CS 740: Problem Set 1: Due: 06:50 AM 06-Aug

- Please write (only if true) the honor code. If you used any source (person or thing) explicitly state it. This is an individual assignment.
- Submit two files in folder name hw01.zip on moodle
 - 1. readme.txt (case sensitive name. This <u>text</u> file contains identifying information, honor code, links to references used and reflection <u>essay</u> more on this later)
 - 2. hw01.pdf (case sensitive and don't add other characters) this file should have the solution.
 - 3. Do not include any group name or identification in submission files.
- 1. Construct a matrix with the required property or say why that is impossible:
 - (a) Column space contains $\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ and $\begin{bmatrix} 2\\-3\\5 \end{bmatrix}$, nullspace contains $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$

Answer: Not possible.

$$\mathbf{n}^{\top}\mathbf{v}_{1} = 1 \cdot 1 + 1 \cdot 2 + 1 \cdot (-3) = 0$$

 $\mathbf{n}^{\top}\mathbf{v}_{2} = 1 \cdot 2 + 1 \cdot (-3) + 1 \cdot 5 = 4 \neq 0$

Marking scheme: 4 marks. No partial credit.

(b) Row space contains $\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ and $\begin{bmatrix} 2\\-3\\5 \end{bmatrix}$, nullspace contains $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$

(c) $\mathbf{A}x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ has a solution and $\mathbf{A}^T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(d)	Every rov	v is orthogo	nal to every	column ((A is not	the zero	matrix)

(e) Columns add up to a column of zeros, rows add to a row of 1's

2. If $\mathbf{AB} = 0$ then the columns of \mathbf{B} are in the _____ of \mathbf{A} . The rows of \mathbf{A} are in the _____ of \mathbf{B} . Why can't \mathbf{A} and \mathbf{B} be 3 by 3 matrices of rank 2?

3. This system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ has no solution (they lead to 0 = 1):

$$x + 2y + 2z = 5$$

$$2x + 2y + 3z = 5$$

$$3x + 4y + 5z = 9$$

Find numbers y_1 , y_2 , y_3 to multiply the equations so they add to 0 = 1. You have found a vector \mathbf{y} in which subspace? Its dot product $\mathbf{y}^{\mathbf{T}}\mathbf{b}$ is 1, so no solution \mathbf{x} .