finally, in section
V we characterize an interesting subclass of linear temporal
logic.

II. COUNTABLE WORDS

A linear ordering α = (X,<) is a set X equipped with
a total order <. The ordering is called countable if X is
countable. For example, the reals (R, <) with the less than
relation form a linear ordering which is not countable while
the natural numbers (N, <), the rationals (Q, <) are countable
linear orderings. Two linear orderings are of the same order
type if there is an order-preserving bijection between them. We
denote by ω, ω∗ and η the order types of (N, <), (−N, <) and
(Q, <) respectively. To ease use of notations, we’ll sometimes
use an ordering and its order type interchangeably.

We say (I,<′) is an induced subordering of a linear ordering
α if I is a subset of α and <′ is the restriction of the ordering
in α to I . We denote the induced subordering on the subset
I by αI . Given two subsets I, J of α, we say that I < J if
x < y for all x in I and all y in J . A subset I of α is called
convex if for any x < z < y of α, x, y ∈ I implies z ∈ I . A
set I is a prefix of α = (X,<) if X = I ∪ J for some J ⊆ X
and I < J . Similarly the subset J is called a suffix of α.

The sum α1 + α2 of two linear orderings α1 = (X1, <1)
and α2 = (X2, <2) is the linear ordering (X1 ∪X2, <) where
< coincides with <1 on X1, with <2 on X2 and X1 < X2.
We assume, upto renaming, the sets X1 and X2 to be disjoint.
This notion can be generalized to sum of countably many
linear orderings αi = (Xi, <i) which are themselves indexed
by some linear ordering α = (X,<). The result of this sum is
the linear ordering (Y,<′) where Y =

⋃
i∈αXi and for any

two points x, y ∈ Y , x <′ y if x <i y or x ∈ Xi and y ∈ Xj

and i < j.
A subordering (I,<) of α is dense in α if for any two

points x, y ∈ α, there exists z ∈ I such that x < z < y. For
example, (Q, <) is dense in (R, <) and (R, <) is dense in
itself. If a linear ordering is dense in itself, we simply call
it dense. A linear ordering is called scattered if all its dense
suborderings are singleton or empty. A linear ordering α is
right-open (resp. left-open) if it has no maximum element (resp.
minimum element). For example, (Z, <) is a scattered linear
ordering that is both right-open as well as left-open.

Refer to [16] for an in-depth study of linear orderings.
A countable word w is a labelled countable linear ordering.

More formally, given a finite alphabet Σ and a countable linear
ordering α, a countable word w is a map w : α→ Σ. In this
paper, we mainly deal with countable words. So a word, unless

explicitly stated otherwise, will denote a countable word. We
call α the domain of w, denoted dom(w). For a word w, we
say a point or position x in the word to refer to an element
of its domain. The notation w[x] denotes the letter at the xth

position in the word w. A subword is a restriction of a word w
to some induced subordering I of its domain, and is denoted
by wI . If the subset I is convex, then the subword is called
a factor. If I is a prefix (resp. suffix) of dom(w), then wI is
called a prefix (resp. suffix) of the word w. In particular, for
any position x ∈ dom(w), w<x (resp. w>x) refers to the prefix
(resp, suffix) wI where I is the set of all positions less than
(resp. greater than) x.

If u, v are words, then their concatenation, denoted uv, is
the unique word w where u (resp. v) is a prefix (resp. suffix)
of w and dom(w) = dom(u) + dom(v). This operation can
be generalized to a countable sequence of words {wi}i∈α
indexed by a linear countable ordering α as

∏
i∈α wi = w

where dom(w) is the sum of the domains of wi for all i and
w[x] = wi[x] if x ∈ dom(wi).

The following countable words are of special interest. The
notation ε stands for the empty word (the word over the empty
domain). The omega word, aω denotes the word over the
domain (N, <) such that every position is mapped to the letter
a. Similarly, the omega∗ word aω

∗
denotes the word over the

domain (−N, <) where every position is mapped to letter a. A
perfect shuffle over a nonempty set P ⊆ Σ of letters, denoted
by P η , is the word w over domain (Q, <) such that w[x] ∈ P
for all positions x in dom(w) and the set w−1(a) = {x ∈
dom(w) | w[x] = a} for each letter a ∈ P is dense in dom(w)
. This is a unique word (up to isomorphism) (see [5]) and is an
example of a dense word, i.e. a word whose domain is dense.

For an alphabet Σ, the set of all countable words is denoted
by Σ~ and the set of all countable words over non-empty
domain is denoted by Σ⊕. A language over the alphabet Σ is
a subset of Σ~.

III. BLOCK PRODUCT

A. Countable Products, Semigroups and Algebras

We recall the algebraic framework from [5] along with some
technical definitions/notions which are useful for this work.

A ⊕-semigroup (S, π) consists of a set S with an operation
π : S⊕ → S such that, π(a) = a for all a ∈ S and π satisfies
the generalized associativity property – that is π

(∏
i∈α ui

)
=

π
(∏

i∈α π(ui)
)

for every countable linear ordering α. If the
generalized associativity holds with π : S~ → S, then (S, π)
is called a ~-monoid.

For a set Σ, (Σ⊕,Π) (resp. (Σ~,Π)) is the free ⊕-semigroup
(resp. free ~-monoid) generated by Σ.

A neutral element of a ⊕-semigroup (S, π) is an element
1 ∈ S such that for every w ∈ S⊕, π(w) = π(w6=1) if w 6=1

is non-empty. Here w6=1 is w restricted to positions i where
w[i] 6= 1. If a neutral element exists, it is unique. A ~-monoid
(S, π) admits π(ε) as the unique neutral element.

Clearly, a ~-monoid can be naturally viewed as a ⊕-
semigroup. Further, a ⊕-semigroup S can be easily extended
to a ~-monoid (denoted S1) by introducing an additional

neutral element if necessary. Thanks to this, any result for
⊕-semigroups has a suitable analogue for ~-monoids. In view
of this, most of the technical results in this work are simply
stated and proved for ⊕-semigroups.

Example 1. U1 = ({1, 0}, π) is a~-monoid where π is defined
for all u ∈ {1, 0}~ as:

π(u) =

{
1 if u ∈ {1}~

0 otherwise

Let (S, π) be a ⊕-semigroup. Even if S is finite, π need not
be finitely presentable and hence not suitable for algorithmic
purposes. Fortunately, it is possible to capture π through
finitely presentable operators. This is precisely the reason for
introducing ⊕-algebras.

A ⊕-algebra (S, ·, τ, τ∗, κ) consists of a set S with · : S2 →
S, τ : S → S, τ∗ : S → S, κ : P(S)\{∅} → S such that (with
infix notation for · and superscript notation for τ, τ∗, κ)

A-1 (S, ·) is a semigroup.
A-2 (a · b)τ = a · (b · a)τ and (an)τ = aτ for a, b ∈ S

and n > 0.
A-3 (b ·a)τ

∗
= (a · b)τ∗ ·a and (an)τ

∗
= aτ

∗
for a, b ∈ S

and n > 0.
A-4 For every non-empty subset P of S, every element

c in P , every subset P ′ of P , and every non-empty
subset P ′′ of {Pκ, a.Pκ, Pκ.b, a.Pκ.b | a, b ∈ P},
we have Pκ = Pκ.Pκ = Pκ.c.Pκ = (Pκ)τ =
(Pκ.c)τ = (Pκ)τ

∗
= (c.Pκ)τ

∗
= (P ′ ∪ P ′′)κ.

A ~-algebra is a ⊕-algebra with a special element 1 where
(S, ·, 1) is a monoid, 1τ = 1τ

∗
= {1}κ = 1 and for all non-

empty subsets P ⊆ P(S), Pκ = (P ∪ {1})κ.

Example 2. The ~-algebra induced by U1 is given below. It
plays a crucial role in this work and will also be denoted by
U1.

1 0 τ τ∗

1 1 0 1 1
0 0 0 0 0

Fig. 1. The ~-algebra U1. We also have 0κ = {1, 0}κ = 0 and 1κ = 1

It is shown in [5] that a ⊕-semigroup (~-monoid) naturally
induces a ⊕-algebra (~-algebra respectively). We simply set
a · b = π(ab), aτ = π(aω), aτ

∗
= π(aω

∗
) and Pκ = π(P η)

(recall that P η is the unique perfect shuffle word over P). It is
also shown there that a finite ⊕-algebra has a unique extension
to a finite ⊕-semigroup. This is one of the fundamental results
of [5] which we make use of.

Theorem 1. A⊕-semigroup (S, π) induces a unique⊕-algebra.
Also, any finite ⊕-algebra is induced by a unique ⊕-semigroup.

Now we briefly discuss some natural algebraic notions. Let
(S, π) and (S′, π′) be ⊕-semigroups. A morphism from (S, π)
to (S′, π′) is a map h : S → S′ such that, for every w ∈ S⊕,
h(π(w)) = π′(h̄(w)) where h̄ is the pointwise extension of h to
words. A ⊕-subsemigroup of (S, π) is a subset S̄ ⊆ S such that

π restricts from S̄⊕ to S̄. We simply denote this by (S̄, π) ⊆
(S, π). We say (S, π) divides (S′, π′) if there exists (S′′, π′) ⊆
(S′, π′) and a surjective morphism from (S′′, π′) to (S, π). We
write (S, π) � (S′, π′) to denote that (S, π) divides (S′, π′).
The notions of morphism, subsemigroup (subalgebra), division
are also defined for algebras along expected lines. Further, they
are naturally compatible with those of ⊕-semigroups.

B. Semidirect Product Construction

The direct product is an important standard construction
in algebra. It is straightforward to adapt this notion to ⊕-
semigroups and ⊕-algebras. In this section, we propose a
generalization of semidirect product from semigroups (see
[18], [13]) to ⊕-semigroups. More accurately, we generalize
the so called 2-sided semidirect product construction. We note
that [4] provides a 1-sided semidirect product for ω-semigroups
and uses it to define the wreath products thereof.

In this work, we will be working exclusively with 2-sided
semidirect products and we simply refer to them as semidirect
products.

We begin by introducing the setup of two commuting actions
of a ⊕-semigroup on another.

Consider two ⊕-semigroups (M,π) and (N, π̂). A function
δl : M1 ×N → N is said to be a left action of M on N if it
satisfies the following conditions (for notational convenience,
δl(m,n) is denoted by m ∗ n).

C-1 1 ∗ n = n
C-2 (π(m1m2)) ∗ n = m1 ∗ (m2 ∗ n)
C-3 m ∗ (π̂(Πi∈αni)) = π̂(Πi∈αm ∗ ni)
The right action δr : N ×M1 → N is defined similarly and

δr(n,m) is denoted by n ∗m.
C-4 n ∗ 1 = n
C-5 n ∗ (π(m1m2)) = (n ∗m1) ∗m2

C-6 (π̂(Πi∈αni)) ∗m = π̂(Πi∈αni ∗m)

Actions δl and δr are compatible with each other if they
satisfy the following condition.

C-7 (m1 ∗ n) ∗m2 = m1 ∗ (n ∗m2)

For m ∈M , define as δml : N → N as δml (n) = m ∗ n. By
abuse of notation, the natural pointwise extension of δml from
N⊕ to itself will also be denoted by δml . The above conditions
for the left action may be stated simply by saying that, for
each m ∈ M , δml is a morphism of ⊕-semigroups and for
m1,m2 ∈ M , the morphism δm1·m2

l is the composition of
δm1

l and δm2

l . In other words, a left action is specified by a
monoid morphism from M1 into the monoid of ⊕-semigroup
endomorphisms of N . A similar remark applies to the right
action and these two actions commute.

Suppose M and N are ~-monoids with neutral elements
1 and 1̂ respectively. We say that δl is monoidal if m ∗ 1̂ =
1̂ ∀m ∈ M . Similarly, the right action δr is monoidal if
1̂ ∗m = 1̂ ∀m ∈M .

Before defining the semidirect product, we need to introduce
some notations. Consider a word u ∈ (M ×N)⊕ with domain
α being the underlying linear ordering. To the word u, we
associate two words v ∈M⊕ and w ∈ N⊕ with domain α. We

begin by defining u1 ∈M⊕ and u2 ∈ N⊕ (with domain α) as
simply the ‘projections’ of u on M and N respectively. In other
words, for x ∈ α, u1[x] = m and u2[x] = n if u[x] = (m,n).
The word v is simply u1. On the other hand, the word w is
derived from u2 by making use of the evaluations of π of M
on appropriate ‘point-based-factors’ of u1 and their actions on
N . Precisely, for x ∈ α, w[x] = π(u1<x) ∗ u2[x] ∗ π(u1>x).

Definition 1. The map θ : (M×N)⊕ →M⊕×N⊕ is defined
as: θ(u) = (v, w).

The following simple lemma records a useful property of
the map θ. Its proof is straightforward.

Lemma 1. Suppose u = Πi∈αui with θ(u) = (v, w) and, for
i ∈ α, θ(ui) = (vi, wi). Then v = Πi∈αvi and w = Πi∈αw

′
i

where, for i ∈ α

w′i = π (Πj∈α:j<ivj) ∗ wi ∗ π (Πj∈α:j>ivj)

Now we ‘define’ the semidirect product.

Definition 2 (Semidirect Product). Given a ⊕-semigroup
(M,π) with compatible left and right actions on another ⊕-
semigroup (N, π̂), their semidirect product (M n N, π̃) has
underlying set M × N and π̃ : (M n N)⊕ → (M n N) is
defined as π̃(u) = (π(v), π̂(w)) where θ(u) = (v, w).

The proof of the following lemma verifies that M n N
is indeed a ⊕-semigroup by showing that π̃ satisfies the
generalized associativity property.

Lemma 2. The structure (M nN, π̃) is a ⊕-semigroup.

Proof: Let u = Πi∈αui where u, ui ∈ (M n N)⊕. We
have to prove π̃(u) = π̃(Πi∈απ̃(ui)). Rewriting Πi∈απ̃(ui) as
z, we have to prove π̃(u) = π̃(z).

Suppose θ(u) = (v, w) and for i ∈ α, θ(ui) = (vi, wi).
Then by Lemma 1, v = Πi∈αvi and w = Πi∈αw

′
i where

w′i is as given in the lemma statement. By the definition
of semidirect product, π̃(u) = (π(v), π̂(w)). Using the
generalized associativity properties of π and π̂, we can rewrite
this as π̃(u) = (π(Πi∈απ(vi)), π̂(Πi∈απ̂(w′i))).

Next we analyse the word z. Note that dom(z) = α and
z[i] = π̃(ui). Further, recall that θ(ui) = (vi, wi). From
Definition 2, we get π̃(ui) = (π(vi), π̂(wi)). So z[i] =
(π(vi), π̂(wi)). We now compute θ(z) using Definition 1. Let
θ(z) = (z′, z′′). It is easy to see that z′[i] = π(vi). Using this,
we see that z′′[i] equals

= π(Πj<iπ(vj)) ∗ π̂(wi) ∗ π(Πj>iπ(vj))

= π̂ (π(Πj<iπ(vj)) ∗ wi ∗ π(Πj>iπ(vj))) [by C-3, C-6, C-7]

= π̂ (π(Πj<ivj) ∗ wi ∗ π(Πj>ivj)) [by gen. assoc. of π]

= π̂(w′i))

The last line follows from the previous one by the explicit
expression for w′i in Lemma 1. Further note that we have really
used the pointwise-extension of the actions when going from
the first line to the second.

Now we proceed with the computation of π̃(z) by using
Definition 2 of semidirect product.

π̃(z) = (π(z′), π̂(z′′))

= (π(Πi∈αz
′[i]), π̂(Πi∈αz

′′[i]))

= (π(Πi∈απ(vi)), π̂(Πi∈απ̂(w′i)))

Comparing this with the expression for π̃(u) derived earlier,
we see that π̃(u) = π̃(z). This completes the proof.

We remark here that if M and N are ~-monoids (with
neutral elements 1 and 1̂ respectively) and the actions are
monoidal, then M n N is a ~-monoid with (1, 1̂) as the
neutral element.

Having shown M nN to be a valid ⊕-semigroup, we now
turn to the problem of the construction of semidirect product
for finite ⊕-algebras. Thanks to Theorem 1, we can restrict
our attention to induced ⊕-algebras.

Towards this, let M = (M, ·, τ, τ∗, κ) and N =
(N, ·̂, τ̂ , τ̂∗, κ̂) be ⊕-algebras induced by ⊕-semigroups (M,π)
and (N, π̂) respectively. Further, let M n N = (M ×
N, ·̃, τ̃ , τ̃∗, κ̃) denote the ⊕-algebra induced by (M n N, π̃).
Note that, by Theorem 1, the induced algebra operators of
MnN satisfy the four axioms mentioned in the definition of
a ⊕-algebra. In particular, (M ×N, ·̃) is a semigroup.

Henceforth we work with the assumption that M and N are
finite. Our aim is to show that the algebra operators of MnN
can be effectively computed from the algebra operators of M
and N.

We first observe that the action requirements can be equiva-
lently stated in terms of algebra operators as follows:

C’-1 1 ∗ n = n
C’-2 (m1 ·m2) ∗ n = m1 ∗ (m2 ∗ n)
C’-3 m ∗ (n1 ·̂ n2) = m ∗ n1 ·̂ m ∗ n2

C’-4 m ∗ nτ̂ = (m ∗ n)τ̂

C’-5 m ∗ nτ̂∗ = (m ∗ n)τ̂
∗

C’-6 m ∗ {n1, . . . , nj}κ̂ = {m ∗ n1, . . . ,m ∗ nj}κ̂
C’-7 n ∗ 1 = n
C’-8 n ∗ (m1 ·m2) = (n ∗m1) ∗m2

C’-9 (n1 ·̂ n2) ∗m = n1 ∗m ·̂ n2 ∗m
C’-10 nτ̂ ∗m = (n ∗m)τ̂

C’-11 nτ̂
∗ ∗m = (n ∗m)τ̂

∗

C’-12 {n1, . . . , nj}κ̂ ∗m = {n1 ∗m, . . . , nj ∗m}κ̂
C’-13 (m1 ∗ n) ∗m2 = m1 ∗ (n ∗m2)

The following lemma says that the binary operator ·̃ of
M n N can be expressed using the binary operators · (of
M) and ·̂ (of N). It follows easily from the definition of the
induced operator ·̃.

Lemma 3. The operator ·̃ can be computed as follows:
(m1, n1) ·̃ (m2, n2) = (m1 ·m2, n1 ∗m2 ·̂ m1 ∗ n2).

Recall that, as observed earlier, (M ×N, ·̃) is a semigroup.
Moreover, it is finite as both M and N are finite. A basic result
about finite semigroups says that every element of M × N
admits a power which is an idempotent element (an element
whose ‘square’ is itself). An easy consequence of the previous

lemma is that if (m,n) is an idempotent element of M ×N
then m is also an idempotent element of M .

Now we focus on the unary operator τ̃ : (M × N) →
(M × N). In view of the second axiom in the definition of
a ⊕-algebra, it suffices to show that the operator τ̃ can be
computed at idempotent elements of M ×N in terms of the
algebra operators of M and N.

Lemma 4. Let (e, n) be an idempotent element of M × N .
Then (e, n)τ̃ = (eτ , n ∗ eτ ·̂ (e ∗ n ∗ eτ)τ̂).

Proof: By definition of the induced operator τ̃ , (e, n)τ̃ =
π̃(u) where u = (e, n)

ω is the ω-word over the domain (N, <)
such that every position is mapped to (e, n). We first compute
θ(u) = (v, w) according to the Definition 1. It is easy to see
that v = eω and w is the ω-word whose first position is mapped
to n ∗ eτ and all other positions are mapped to e ∗n ∗ eτ . As a
result, π(v) = eτ and π̂(w) = (n ∗ eτ) ·̂ ((e ∗ n ∗ eτ)τ̂). The
proof now follows by observing that π̃(u) = (π(v), π̂(w)).

An analogous result for the unary operator τ̃∗ : (M ×N)→
(M ×N) is recorded in the next lemma. Its proof is omitted.

Lemma 5. Let (e, n) be an idempotent element of M × N .
Then (e, n)τ̃

∗
= (eτ

∗
, (eτ

∗ ∗ n ∗ e)τ̂∗ ·̂ eτ∗ ∗ n).

Finally, the next lemma shows that the operator κ̃ of MnN
can be computed using the algebra operators of M and N. We
skip its proof.

Lemma 6. The operator κ̃ can be computed as follows:

{(m1, n1), . . . , (mp, np)}κ̃ = (m, {m∗n1∗m, . . . ,m∗np∗m}κ̂)

where m = {m1, . . . ,mp}κ.

We now present an example of a semidirect product
construction and highlight some important elements in the ~-
algebra. Recall that an element e of M is called an idempotent
if e · e = e. We call it an ω-idempotent (resp. ω∗-idempotent
and η-idempotent) if eτ = e (resp. eτ

∗
= e and eκ = e).

An element r of M is called a right zero if m · r = r for
every element m of M . The notion of a left zero is defined
similarly. An element z is called a zero, if it is both a left zero
and a right zero. If a zero exists, it is unique.

Example 3. Consider M = U1 acting on N = U1 with a
trivial left action and a non-trivial monoidal right action where
everything in N maps to 1. The ~-algebra U1 n U1 is given
below. We write the element (i, j) as ij in this example.

11 10 00 01 τ τ∗

11 11 10 00 01 11 11
10 10 10 00 01 10 10
00 00 00 00 01 01 00
01 01 00 00 01 01 01

Fig. 2. Note that all elements are ω∗ idempotents, and the elements 00, 01
are right zero. We have {11}κ, {10}κ = {11, 10}κ = 10 and Xκ = 01 if
X contains any right zero.

The ~-algebra in the above example is crucially used in
Section V. It is called Mr there.

x
↓ (evaluation)

u : . . . a . . .

h : Σ→M�N h(u) : . . . (ma, fa) . . . (m, f)

h1 : Σ→M h1(u) : . . . ma . . . m

σ : Σ⊕ → (M × Σ×M)⊕ u′ = σ(u) : . . . h1(u<x), a, h1(u>x) . . .

h2 : (M × Σ×M)→ N h2(u′) : . . . fa(h1(u<x), h1(u>x)) . . . f(1, 1)

Fig. 3. The block product operational view

C. Block Product Construction

Let M = (M, ·, τ, τ∗, κ) and N = (N, ·̂, τ̂ , τ̂∗, κ̂) be ⊕-
algebras. The corresponding ⊕-semigroups (M,π) and (N, π̂)
will also be denoted by M and N. The set NM×M of all
functions from M ×M into N also forms a ⊕-algebra (⊕-
semigroup) under the componentwise product. This ⊕-algebra
(denoted by K with underlying set K = NM×M) can be
simply viewed as the direct product of M ×M copies of N.
The notations ·̂, τ̂ , τ̂∗, κ̂ of N will also be used to denote the
corresponding operators on K.

The block product of M and N is denoted by M�N and
is the semidirect product of M and K (with underlying set
M nK) with respect to the canonical ‘actions’: for m ∈M
and f ∈ NM×M ,

(m ∗ f)(m1,m2) = f(m1m,m2)

(f ∗m)(m1,m2) = f(m1,mm2)

Lemma 7. The canonical actions satisfy the axioms of actions.

D. Block Product Principle

In this subsection, we state and prove the block product
principle. Roughly speaking the block product principle allows
to express the formal languages recognized by a block product
M�N in terms of languages recognized by M and N.

Fix a finite alphabet Σ. As Σ⊕ is a free ⊕-semigroup, a
morphism from Σ⊕ to M�N = M n K is simply given
(determined) by a map h : Σ→MnK. Its pointwise extension
will be denoted by h̄ : Σ⊕ → (M nK)⊕. Sometimes, it will
be convenient to denote this extension also by h. Further,
composing this with the countable product π̃ results into a
morphism which, to a word u ∈ Σ⊕, associates the element
π̃(h̄(u)) ∈ M nK. This morphism may also be denoted by
h (that is, h(u) may simply equal π̃(h̄(u))). The context will
make it clear as to which interpretation of ‘h’ applies. These
slight abuses of notations are used several times in what follows
in order to keep the notation simple and improve readability.

Let h : Σ→MnK be a morphism and let (ma, fa) = h(a)
for each a ∈ Σ. We define the map/morphism h1 : Σ → M
by letting h1(a) = ma for each letter a. Next we define the
state-based transducer σ : Σ⊕ → (M × Σ×M)⊕ as follows:

let u ∈ Σ⊕ with domain α. The word u′ = σ(u) has domain
α and is defined over the alphabet M × Σ×M . For x ∈ α,

u′[x] = (h1(u<x), u[x], h1(u>x))

Next, we define the map/morphism h2 : (M×Σ×M)→ N
as: for (m1, a,m2) ∈ (M × Σ×M),

h2((m1, a,m2)) = fa(m1,m2)

Going ahead, given a word u′ ∈ (M×Σ×M)⊕ and m1,m2 ∈
M , we define m1u

′m2 to be the word (with the same domain
as u′) such that for a position x with u′[x] = (m′1, a,m

′
2),

(m1u
′m2)[x] = (m1m

′
1, a,m

′
2m2).

Now we are ready to state a key technical lemma which
will help us establish the block product principle.

Lemma 8. For u ∈ Σ⊕ and m1,m2 ∈M , h(u) = (m, f) iff
h1(u) = m and h2(m1σ(u)m2) = f(m1,m2).

Proof: Fix u ∈ Σ⊕ and u′ = σ(u). Let h(u) ∈
(M n K)⊕ be the image of the pointwise extension of
h applied to u. The words h1(u) ∈ M⊕ and h2(u′) ∈
N⊕ are defined similarly. Observe that, for a position x
of u, with u[x] = a and h(a) = (ma, fa), h(u)[x] =
(ma, fa), h1(u)[x] = ma, u′[x] = (h1(u<x), a, h1(u>x)) and
h2(u′)[x] = fa(h1(u<x), h1(u>x)). See figure 3.

Consider the map θ : (M n K)⊕ → M⊕ × K⊕ from
Lemma 1 (with K playing the role of N in the statement).
Let θ(h(u)) = (v, w). Observe that v ∈ M⊕ and w ∈ K⊕.
It is straightforward to check that v = h1(u). Further, by the
definition of θ, for a position x of u, with h(u)[x] = (ma, fa),
w[x] = h1(u<x) ∗ fa ∗ h1(u>x).

x
↓

. . . (ma, fa) . . .

v = h1(u) : . . . ma . . .

w : . . . h1(w<x) ∗ fa ∗ h1(w>x) . . .

Fig. 4. θ : (M nK)~ →M~ ×K~ and θ(u) = (v, w)

Now we relate the word w ∈ K⊕ with u′ ∈ (M×Σ×M)⊕.
Towards this, consider the projection morphisms: for m1,m2 ∈
M , Πm1,m2 : K → N defined as Πm1,m2(g) = g(m1,m2).
As expected, the pointwise extensions of Πm1,m2 are also
denoted by Πm1,m2

.
For further analysis, fix a choice of m1,m2 ∈M . Let x be

a position with u[x] = a and h(a) = (ma, fa). As observed
earlier u′[x] = (h1(u<x), a, h1(u>x)) ∈ M × Σ × M and
w[x] = h1(u<x) ∗ fa ∗ h1(u>x) ∈ K. Clearly, m1u

′[x]m2 =
(m1h1(u<x), a, h1(u>x)m2).

We proceed further with some simple calculations.

Πm1,m2
(w[x]) = (h1(u<x) ∗ fa ∗ h1(u>x)) (m1,m2)

= fa(m1h1(u<x), h1(u>x)m2)

h2(m1u
′[x]m2) = h2 ((m1h1(u<x), a, h1(u>x)m2))

= fa(m1h1(u<x), h1(u>x)m2)

This reveals that for each position x, Πm1,m2
(w[x]) =

h2(m1u
′[x]m2). Thanks to the fact that both Πm1,m2(w)

and m1u
′m2 are defined pointwise, we have Πm1,m2(w) =

h2(m1u
′m2). We let f denote the evaluation of w in K and

exploit the fact that both Πm1,m2
and h2 are morphisms to con-

clude that, for m1,m2 ∈M , f(m1,m2) = h2(m1u
′m2) ∈ N .

With h1(u) = m, the proof of the proposition is now
immediate by Definition 2 which asserts that h(u) = (m, f).

We now use this lemma to derive the following result often
referred to as the block product principle (see [13], [18] for
the related wreath product principle).

Proposition 1 (Block Product Principle). Let L ⊆ Σ⊕ be
recognized by h : Σ→M�N via a subset F ⊆M ×K. Then
L can be expressed as a finite union of languages of the form
L1 ∩ (

⋂
i,j

σ−1(Lij)) where L1 and Lij are recognized by M

and N respectively, for 1 ≤ i, j ≤ |M |.

Proof: Consider an element (m, f) ∈ M × K. By
Lemma 8, for u ∈ Σ⊕, h(u) = (m, f) iff h1(u) = m and
h2(m1σ(u)m2) = f(m1,m2) for all m1,m2 ∈M .

Next, for 1 ≤ i, j ≤ |M |, we define the maps/morphisms
hij : (M × Σ ×M) → N as follows: hij((m1, a,m2)) =
h2((mim1, a,m2mj)). It is easy to see that, for any word
u′ ∈ (M × Σ×M)⊕, hij(u′) = h2(miu

′mj).
As a consequence, we get

L =
⋃

(m,f)∈F

h1
−1(m) ∩

⋂
i,j

σ−1(hij
−1(f(mi,mj)))

This completes the proof.

IV. FIRST ORDER LOGIC

A. Definitions

First-order logic (FO[<]) over a finite alphabet Σ is a logic
which can be inductively built using the following operations.

a(x) | x < y | x = y | φ ∨ φ | ¬φ | ∃x φ

Here a ∈ Σ and φ is any FO[<] formula. We use the
letters φ, ψ, ϕ (with or without subscripts) to represent FO[<]
formulas, and the letters x, y, z (with or without subscripts) to
represent FO[<] variables.

A variable is free if it is not quantified in the formula. The
set of free variables in a formula ϕ is denoted by free(ϕ).
A formula with no free variables is called a sentence. The
language of a sentence ϕ (denoted by L(ϕ)) is the set of all
words u ∈ Σ⊕ that satisfies ϕ.

Let us look at some examples of countable languages
definable in FO[<] and its two variable fragment FO2[<]. Over
finite words, FO2[<] can talk about occurrence of letters and
also about the order in which they appear [24]. Over countable
linear orderings, it can also say that there is no maximum
position. For example, the following formula states that every
position is labelled by a and there is no maximum position.(

∀x ∃y x < y
)
∧
(
∀x a(x)

)
Analogously, FO2[<] can also talk about left-open words.
However, the two variable fragment is not as expressive as full
first order. FO2[<] satisfies a downward property (similar to
Löwenheim-Skolem downward theorem for first order logic):
a satisfiable FO2[<] formula has a scattered satisfying model
(see [10]). Therefore, the following language, which says the
linear ordering is dense and has at least two distinct positions,
is not definable in FO2[<].

∃x, y x < y ∧ ∀x, y
(
x < y

)
⇒
(
∃z x < z < y

)
Example 4. Consider the language L ⊆ {a, b}~ of all words
w which satisfy the property: There is a gap in w towards
which the letter b approaches from the left and on the right
of the gap there is an interval with only a’s. This is definable
in FO[<] by first guessing two points x` and xr on both sides
of the gap. Let ψ(x`, xr, y) be a formula which is true if and
only if y is between x` and xr and is after all occurrences of
b’s between x` and xr. The three formulas below say that (1)
the b’s form an omega sequence, (2) the a’s after b form an
omega∗ sequence, and (3) there is factor after the gap which
contains only a’s.

1) φ(x`, xr) ::= ∀y ∈ (x`, xr)
(
b(y)⇒ (∃z > y b(z))

)
2) χ(x`, xr) ::= ∀y

(
ψ(x`, xr, y)⇒ ∃z < y ψ(x`, xr, z)

)
3) ϕ(x`, xr) ::= ∀x, y

(
ψ(x`, xr, x) ∧ ψ(x`, xr, y)

)
⇒(

∀z ∈ (x, y) ψ(x`, xr, z)
)

The formula ∃x`, xr (φ ∧ χ ∧ ϕ) defines the language L.

In the following subsections, we provide block product
characterizations of ⊕-algebras recognizing FO[<] and FO2[<]
languages over linear countable orderings. We also provide a
characterization of FO[<] in terms of regular expressions.

B. Iterated block product

Block product of ⊕-algebras is not associative and so the
order of product (equivalently nesting of brackets) varies the
resulting structure for a given list of ⊕-algebra. For example,
for three ⊕-algebras, there are only two distinct nesting possible

and the following lemma shows that one of them is at least as
powerful as the other.

Lemma 9. For any three ⊕-algebras M , N and P ,

M�(N�P) � (M�N)�P

For multiple ⊕-algebras, there can be several ways of
bracketing. One particular nesting is known as the strongly
iterated block product, also referred to simply as the iterated
block product. For any set R of ⊕-algebras, it is defined
recursively as follows:

1) N is an iterated block product for any N ∈ R
2) If M is an iterated product, then M�N is an iterated

product for any N ∈ R
For example, in Lemma 9 the RHS is an iterated block product
over {M,N,P}. The set of all iterated block products of a
set R is denoted by �∗R. For a singleton set, we drop the set
notation.

For ease of notation, we refer to a ⊕-algebra by simply
algebra.

Theorem 2. L(FO[<]) = L(�∗U1)

Proof: First we show left to right inclusion, which goes
via structural induction on the formulas of first order logic. We
know that FO[<] has letter and order predicates, is closed under
boolean operations and existential quantification. Inductively
we prove that for any FO formula ϕ = φ(x1, x2, . . . , xn), the
language L(ϕ) ⊆ (Σ× {0, 1}n)⊕ is recognized by an iterated
block product of U1.

It is easy to show that both the languages definable by
ϕ = a(x) and ϕ = x < y can be recognized by U1�U1.
Similarly, boolean combinations of first order formulas can also
be recognized by cartesian products of the corresponding alge-
bras (clearly, cartesian products divides block products). The
interesting case is when ϕ = ∃xφ. Let L(φ) ⊆ (Σ× {0, 1})⊕
be recognized by an algebra M ∈ �∗U1 via the morphism
h′ : (Σ× {0, 1})→M . That is, ∃F ′ ⊆M,h′−1(F ′) = L(φ).
Consider the morphism h : Σ → M�U1, where h(a) =
(h′(a, 0), fa) and

fa(m1,m2) =

{
0, if m1.h

′(a, 1).m2 ∈ F ′

1, otherwise

Now we use the induced morphism h1 : Σ → M (which
maps a to h′(a, 0)) and the associated state-based transducer
σ : Σ⊕ → (M ×Σ×M)⊕. Further the other (see the notation
before Lemma 8) induced morphism h2 : (M × Σ ×M) →
U1 maps (m1, a,m2) to, 0 if m1.h

′(a, 1).m2 ∈ F ′ and to 1
otherwise. Note that h2 maps a word to 0 iff the word has a
position which is labelled by a letter which maps to 0.

We claim that u ∈ L(ϕ) if and only if h2(σ(u)) = 0. First
we prove the forward direction. Let u ∈ L(ϕ). Then u = u1au2

such that u0
1(a, 1)u0

2 |= φ (for a word v ∈ Σ⊕, we denote by v0

the word over the same domain as v such that v0[i] = (v[i], 0)).
Then h′(u0

1(a, 1)u0
2) ∈ F ′ and hence h2(σ(u)) = 0. For the

other direction, let us assume h2(σ(u)) = 0. Therefore, σ(u)

has a position which is labelled by (m1, a,m2) such that
m1.h

′(a, 1)m2 ∈ F ′. But this means u can be factored as
u1au2 such that m1 = h1(u1) and m2 = h1(u2). Therefore
u0

1(a, 1)u0
2 ∈ L(φ) and hence u ∈ L(ϕ).

Now with a suitable choice of F , it can be seen that
h−1(F) = L(ϕ). This completes the proof of the left to right
inclusion.

The right to left inclusion is via induction on the number
of iterated blocks of U1. It is easy to see that all languages
recognized by exactly one U1 can be defined in first order
logic. This takes care of the base case. Let the hypothesis hold
for algebra M . We show that, a language L recognized by
some morphism h : Σ → M�U1 can be defined in FO[<].
As we have seen in subsection III-D, h induces a natural
morphism h1 : Σ→M . Let σ : Σ⊕ → (M ×Σ×M)⊕ be the
state-based transducer induced by h1. From the block product
principle, L can be expressed as a finite boolean combination
of languages of the form L1 and σ−1(L2) where L1 and L2

are recognized by M and U1 respectively. By the induction
hypothesis both L1 and L2 are FO[<] definable. So it suffices
to show that for an FO[<] language L2 over the alphabet
(M ×Σ×M) the language σ−1(L2) is also FO[<] definable.
We prove by structural induction that for every FO[<] formula
ϕ over alphabet M ×Σ×M , there exists a FO[<] formula ψ
over alphabet Σ such that free(ϕ) = free(ψ) and for all words
w ∈ Σ⊕, and for all assignments E : free(ϕ) → dom(w),
w,E |= ψ if and only if σ(w), E |= ϕ. The base case when ϕ is
a letter-predicate is the most interesting. Let ϕ = (m, a, n)(x).
By induction hypothesis there are sentences, for each m ∈M ,
ϕm such that h1(w) = m if and only if w |= ϕm We define
ψ = a(x)∧ϕm|<x ∧ϕn|>x, where φ|<x (resp. φ|>x) denotes
the relativisation of the variables in formula φ to positions
less than (resp. greater than) x. Note that σ(w), i |= ϕ if and
only if w, i |= ψ. Inductively applying this translation for other
formulas gives the required formula ψ.

C. Weakly iterated block product

Now we introduce the notion of weakly iterated block
products. For any set R of algebras, it is defined recursively
as follows:

1) N is a weakly iterated block product for any N ∈ R
2) If M is an weakly iterated block product, then N�M

is a weakly iterated block product for any N ∈ R
For example, in Lemma 9 the LHS is a weakly iterated product
over {M,N,P}.The set of all weakly iterated block products
of a set R is denoted by �∗wR. For a singleton set, we drop
the set notation for convenience.

The following lemma or rather its generalization will be
used later.

Lemma 10. For any ⊕-algebras M , N and P ,

(M ×N)�P �M�(N�P)

This can be generalized to (M1× . . .×Mk)�N as expected.

Theorem 3. L(FO2[<]) = L(�∗wU1)

Proof: The right to left inclusion is via induction on
the number of blocks of U1s. First, observe that languages
recognized by a single U1 can be defined in FO2[<]. For the
induction step, we follow the proof in Theorem 2 closely. Let
the hypothesis hold for algebra M ∈ �∗wU1. We show that a
language L recognized by some morphism h : Σ → U1�M
can be defined in FO2[<]. Let σ : Σ⊕ → (U1×Σ×U1)⊕ be the
state-based transducer associated with the induced morphism
h1 : Σ → U1. From the block product principle, L can be
expressed as a finite boolean combination of languages of the
form L1 and σ−1(L2) where L1 and L2 are recognized by
U1 and M respectively. By the induction hypothesis both L1

and L2 are FO2[<] definable. So it suffices to show that for
an FO2[<] language L2 over the alphabet (U1 × Σ× U1) the
language σ−1(L2) is also FO2[<] definable. As observed in
Theorem 2 the base case is the non-trivial case. The following
formula accepts σ−1(L2) if L2 is defined by the formula
(0, a, 1)(x).

a(x) ∧
(
∃y < x

∨
h1(b)=0

b(y)
)
∧
(
∀y > x

∨
h1(c)=1

c(y)
)

Note that we used only two variables for the above translation.
The other base cases are similar. We apply this translation
inductively for other formulas.

Now we show the other inclusion of the proof. FO2[<] has
a “normal form” [19] where the quantifier at the maximum
depth along with its scope is of the form ∃x(a(x) ∧ x < y)
or ∃x (a(x) ∧ x > y). Let us call these base formulas. Note
that base formulas have a free variable y. FO2[<] sentences
can be inductively built by replacing letter-predicates c(y) in
a formula by one of the base formulas. Let us assume that
languages definable by FO2[<] formulas of quantifier depth k
can be recognized by weak block product of U1s. Consider
a formula α over the alphabet Σ of quantifier depth k + 1.
From our observation, there exists a set Γ = {γ1, . . . , γl} and
a formula φ over P(Γ) such that replacing every occurrence
of γi(y) by a base formula ψi(y) over the alphabet Σ gives
you the formula α. Here φ is a formula of quantifier depth k.
By our assumption, we know that there is an algebra M and
a morphism h : P(Γ)→M which recognizes L(φ). We now
show how to get, for any word w ∈ Σ⊕, the ‘corresponding’
word over P(Γ) which keeps track of the truth values the
formulas in {ψ1(y), . . . , ψl(y)} at every position in w.

Consider P(Σ) as a ~-monoid where the binary product ·
and shuffle operator κ are unions of sets, and the omega-
operator τ and omega∗-operator τ∗ are identity maps. So
every element is a shuffle idempotent. Notice that P(Σ) is
essentially the cartesian product of |Σ|-many U1s. Now there
exists a morphism g : Σ⊕ → P(Σ) such that g(w) =
{a | the letter a occurs in w}. The transducer associated with
g is σ : Σ⊕ → (P(Σ) × Σ × P(Σ))⊕ where, for a word w,
σ(w)[y] = (g(w<y), w[y], g(w>y)) for every position y in w.
Observe that the word σ(w) carries, at every position y, the
information about the set of letters which occur to the left (as
well as right) of y in w. Clearly, this information is enough to
decide the truth values of {ψ1(y), . . . , ψl(y)} at position y.

So, we construct the map f : (P(Σ))×Σ×P(Σ)))→ P(Γ)
such that, for every word w ∈ Σ⊕, f(σ(w)) has the ‘correct’
information. Now the morphism h : P(Γ) → M can make
use of this information to further decide the truth of φ. Thus
P(Σ)�M can recognize the language of the FO2[<] sentence
α, and by Lemma 10 this algebra is in �∗wU1.

D. Schützenberger-McNaughton-Papert Theorem

The marked star-free regular expressions over Σ are defined
by the following grammar

r = ∅ | a | ¬r | r1 + r2 | r1 ∩ r2 | r1ar2

Each such expression r naturally corresponds to a language
L(r) ⊆ Σ⊕ in a straightforward manner: L(∅) = ∅, L(a) =
{a}, L(¬r) = Σ⊕ \ L(r), L(r1 + r2) = L(r1) ∪ L(r2) and
L(r1ar2) = L(r1) · a · L(r2) etc. Note that we are simply
extending the marked star-free regular expressions defined in
[2] from scattered words to countable words. A language L is
said to be marked star-free iff there exists a marked star-free
regular expression r such that L = L(r).

Theorem 4. A language L ⊆ Σ⊕ is marked star-free iff L is
FO[<]-definable.

Proof: The left to right direction is by structural induction:
an expression r is translated into a FO[<]-sentence φr such
that L(r) = {w ∈ Σ⊕ | w |= φr}. The only non-trivial case
being φr1ar2 = ∃xφr1 |<x∧a(x)∧φr2 |>x. We skip the details.

Towards the right to left direction, in view of Theorem 2, it
suffices to show that languages recognized by iterated block-
products of U1 admit marked star-free regular expressions. We
proceed by induction on the number of iterated blocks of U1

in the recognizing ~-algebra. The base case is easy.
Let h : Σ⊕ →M�U1 recognize a language L. By the block

product principle (see Proposition 1), L is a boolean combina-
tion of languages L′ = h−1

1 (m) and L′′ = σ−1(h−1
2 (u)), for

some m ∈M,u ∈ U1. Since marked star-free expressions are
closed under boolean operations, it suffices to show that L′

and L′′ have marked star-free expressions.
For m′ ∈ M , we denote by Lm′ , the language h−1

1 (m′),
recognized by M and hence, by induction, has a marked star-
free expression. As L′ = Lm, Lm has a marked star-free
expression over Σ. Consider u = 0, then it is easy to see
that σ−1(h−1

2 (u)) =
⋃

(m1,a,m2)∈h−1
2 (0) Lm1

· a · Lm2
. The

above ‘decomposition’ of σ−1(h−1
2 (u = 0)) makes it evident

that it too admits a marked star-free expression over Σ. The
expression for the case with u = 1 is simply the complement
expression. Thus L′′ too has a marked star-free expression.

Now we are ready to state the analogue of Schützenberger-
McNaughton-Papert theorem for countable words.

Theorem 5. [Schützenberger-McNaughton-Papert Theorem]
Let L ⊆ Σ⊕. Then the following are equivalent.

1) L is FO[<]-definable.
2) L admits a marked star-free regular expression.
3) L is recognized by block products of U1.

4) The syntactic algebra of L satisfies the equations1:
• e2 = e ⇒ eτ · eτ∗ = e.
• eτ = eτ

∗
= e ⇒ {e}κ = e.

• {e}κ = e ∧ eae = e⇒ {e, a}κ = e.
Proof: The equivalence of the first three conditions follows

from Theorems 2 and 4. The equivalence of the first and the
last condition was shown in [6].

Over finite words, the above theorem holds with the last
condition replaced by: ‘the syntactic monoid of L is aperiodic’.

Over countable scattered words, it was shown in [2] that
FO and marked star-free regular expressions have the same
expressive power. It also gives an algebraic characterization
(similar in spirit to the last condition in Theorem 5 invoked for
♦-algebras). They also asked if the ‘scattered’ hypothesis can
be removed. Theorem 5 resolves this question satisfactorily.

Now we point out an interesting consequence of Theorem 5.
Observe that both conditions 3 and 4 are algebraic in nature.
The implication 3⇒ 4 is rather easy to prove. The implication
4⇒ 3 may be viewed as a suitable language-theoretic version
of a special case of the Krohn-Rhodes theorem. As mentioned
in the introduction, a special case of Krohn-Rhodes theorem
asserts that an aperiodic monoids divides a block product of U1.
Roughly speaking, 4⇒ 3 asserts that a ~-monoid satisfying
the equations in 4 can be simulated by a block products of
U1!

V. LINEAR TEMPORAL LOGIC

In this section we look at the subclass LTL[S,U] which is
closed under boolean operations but only the strict until and
strict since operators are allowed. It is known that LTL[S,U]
is expressively less powerful than FO[<]. The language in
Example 4 is not definable in LTL[S,U]. See [9] for more
details.

We first begin with the notion of a marked word which will
be useful later. A marked word ŵ is a word in Σ~.(Σ,#).Σ~.
We denote by Σ~

the set of all marked words over Σ. We
will alternatively denote a marked word ŵ ∈ Σ~

by (w, i) if
w ∈ Σ~, i ∈ dom(w) and ŵ = w<i(w[i],#)w>i.

LTL[S,U] formula over the alphabet Σ is defined recursively
as

p ∈ Σ | ¬α | α ∨ β | α S β | α U β

LTL[S,U] formulas are interpreted on marked words over Σ.
Given a formula α and a marked word (w, i), we say that (w, i)
satisfies α (denoted by (w, i) |= α) if α is true at position i
in the word w. We denote by (w, i) 6|= α if (w, i) does not
satisfy α. The semantics is defined by structural induction as
follows

(w, i) |= p if w[i] = p

(w, i) |= ¬α if w[i] 6|= α

(w, i) |= α ∨ β if w[i] |= α or w[i] |= β

We say that (w, i) |= α S β if

∃j < i (w, j) |= β and ∀k ∈ (j, i) (w, k) |= α

1We refer the reader to [6] for details

Similarly (w, i) |= α U β if

∃j > i (w, j) |= β and ∀k ∈ (i, j) (w, k) |= α

The derived temporal operators (In the future) Fα, (Globally
in the future) Gα, (In the past) Pα, and (Historically or
Globally in the past) Hα stand for > U α, ¬(F ¬α), > S α
and ¬(P ¬α) respectively. We introduce two new operators:
α Ṡ β and α U̇ β. The semantics follows: (w, i) |= α Ṡ β if

∃j > i (w, j) |= β and ∀k > j (w, k) |= α

Similarly, we say that (w, i) |= α U̇ β if

∃j < i (w, j) |= β and ∀k < j (w, k) |= α

Note that both the above operators are definable using the un-
til and since operators. Henceforth we will denote by LTL[S,U]
to mean the logic closed under boolean operations and the four
temporal operators we defined above: {S,U, Ṡ, U̇}. Note that
both the logics are expressively equivalent but this new logic
helps characterizing LTL[S,U] algebraically. Let A,B ⊆ Σ.
Then, we use the following shorthand notation: A stands for
the formula

∨
a∈A a. For example, A S B denotes the formula

(
∨
a∈A a) S (

∨
b∈B b). We also define the operator depth of

a formula to be the maximum number of operators in a path
of the parse tree of the formula. It is inductively defined as
follows - the operator depth of a formula with no temporal
operator is zero, and the operator depth of any formula of type
α X β, where X is one of the four operators, is one plus the
maximum of the operator depth of α and β.

For a formula α, the marked language of α (denoted by
L#(α)) is the set of all marked words (w, i) which satisfy α.
For languages defined by formulas, we only consider words
with a minimal position. So the language of α (denoted by
L(α)) is defined as follows

{w ∈ ΣΣ~ | (w, 0) |= α}

Here 0 denotes the minimal position of the word. For a set
of formulas Φ, we denote by L(Φ), L#(Φ) the set of all
languages, marked languages defined by formulas in Φ.

For a morphism h : Σ~ → M , we define the function
ĥ : Σ~

→ (M × Σ ×M) by ĥ(u(a,#)v) = (h(u), a, h(v)).
We say that a marked language L can be recognized by the
morphism h, if there exists a set S ⊆ (M × Σ ×M) such
that L = ĥ−1(S). For a class of ~-algebras M, we denote
by L#(M) the set of all marked languages defined by some
morphism from Σ~ to a ~-algebra M ∈ M and a set S ⊆
(M × Σ×M).

Consider Ml and Mr shown in Figs. 5 and 6. Our aim is
to show that languages recognized by weak block products of
Mr and Ml, restricted to words with minimal positions, are
exactly those definable in LTL[S,U]. First the base case. The
following lemma shows that the marked language of A S B
is recognizable by Mr.

Lemma 11. Let A,B ⊆ Σ. The language L#(A S B) can
be recognized by a morphism, h : Σ~ → Mr. Moreover
L#(A Ṡ B) can be recognized by a morphism, h : Σ~ → Mr.

Fig. 5. The algebras Mr and Ml: We have denoted the algebras using the
eggbox diagram. Additionally shuffle idempotents are denoted by a self loop.
For example in Ml and Mr , the elements 1, a, (ba)κ are shuffle idempotents.

1 a ba (ba)κ τ τ∗

1 1 a ba (ba)κ 1 1
a a a ba (ba)κ a a
ba ba ba ba (ba)κ (ba)κ ba

(ba)κ (ba)κ ba ba (ba)κ (ba)κ (ba)κ

Fig. 6. The algebra Mr : Note that all elements are τ∗ idempotents and
the elements ba, (ba)κ are right zeros. The κ function is defined as follows:
1κ = 1, {1, a}κ = a and Xκ = (ba)κ if X contains any right zero.

Similarly L#(A U B) and L#(A U̇ B) can be recognized
by morphisms h : Σ~ → Ml.

Proof: We show that L = L#(A S B) can be recognized
by Mr and leave the rest of the proofs since it is of similar
flavour. Note that if (w, i) |= A S B, then w<i ∈ Σ~BA~.
We claim that the morphism, h : Σ~ → Mr which extends

h(s) =

a, if s ∈ A ∩B
1, if s ∈ A\B
ba, if s ∈ B\A
(ba)κ, otherwise

can recognize the language L. It is sufficient if we show: for
all words u ∈ Σ~, u ∈ Σ~BA~ if and only if h(u) ∈ {a, ba}.

First we show the forward direction. If u ∈ Σ~BA~, then
there exists a position i such that u[i] ∈ B and for all j > i,
we have u[j] ∈ A. In other words h(u[i]) ∈ {a, ba} and
h(u>i) ∈ {1, a}. In all cases h(u) ∈ {a, ba}.

For the other direction, let us assume h(u) ∈ {a, ba}. First
let us assume h(u) = a. Clearly u ∈ A~(A ∩ B)A~ and
therefore u ∈ L. So, let h(u) = ba. Then two cases can happen
- either u ∈ Σ~(B\A)A~ or u = v1v2 where h(v1) = (ba)κ

and h(v2) = a. In both cases u ∈ L.
Below we show that the other direction is also true. That is,

the marked languages definable by Mr can be recognized by
boolean combinations of depth one formulas.

Lemma 12. Consider the morphism h : Σ~ → Mr. All marked
languages definable using h can be recognized by a boolean
combination of formulas of the form A S B and A Ṡ B.

Similarly marked languages definable using h : Σ~ → Ml

can be recognized by a boolean combination of formulas of
the form A U B and A U̇ B.

Proof: We show that marked languages definable using
h : Σ~ → Mr can be recognized by a boolean combination of
formulas of the form A S B and A Ṡ B. The case of Ml can
be similarly proved. Let L be a marked language recognized by
h. Let ĥ the associated function, ĥ : Σ~

→ (Mr,Σ,Mr) and
S ⊆ (Mr,Σ,Mr) such that L = ĥ−1(S). We will show that for
all element (m, s, n) ∈ S, the marked language ĥ−1(m, s, n)
is recognized by a boolean combination of since and until.
Let ĥ(w, i) = (m, s, n). It is easy to check that the marked
position (i.e. w[i]) contains letter s ∈ Σ.

First, for each m ∈ Mr, we give a formula which is true at
position i if and only if h(w<i) = m. For a set S ⊆ Mr, we
define the alphabet ΣS = {s ∈ Σ | h(s) ∈ S}. Then h−1(m)
for each m ∈ Mr can be recognized as follows:

h−1(1) = HΣ1

h−1(a) = HΣ{1,a} ∧PΣa

h−1(ba) = Σ1 S Σba ∨
(
Σ{1,a} S Σa ∧PΣ{ba,(ba)κ}

)
h−1((ba)κ) is the set of all words not in h−1(x) for an

x 6= (ba)κ and hence it is also definable: complement of the
union of all the above languages.

Now, for each n ∈ Mr, we give a formula which is true at
position i if and only if h(w>i) = n. Again, consider the sets
ΣS which were defined above. Note that if n = 1, then for all
k > i we have w[k] ∈ Σ1. The following formula recognizes
this: ¬(Σ Ṡ Σ{a,ba,(ba)κ}). Similarly if n = a, then for all
k > i, we have w[k] ∈ Σ{1,a}. This is also definable as shown
before. Now consider the other two elements which are right
zeros. If n = ba, then it could be because of two cases.

1) There is a position k > i such that w[k] ∈ Σba and all
future positions contains only letters from Σ1.

2) There are two positions k1 > k2 > i such that w[k2] ∈
Σba, w[k1] ∈ Σa and w>k1 ∈ Σ~

{1,a}.
The following formula recognizes the above two conditions.

Σ1 Ṡ Σba
∨(

Σ{1,a} Ṡ Σa ∧ FΣ{ba,(ba)κ}
)

Note that the future operator (F) can defined using Ṡ. Finally
if n = (ba)κ, the formula can be defined by a boolean
combinations of the other formulas.

The three formulas in conjunction give a formula φ such
that L#(φ) = ĥ−1(m, s, n).

Until now we saw that languages definable by simple
formulas (formulas of operator depth 1) are expressively
equivalent to those definable by cartesian products of Mr

and Ml. Substitution is a standard way to build temporal logic
formulas of greater operator depths [22], [21]. Let φ be a
formula over the alphabet Γ. Let {ψa}a∈Γ be a set of formulas
over the alphabet Σ. Then φ[a 7→ ψa] stands for the formula
over Σ that we get from φ by replacing all occurrence of letters
a ∈ Σ by ψa. Substitution is inductively defined as follows.

1) a[a 7→ ψa] = ψa
2) (α ∨ β)[a 7→ ψa] = α[a 7→ ψa] ∨ β[a 7→ ψa]
3) ¬α[a 7→ ψa] = ¬(α[a 7→ ψa])
4) (αXβ)[a 7→ ψa] = (α[a 7→ ψa])X(β[a 7→ ψa])

where X is one of the operators {S,U, Ṡ, U̇}. In the rest
of the section we use substitution to show that LTL[S,U] is
expressively equivalent to the weak block product of Mr and
Ml. Let σ be a state-based transducer. The next lemma shows
that under special circumstance LTL[S,U] is closed under σ−1.
That is, for any formula α we can find another formula β also
in LTL[S,U] such that the marked word (σ(w), i) satisfies α
if and only if (w, i) satisfies β.

Lemma 13. Let Γ = (Mr × Σ × Mr) and σ : Σ~ → Γ~

be a state-based transducer. Then, there is a function f :
LTL[S,U] → LTL[S,U] such that for all w ∈ Σ~ and α ∈
LTL[S,U] over Γ

(σ(w), i) |= α⇔ (w, i) |= f(α)

Proof: The proof is by structural induction. Lemma 12
gives f(α) for a letter α = (m, a, n) ∈ (Mr × Σ × Mr).
Other formulas are inductively given as follows: f(α1 ∨α2) =
f(α1)∨f(α2), f(¬α) = ¬f(α), f(α1Xα2) = f(α1)Xf(α2)
where X ∈ {S,U, Ṡ, U̇}. It is easy to check that (σ(w), i) |=
α⇔ (w, i) |= f(α) holds for the substitution f .

We have built all the tools necessary to show that weak block
products of Mr and Ml can be “simulated” by LTL[S,U].

Lemma 14. Let N be an algebra such that L(N) ⊆ LTL[S,U].
Then, L(Mr�N) ⊆ LTL[S,U]

Proof: Let N̂ = (Mr�N) and consider the morphism
h : Σ~ → N̂ . Our aim is to show that the languages recognized
by h can be defined in LTL[S,U]. It is enough to show that
for an arbitrary τ = (s, f) ∈ N̂ , the language h−1(τ) can
be defined. Let w ∈ Σ~. By the block product principle,
w ∈ h−1(τ) if and only if w ∈ L1 and σ(w) ∈ L2 where
L1 and L2 are languages definable in Mr and N respectively.
From Lemma 12 there is a formula φ which defines L1. From
the assumption of this lemma, there is a formula ψ which
defines the language L2. Lemma 13 gives a formula f(ψ) such
that σ(w) ∈ L2 if and only if w ∈ L(f(ψ)). Thus the formula
φ ∧ f(ψ) recognize the language h−1(τ).

Finally, we show the other direction of the above lemma. We
observe that any LTL[S,U] formula can be built by iteratively
substituting formulas of operator depth one [22].

Lemma 15. Let α be an LTL[S,U] formula. Then L(α) is
recognized by weak block products of Ml and Mr.

Proof: The proof is by induction on the operator depth of
the formula α (see Proposition 5. in [21] for a similar proof).
Let k be the operator depth of α. Lemma 11 gives the base
case of operator depth one formulas. We will now prove the
lemma when k > 1. Let us assume Σ to be the alphabet of α.
Let Γ = {γ1, . . . , γn} be all the subformulas of α of operator
depth less than or equal to one (γis are formulas over Σ). Let
∆ = {a1, . . . , an} be a set. Then, there exists a formula β over
P(∆) whose operator depth is k− 1 and such that β[ai → γi]
is the formula α. We now show that α can be recognized by
weak block products of Ml and Mr. By induction hypothesis,
β is recognized by an algebra N ∈ �∗w{Ml,Mr}. That is, there

exists a morphism g : P(∆)~ → N and T ⊆ N such that
g−1(T) = L(β).

From Lemma 11 we know there exists an algebra M ∈∏
Ml ×

∏
Mr and a morphism h : Σ~ → M and Si ⊆

M×Σ×M for i ≤ |Γ| such that ĥ−1(Si) = L#(γi). Consider
the morphism which extends f : M × Σ × M → P(∆)
where f(m, b, n) = {ai|(m, b, n) ∈ Si}. Let the state-based
transducer be σ : Σ⊕ → (M × Σ ×M)⊕. Now for a word
w ∈ Σ⊕ we claim the following

(f(σ(w)), x) |= β ⇔ (w, x) |= β[ai 7→ γi]

This can be proved by induction on the formula β. It is clear
that the claim holds when β is ai. The induction hypothesis
goes through easily. So, let us now consider the composition of
functions g ◦ f : M ×Σ×M → N where g(f(m, b, n)) ∈ N .
From the above claim we get that

w ∈ L(α)⇔ g(f(σ(w))) ∈ T

Now, using the morphisms h and g ◦ f , we can construct a
morphism into M�N that recognizes L(α). Note that, by
Lemma 10, M�N ∈ �∗w{Ml,Mr} This completes the proof
of the lemma.

We now state the main result of this section. Its proof follows
from the previous two lemmas.

Theorem 6. L(LTL[S,U]) = L(�∗w{Mr,Ml}).

We remark that, in our analysis, to simulate every substitution
we used one block product operation and vice versa. We believe
that, with little more work, one should be able to algebraically
characterize each class of k-operator depth formulas.

VI. CONCLUSION

We have incorporated block products into the recently
developed rich algebraic framework for regular languages
of countable words and provided a suitable block product
principle. Our applications to logic demonstrate the uses
of these constructs. More specificially, we have crucially
used them to arrive at a Schützenberger-McNaughton-Papert
theorem over countable words. We have also obtained a block-
product based algebraic characterization of LTL with until-since
temporal modalities.

We strongly believe that the block product construction
presented in this work is well-suited for classifying several
natural logics and the fragments thereof. Our work also exposes
the possibility of Krohn-Rhodes theorem for finite monoids
satisfying generalized associativity.

REFERENCES

[1] Nicolas Bedon, Alexis Bès, Olivier Carton, and Chloe Rispal. Logic
and rational languages of words indexed by linear orderings. Theory
Comput. Syst., 46(4):737–760, 2010.

[2] Alexis Bès and Olivier Carton. Algebraic characterization of FO for
scattered linear orderings. In Computer Science Logic, 25th International
Workshop / 20th Annual Conference of the EACSL, CSL 2011, pages
67–81, 2011.

[3] Véronique Bruyère and Olivier Carton. Automata on linear orderings. J.
Comput. Syst. Sci., 73(1):1–24, 2007.

[4] Olivier Carton. Wreath product and infinite words. Journal of Pure and
Applied Algebra, 153(2):129 – 150, 2000.

[5] Olivier Carton, Thomas Colcombet, and Gabriele Puppis. An algebraic
approach to MSO-definability on countable linear orderings. J. Symb.
Log., 83(3):1147–1189, 2018.

[6] Thomas Colcombet and A. V. Sreejith. Limited set quantifiers over
countable linear orderings. In Automata, Languages, and Programming -
42nd International Colloquium, ICALP 2015, Proceedings, Part II, pages
146–158, 2015.

[7] Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small
fragments of first-order logic over finite words. Int. J. Found. Comput.
Sci., 19(3):513–548, 2008.

[8] E. Allen Emerson. Modal and temporal logics. Handbook of theoretical
computer science, B:995–1072, 1990.

[9] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logic:
Mathematical Foundations and Computational Aspects, Volume 1. Oxford
University Press, Oxford, 1994.

[10] Amaldev Manuel and A. V. Sreejith. Two-variable logic over countable
linear orderings. In 41st International Symposium on Mathematical
Foundations of Computer Science, MFCS 2016, pages 66:1–66:13, 2016.

[11] Robert McNaughton and Seymour A. Papert. Counter-Free Automata
(M.I.T. Research Monograph No. 65). The MIT Press, 1971.

[12] Jean-Eric Pin. Handbook of formal languages, vol. 1. chapter Syntactic
Semigroups, pages 679–746. Springer-Verlag, Berlin, Heidelberg, 1997.

[13] Jean-Éric Pin. Mathematical foundations of automata theory. 2018.
[14] Michael O. Rabin. Decidability of second-order theories and automata

on infinite trees. Transactions of the American Mathematical Society,
141:1–35, 1969.

[15] Chloe Rispal and Olivier Carton. Complementation of rational sets
on countable scattered linear orderings. Int. J. Found. Comput. Sci.,
16(4):767–786, 2005.

[16] Joseph G. Rosenstein. Linear orderings. Academic Press New York,
1981.

[17] Marcel-Paul Schützenberger. On finite monoids having only trivial
subgroups. Inf. Contr., 8:190–194, 1965.

[18] Howard Straubing. Finite automata, formal logic, and circuit complexity.
Birkhauser Verlag, Basel, Switzerland, 1994.

[19] Howard Straubing and Denis Thérien. Weakly iterated block products
of finite monoids. In LATIN 2002: Theoretical Informatics, 5th Latin
American Symposium, Proceedings, pages 91–104, 2002.

[20] Pascal Tesson and Denis Thérien. Logic meets algebra: the case of
regular languages. Logical Methods in Computer Science, 3(1), 2007.

[21] Denis Thérien and Thomas Wilke. Temporal logic and semidirect
products: An effective characterization of the until hierarchy. SIAM
J. Comput, 31(3):777–798, 2001.

[22] Denis Thérien and Thomas Wilke. Nesting until and since in linear
temporal logic. Theory Comput. Syst, 37(1):111–131, 2004.

[23] Wolfgang Thomas. Handbook of formal languages, vol. 3. chapter
Languages, Automata, and Logic, pages 389–455. Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

[24] Philipp Weis and Neil Immerman. Structure theorem and strict alternation
hierarchy for FOˆ2 on words. Logical Methods in Computer Science,
5(3), 2009.

[25] Thomas Wilke. An algebraic theory for regular languages of finite and
infinite words. IJAC, 3(4):447–490, 1993.

