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 appendix to the Computing Curricula - Computer Engineering (CE2004) report defines the 
wledge domain that is likely to appear in an undergraduate curriculum in computer engineering.  

e underlying rationale for this categorization scheme and additional details about its history, 
cture, and application are included in the body of the report.  Included with this appendix is a 

summary of the fundamental concepts that are necessary to understand the recommendations.   
 
 
A.1  Introduction 
 
This model curriculum was developed by first defining the primary disciplines that make up the body of 
knowledge for computer engineering.  Some of these areas contain material that should be part of all 
computer engineering curricula.  However, other areas contain material that might or might not be part of 
such curricula, depending on the specific educational objectives of a program.  The areas that contain 
material that should be included in all computer engineering curricula are:  
 

CE-ALG* Algorithms  
CE-CAO Computer Architecture and Organization  
CE-CSE  Computer Systems Engineering  
CE-CSG  Circuits and Signals  
CE-DBS  Database Systems  
CE-DIG  Digital Logic  
CE-DSC* Discrete Structures 
CE-DSP  Digital Signal Processing  
CE-ELE  Electronics  
CE-ESY  Embedded Systems  
CE-HCI* Human-Computer Interaction 
CE-NWK Computer Networks  
CE-OPS* Operating Systems  
CE-PRF* Programming Fundamentals  
CE-PRS    Probability and Statistics 
CE-SPR* Social and Professional Issues  
CE-SWE* Software Engineering  
CE-VLS  VLSI Design and Fabrication 

 
           * Consult the CC2001 Computer Science Report for more detail 
 
A.2  Structure of the Body of Knowledge 
 
The body of knowledge has a hierarchical organization comprising three levels described as follows. 

 The highest level of the hierarchy is the knowledge area, which represents a particular disciplinary 
sub-field.  A three-letter abbreviated tag identifies each area, such as CE-DIG for “Digital Logic” 
and CE-CAO for “Computer Architecture and Organization.”   
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 Each knowledge area is broken down into smaller divisions called knowledge units, which represent 
individual thematic modules within an area.  A numeric suffix added to the area name identifies each 
knowledge unit.  For example, CE-CAO3 is a knowledge unit on “Memory System Organization and 
Architecture” within the CE-CAO knowledge area.   

 A set of topics, which are the lowest level of the hierarchy, further subdivides each knowledge unit.  
A group of learning outcomes addresses the related technical skills associated with each knowledge 
unit.  Section 4.3 expands the discussion on learning outcomes. 

 
 To differentiate knowledge areas and knowledge units in computer engineering from those that may 
have the same or similar names in the other four curriculum areas associated with this computing 
curriculum project, the prefix “CE-” accompanies all knowledge areas and units in computer engineering.  
Reflecting the examples above, therefore, tags such as CE-DIG for knowledge areas and CE-CAO3 for 
knowledge units appear throughout the report.  
 
 
A.3  Core and Elective Units 
 
One of the basic goals was to keep the required component of the body of knowledge as small as possible.  
To implement this principle, a minimal core has been defined, comprising those units for which there is 
broad consensus that the corresponding material is essential to anyone obtaining an undergraduate degree 
in computer engineering.  Units taught as part of an undergraduate program that fall outside the core, are 
elective to the curriculum, even though some programs may choose to require them. 
 
The following points are emphasized: 

 The core is not a complete curriculum.   
The intention of the core is minimal and it does not constitute a complete undergraduate curriculum.  
Every undergraduate program must include additional elective knowledge units from the body of 
knowledge.  This report does not define what those units should be; that decision is the choice of 
each institution.  A complete curriculum must also contain supporting areas covered through courses 
in mathematics, natural sciences, business, humanities, and/or social sciences.  Chapter 7 presents 
some detail in this area.   

 
 Core units are not necessarily limited to a set of introductory courses taken early in the 
undergraduate curriculum.  
Many of the knowledge units defined as core are indeed introductory.  However, some core 
knowledge can appear only after students have developed significant background in the field.  For 
example, the Task Force believes that all students must develop a significant application at some 
point during their undergraduate program.  The material that is essential to successful management 
of projects at this scale is obviously part of the core, since it is required of all students.  At the same 
time, the project course experience is very likely to come toward the end of a student's 
undergraduate program.  Similarly, introductory courses may include elective knowledge units 
together with the coverage of core material.  From a practical point of view, the designation core 
simply means required and says nothing about the level of the course in which it appears.  

 
A.4  Time Required to Cover a Knowledge Unit 
 
For consistency with the Computer Science Report and earlier curriculum reports, we have chosen to 
express time in hours, corresponding to the in-class time required to present that material in a traditional 
lecture-oriented format.  To dispel any potential confusion, however, it is important to underscore the 
following observations about the use of lecture hours as a measure. 

The Task Force does not seek to endorse the lecture format.  Even though the Task Force has used a 
metric with its roots in a classical lecture-oriented form, we believe there are other styles —
particularly given recent improvements in educational technology—that can be at least as effective.  
For some of these styles, the notion of hours may be difficult to apply.  Even so, the time 
specifications should at least serve as a comparative measure, in the sense that a five-hour unit will 
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presumably take roughly five times as much time to cover as a one-hour unit, independent of the 
teaching style. 

The hours specified do not include time spent outside of a class.  The time assigned to a unit does not 
include the instructor’s reparation time of the time students spend outside of class.  As a general 
guideline, the amount of out-of-class work for a student is approximately two to three times the in-
class time.  Thus, a unit that requires three hours of instruction typically entails a total of nine to 
twelve hours (three in class and six to nine outside). 

The hours listed for a unit represent a minimum level of coverage.  We should interpret the time 
measurements assigned for each unit as the minimum amount of time necessary to enable a student 
to perform the learning outcomes for that unit.  It is always appropriate to spend more time on a unit 
than the suggested minimum. 

The 420 core hours specified do not include time for laboratories, design, math, science, etc. These 
activities and subjects should be added to the 420 core hours as necessary to provide supporting 
material and preparation for engineering practice. 

 
The number of core hours was deliberately kept to a minimum to allow programs the flexibility to 
emphasize selected areas in accordance with the specific objectives, prerequisite structure, and level of 
student preparation in  that program. Therefore, the actual time devoted to a particular core topic will vary 
from program to program, with some programs spending more than the specified minimum number of 
hours on selected core topics, while devoting only the minimum level of coverage to others.   
 
 
A.5  Summary of the Computer Engineering Body of Knowledge 
 
A summary of the Body of Knowledge—showing the areas, units, which units are core, and the minimum 
time required for each—appears as Table A-1.  The details of each section of the body of knowledge follow 
as separate sections.   
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Table A-1  The Computer Engineering Body of Knowledge 

Computer Engineering Knowledge Areas and Units 
CE-ALG  Algorithms  [30 core hours] 

  CE-ALG0  History and overview [1] 
*CE-ALG1  Basic algorithmic analysis [4] 
*CE-ALG2  Algorithmic strategies [8] 
*CE-ALG3  Computing algorithms [12] 
*CE-ALG4  Distributed algorithms [3] 
*CE-ALG5  Algorithmic complexity [2] 
*CE-ALG6  Basic computability theory  

CE-CAO  Computer Architecture and Organization [63 core 
hours] 

CE-CAO0  History and overview [1] 
CE-CAO1  Fundamentals of computer architecture [10] 
CE-CAO2  Computer arithmetic [3] 
CE-CAO3  Memory system organization and architecture [8] 
CE-CAO4  Interfacing and communication [10] 
CE-CAO5  Device subsystems  [5] 
CE-CAO6  Processor systems design [10] 
CE-CAO7  Organization of the CPU  [10] 
CE-CAO8  Performance  [3] 
CE-CAO9  Distributed system models [3] 
CE-CAO10  Performance enhancements 

CE-CSE  Computer Systems Engineering  [18 core hours] 
CE-CSE0  History and overview [1] 
CE-CSE1  Life cycle [2] 
CE-CSE2  Requirements analysis and elicitation [2] 
CE-CSE3  Specification [2] 
CE-CSE4  Architectural design [3] 
CE-CSE5  Testing [2] 
CE-CSE6  Maintenance [2] 
CE-CSE7  Project management [2] 
CE-CSE8  Concurrent (hardware/software) design [2] 
CE-CSE9  Implementation 
CE-CSE10 Specialized systems 
CE-CSE11 Reliability and fault tolerance 

CE-CSG  Circuits and Signals  [43 core hours]  
CE-CSG0  History and overview [1] 
CE-CSG1  Electrical Quantities [3] 
CE-CSG2  Resistive Circuits and Networks [9] 
CE-CSG3  Reactive Circuits and Networks [12] 
CE-CSG4  Frequency Response [9] 
CE-CSG5  Sinusoidal Analysis [6] 
CE-CSG6  Convolution [3] 
CE-CSG7  Fourier Analysis 
CE-CSG8  Filters 
CE-CSG9  Laplace Transforms 
 

CE-DBS  Database Systems  [5 core hours] 
  CE-DBS0  History and overview [1] 
*CE-DBS1  Database systems [2] 
*CE-DBS2  Data modeling [2]  
*CE-DBS3  Relational databases 
*CE-DBS4  Database query languages 
*CE-DBS5  Relational database design 
*CE-DBS6  Transaction processing 
*CE-DBS7  Distributed databases 
*CE-DBS8  Physical database design 
 

CE-DIG  Digital Logic  [57 core hours]  
CE-DIG0  History and overview [1] 
CE-DIG1  Switching theory [6] 
CE-DIG2  Combinational logic circuits [4] 
CE-DIG3  Modular design of combinational circuits [6] 
CE-DIG4  Memory elements [3] 
CE-DIG5  Sequential logic circuits [10] 
CE-DIG6  Digital systems design [12] 
CE-DIG7  Modeling and simulation [5] 
CE-DIG8  Formal verification [5] 
CE-DIG9  Fault models and testing [5] 

   CE-DIG10 Design for testability 
CE-DSP  Digital Signal Processing  [17 core hours] 
CE-DSP0  History and overview [1]  
CE-DSP1  Theories and concepts [3] 
CE-DSP2  Digital spectra analysis [1] 
CE-DSP3  Discrete Fourier transform [7] 
CE-DSP4  Sampling [2] 
CE-DSP5  Transforms [2] 
CE-DSP6  Digital filters [1] 
CE-DSP7  Discrete time signals  
CE-DSP8  Window functions 
CE-DSP9  Convolution 

  CE-DSP10 Audio processing 
  CE-DSP11 Image processing 

CE-ELE  Electronics  [40 core hours] 
CE-ELE0  History and overview [1] 
CE-ELE1  Electronic properties of materials [3] 
CE-ELE2  Diodes and diode circuits [5] 
CE-ELE3  MOS transistors and biasing [3] 
CE-ELE4  MOS logic families [7] 
CE-ELE5  Bipolar transistors and logic families [4] 
CE-ELE6  Design parameters and issues [4] 
CE-ELE7  Storage elements [3] 
CE-ELE8  Interfacing logic families and standard buses [3] 
CE-ELE9  Operational amplifiers [4] 
CE-ELE10 Circuit modeling and simulation [3]  
CE-ELE11 Data conversion circuits 
CE-ELE12 Electronic voltage and current sources 
CE-ELE13 Amplifier design 
CE-ELE14 Integrated circuit building blocks 

 CE-ESY  Embedded Systems  [20 core hours] 
CE-ESY0  History and overview [1] 
CE-ESY1  Embedded microcontrollers [6] 
CE-ESY2  Embedded programs [3] 
CE-ESY3  Real-time operating systems [3] 
CE-ESY4  Low-power computing [2] 
CE-ESY5  Reliable system design [2] 
CE-ESY6  Design methodologies [3] 
CE-ESY7  Tool support 
CE-ESY8  Embedded multiprocessors 
CE-ESY9  Networked embedded systems 
CE-ESY10 Interfacing and mixed-signal systems 

CE-HCI  Human-Computer Interaction  [8 core hours] 
  CE-HCI0  History and overview [1] 
*CE-HCI1  Foundations of human-computer interaction [2] 
*CE-HCI2  Graphical user interface [2] 
*CE-HCI3  I/O technologies [1] 
*CE-HCI4  Intelligent systems [2] 
*CE-HCI5  Human-centered software evaluation 
*CE-HCI6  Human-centered software development 
*CE-HCI7  Interactive graphical user-interface design 
*CE-HCI8  Graphical user-interface programming 
*CE-HCI9  Graphics and visualization 
*CE-HCI10 Multimedia systems 
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CE-NWK  Computer Networks  [21 core hours] 
CE-NWK0  History and overview [1] 
CE-NWK1  Communications network architecture [3] 
CE-NWK2  Communications network protocols [4] 
CE-NWK3  Local and wide area networks [4] 
CE-NWK4  Client-server computing [3] 
CE-NWK5  Data security and integrity [4] 
CE-NWK6  Wireless and mobile computing [2] 
CE-NWK7  Performance evaluation 
CE-NWK8  Data communications 
CE-NWK9  Network management  
CE-NWK10 Compression and decompression  

CE-OPS  Operating Systems  [20 core hours] 
  CE-OPS0  History and overview [1] 
*CE-OPS1  Design principles [5] 
*CE-OPS2  Concurrency [6] 
*CE-OPS3  Scheduling and dispatch [3] 
*CE-OPS4  Memory management [5] 
*CE-OPS5  Device management 
*CE-OPS6  Security and protection 
*CE-OPS7  File systems 
*CE-OPS8 System performance evaluation 

CE-PRF  Programming Fundamentals  [39 core hours] 
  CE-PRF0  History and overview [1] 
*CE-PRF1  Programming Paradigms [5] 
*CE-PRF2  Programming constructs [7] 
*CE-PRF3  Algorithms and problem-solving [8] 
*CE-PRF4  Data structures [13]  
*CE-PRF5  Recursion [5] 
*CE-PRF6  Object-oriented programming 
*CE-PRF7  Event-driven and concurrent programming 
*CE-PRF8  Using APIs 

CE-SPR  Social and Professional Issues  [16 core hours] 
  CE-SPR0  History and overview [1] 
*CE-SPR1  Public policy [2] 
*CE-SPR2  Methods and tools of analysis [2] 
*CE-SPR3  Professional and ethical responsibilities [2] 
*CE-SPR4  Risks and liabilities [2] 
*CE-SPR5  Intellectual property [2] 
*CE-SPR6  Privacy and civil liberties [2] 
*CE-SPR7  Computer crime [1] 
*CE-SPR8  Economic issues in computing [2] 
*CE-SPR9  Philosophical frameworks 

CE-SWE  Software Engineering  [13 core hours] 
CE-SWE0  History and overview [1] 
*CE-SWE1  Software processes [2] 
*CE-SWE2  Software requirements and specifications [2] 
*CE-SWE3  Software design [2] 
*CE-SWE4  Software testing and validation [2] 
*CE-SWE5  Software evolution [2] 
*CE-SWE6  Software tools and environments [2]  
*CE-SWE7  Language translation 
*CE-SWE8  Software project management 
*CE-SWE9  Software fault tolerance 
 

CE-VLS  VLSI Design and Fabrication  [10 core hours] 
CE-VLS0   History and overview [1] 
CE-VLS1   Electronic properties of materials [2] 
CE-VLS2   Function of the basic inverter structure [3] 
CE-VLS3   Combinational logic structures [1] 
CE-VLS4   Sequential logic structures [1] 
CE-VLS5   Semiconductor memories and array structures [2] 
CE-VLS6   Chip input/output circuits  
CE-VLS7   Processing and layout  
CE-VLS8   Circuit characterization and performance  
CE-VLS9   Alternative circuit structures/low power design 
CE-VLS10 Semi-custom design technologies 
CE-VLS11 ASIC design methodology 

 
 

Mathematics Knowledge Areas and Units 
CE-DSC  Discrete Structures  [33 core hours] 

  CE-DSC0  History and overview [1] 
*CE-DSC1  Functions, relations, and sets [6] 
*CE-DSC2  Basic logic [10] 
*CE-DSC3  Proof techniques [6] 
*CE-DSC4  Basics of counting [4] 
*CE-DSC5  Graphs and trees [4] 
*CE-DSC6  Recursion [2] 

CE-PRS  Probability and Statistics  [33 core hours] 
CE-PRS0  History and overview [1] 
CE-PRS1  Discrete probability [6] 
CE-PRS2  Continuous probability [6] 
CE-PRS3  Expectation [4] 
CE-PRS4  Stochastic Processes [6] 
CE-PRS5  Sampling distributions [4] 
CE-PRS6  Estimation [4] 
CE-PRS7  Hypothesis tests [2]  
CE-PRS8  Correlation and regression  

 
  * Consult the CC2001 Report [ACM/IEEECS, 2001] for more detail on these knowledge units 

-  A.5  - 



Computing Curricula - Computer Engineering   Appendix A - Body of Knowledge  
Final Report   2004 December 12 
 
 
  
A.6  Comments on Knowledge Areas  
 
The following sections provide comments on the individual areas in the computer engineering body of 
knowledge.  They appear here to help the reader understand how these areas contribute to the overall 
computer engineering curriculum.   
 
 
A.6.1 Comments on Algorithms 
 
Algorithms are fundamental to computer engineering.  The real-world performance of any software or 
hardware system depends on two things: (1) the algorithms chosen, and (2) the suitability and efficiency of 
the implementation.  Good algorithm design is, therefore, crucial for the performance of all systems.  
Moreover, the study of algorithms provides insight into the intrinsic nature of the problem as well as 
possible solution techniques independent of programming language, computer hardware, or any other 
implementation aspect. 
 An important part of computing is the ability to select algorithms appropriate to particular purposes 
and to apply them, recognizing both the likelihood that multiple reasonable solutions exist and the 
possibility that no suitable algorithm may exist.  This facility relies on understanding the range of 
algorithms that address an important set of well-defined problems, recognizing their strengths and 
weaknesses, and their suitability in particular contexts.  Efficiency is a pervasive theme throughout this 
area. 
 
 
A.6.2 Comments on Computer Architecture and Organization 
 
Computer architecture is a key component of computer engineering and the practicing computer engineer 
should have a practical understanding of this topic.  It is concerned with all aspects of the design and 
organization of the central processing unit and the integration of the CPU into the computer system itself.  
Architecture extends upward into computer software because a processor’s architecture must cooperate 
with the operating system and system software.  It is difficult to design an operating system well without 
knowledge of the underlying architecture.  Moreover, the computer designer must have an understanding of 
software in order to implement the optimum architecture.     
 The computer architecture curriculum has to achieve multiple objectives.  It must provide an overview 
of computer architecture and teach students the operation of a typical computing machine.  It must cover 
basic principles, while acknowledging the complexity of existing commercial systems.  Ideally, it should 
reinforce topics that are common to other areas of computer engineering; for example, teaching register 
indirect addressing reinforces the concept of pointers in C. Finally, students must understand how various 
peripheral devices interact with, and how they are interfaced to a CPU.   
 
 
A.6.3 Comments on Computer Systems Engineering 
 
Computer engineers build systems containing hardware and software components, usually as part of a 
larger system.  Included is the development of new devices such as digital camera, hand-held computers, 
location aware systems, etc.  Embedded computer systems developments are becoming pervasive.  
 We must make decisions regarding the way to design to have maximum impact and effect at the 
system level.  Decisions have to be made about alternative approaches, trade-offs need to be addressed, and  
decisions on all these matters need to be justified on grounds of technical insight and judgment.  Often the 
computer engineer will be part of a multi-disciplinary team and will have to react accordingly.   
 
 
A.6.4 Comments on Circuits and Signals 
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Circuits and signals are foundational material for computer engineering.  These areas provide the basic 
knowledge for the design of the circuits used to implement computers.  A knowledge of the electrical 
circuits used to implement digital circuits and computers should include basic electrical quantities, resistive 
and reactive circuits, sinusoidal analysis, convolution, and frequency selective circuits. This is a very broad 
area and one should expect a great deal of variation between programs for the coverage of topics outside of 
the core. 
 
 
A.6.5 Comments on Database Systems 
 
Typically, users of computers have to deal with massive amounts of information on a daily basis; there are 
e-mails, documents, records, addresses, web sites and many other kinds of information.  In the context of 
technical development, there can be specifications, designs, tests, implementations, different tools and 
different versions of these tools; all of these can relate to hardware, software, communications, and so on. 
 Database systems are designed to maintain and manage large collections of information, including 
relationships between elements and access to data. The computer engineering student needs to be able to 
develop conceptual and physical data models, determine what methods and techniques are appropriate for a 
given problem, and be able to select and implement an appropriate solution that reflects all suitable 
constraints, including scalability and usability. 
 
 
A.6.6 Comments on Digital Logic 
 
The logic design area covers the digital building blocks, tools, and techniques in the design of computers 
and other digital systems.  Emphasis is on a building-block approach.  Extensive core material is included 
in this area as digital logic design is one of the topic areas that differentiate computer engineers from 
electrical engineers and computer scientists. This core material covers a variety of basic topics, including 
switching theory, combinational and sequential logic circuits, and memory elements.  
 Topics of a more advanced nature include design with programmable logic and field-programmable 
gate arrays (FPGAs), modeling and simulation, digital system design, verification, and fault models and 
testing. 
 
 
A.6.7 Comments on Discrete Structures 
 
The area of discrete structures is foundational material for computer engineering, including important 
material from such areas as set theory, logic, methods of proofs, graph theory, combinatorics, and 
recursion.   The material in discrete structures is pervasive in the areas of data structures and algorithms.  
As the field of computer engineering matures, more and more sophisticated analysis techniques affect 
practical problems.  To understand the computational techniques of the future, today’s students will need a 
strong background in discrete structures. 
 It is important to remember that the study of discrete structures must occur in the context of computer 
engineering.  Wherever possible, reference should include engineering situations or settings and the topics 
in discrete structures should integrate with themes from computer engineering.  It is important to emphasize 
application rather than just theory.   
 Finally, we note that while areas often have somewhat fuzzy boundaries, this is especially true for 
discrete structures.  We have assembled a body of material of a mathematical nature that must be included 
in a computer engineering education and that computer engineering educators know well enough to specify 
it in detail.  However, the decision about where to draw the line between particular knowledge areas on the 
one hand, and topics left only as supporting mathematics on the other, was inevitably somewhat arbitrary.   
 
 
A.6.8 Comments on Digital Signal Processing 
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Digital signal processing can be applied to the transformation, synthesis and analysis of data. For 
example, when modeling a communication channel, filters, generators and analyzers can be used to 
remove, add or measure noise in processing audio, images and video.   Digital signal processing can also 
involve domain-specific symbolic processing, which is typically named for the type of data used for input 
and output. For example, if we input numerical data and output symbolic data, we call the field pattern 
recognition. If we input voice and output text, we call it voice recognition. If we input images and output 
symbols, we call it computer or machine vision. If we input text and output voice, we call it voice synthesis. 
Using the broadest interpretation of the digital signal processing term, any of these areas could be included 
when selecting courses that support the digital signal processing domain. 

Most broadly speaking, the kind of numerical digital signal processing performed is a function of the 
dimensionality of the data. In one-dimension, a signal can be generated by any single-valued numerical 
function or digitized from any time-varying form of energy. Examples include pressure waves (voice, 
audio, etc.), sensor measurements (temperature, range-to-target, speed), sensor fusion (i.e., mechanisms to 
estimate the state of a plant given a model and multiple sensors), etc.   In two-dimensions, digital signal 
processing is a kind of numerical data processing that deals with images (typically called image 
processing). In three-dimensions digital signal processing is sometimes called image sequence processing 
or video processing.  

Digital signal processing is a broad area. It is expected that variation will exist among programs 
outside of the core. 
 
 
A.6.9 Comments on Electronics 
 
Electronics is foundational material for computer engineering.  These areas provide the basic knowledge 
for the design of the electronic circuits used to implement computers.  Basic core material includes the 
electronic properties of materials, diodes, logic families and storage elements.  More advanced topics 
include design parameters, interfacing and buses, circuit modeling and simulation, and operational 
amplifiers. This is a very broad area and it is expected that there will be a great deal of variation between 
programs in the coverage of topics outside of the core. 
 
 
A.6.10 Comments on Embedded Systems 
 
Almost every electronic appliance and device today uses embedded systems.  Cell phones, automobiles, 
toasters, televisions, airplanes, medical equipment, and a host of other devices, products, and applications 
use embedded systems.  Such systems include microcontrollers, embedded programs, and real-time 
operating systems.  These systems requires a conscious effort to produce the most reliable product possible 
requiring the utmost diligence in system design and in design methodologies.  Indeed, these designs often 
reflect the design of low power systems and tool support.     
 
 
A.6.11 Comments on Human-Computer Interaction 
 
The design and development of displays, alarms, and interfaces for small or large screens (some of which 
may involve interaction) is an activity captured in the study of the human computer interface and in a study 
of human computer interaction.  This discipline is increasingly software based and design needs require 
guidance by insights from psychology and informed by an appreciation of human diversity including 
matters such as colored blindness and deafness; in these circumstances, multimedia approaches often have 
a role to play.  It is important to note that in certain applications there are crucial requirements for 
reliability and other kinds of performance that have implications for matters such as safety and security. 
 Emphasis is placed on understanding human reactions to displays of various kinds and on human 
behavior in the context of interactive objects.  Based on these, students need to understand the principles 
associated with the evaluation of interfaces including those that embody interaction.  Students need to 
know the principles and guidelines that reflect best practice in the design, development, and maintenance of 
interfaces for multiple types of systems.  
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A.6.12 Comments on Computer Networks 
 
The number of computer networks is increasing dramatically.  From small offices to entire countries, 
computer networks have become the heart of electronic communication today.  Using established protocols, 
these local and wide area networks have become the conduit for servers and clients.  Of interest today is 
data integrity and security as well as the “right” to the information communicated.  With wireless and 
mobile computing, it has become even more essential that companies and governments preserve the 
integrity of such communication vehicles.  Increasingly, the use of data compression has helped the 
efficiency of data communications, where the stress on performance is an increasing concern.   
 
 
A.6.13 Comments on Operating Systems 
 
An operating system defines a software interface of the computer hardware and the architecture with which 
computer engineers can control and exploit the hardware to provide maximum benefit to the user.  It also 
manages sharing of resources (hardware and software) among the computer’s users (user programs and 
systems programs).   
 Student should understand the basic principles and the purposes of an operating system prior to a study 
of digital instrumentation and embedded systems.  It is necessary to addresses both the use of operating 
systems (externals) and their design and implementation (internals).  Many of the ideas involved in 
operating system use have wider applicability across the field of computer engineering such as concurrent 
programming.  Studying internal design has relevance in such diverse areas as fault tolerance, algorithm 
design and implementation, modern device development, building virtual environments, building secure 
and safe systems, network management, and many other areas. 
 
 
A.6.14 Comments on Programming Fundamentals 
 
Competency in a programming language is prerequisite to the study of computer engineering.  
Undergraduate programs must teach students how to use at least one programming language.  The 
difficulty of achieving the necessary level of fluency in a programming language is further complicated by 
the need to include many advanced techniques.  Students should cover the core topics in this unit to receive 
exposure to the basic pieces that should be covered independent of a particular programming language as 
programming languages tend to come and go over the years. 
 Object-oriented programming, event-driven applications, and the use of extensive APIs (application 
programming interfaces) have become fundamental tools that some computer engineering students need 
early in their academic program.  These concepts may be included in a program that only teaches an object-
oriented language such as C++ or Java.  
 
 
A.6.15 Comments on Probability and Statistics 
 
The topics of probability and statistics provide important insights into a range of topics of fundamental 
importance to the computer engineer.  For example, all issues of reliability and dependability rely on an 
understanding of these topics.  However, additionally, they play fundamental roles in testing and evaluation 
(of hardware, software, and communications systems) where one must guarantee levels of performance.  
Further uses of the topics are available in a wide variety of areas: searching, data structure design and 
implementation (hash tables), computer architecture (cache concerns), operating systems (working set 
models), human computer interaction (experimentation), security and in aspects of intelligent systems.   
 
 
A.6.16 Comments on Social and Professional Issues 
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