
On Transformations For Animation

Sharat Chandran Yatin Kulkarni Partho Nath

Indian Institute of Technology MarchFirst Banaras Hindu University

Bombay, India Chicago, USA Varanasi, India

sharat@cse.iitb.ernet.in yatin.kulkarni@marchFirst.com partho nath@hotmail.com

Abstract
This paper focuses on the transformation steps

involved in implementing an arbitrary generic two-
dimensional animation. For instance, we are inter-
ested in depicting the motion of the earth rotating,
and revolving around the sun, which could itself be
translating.

Unlike key-frame animation, the transformations
discussed in this work are described algorithmically
using certain primitives provided by an animation
algebra. Such a process is most useful in building
authoring systems and in virtual reality applications
where the programmer is `unaware' of the �nal use of
his work.

The usual method in producing an animation se-
quence is to divide the e�ect into parts and render ev-
ery part quickly, taking care to erase previous parts.
In key-frame animation, a trial and error procedure is
often adopted to generate intermediate positions when
a linearity assumption cannot be made. An alternate
method to generate a part is the use of a forward
matrix transformation of the initial model, where the
programmer needs to be aware of the parameters for
producing each part. In this paper, we provide two
methods to implement the algebra where the process
of obtaining intermediate positions is automated, and
analyse the complexity.
Keywords: Matrices, Transformations, Algorith-

mic animation, Algebra.

1 Introduction
In this paper, we are concerned with animation in

the context of the primitive operations rotation, scal-
ing, and translation. We consider a few scenario to
motivate our work.

1.1 Rotation with Translation

Consider the motion of a wheel on a 
at surface. As
the wheel rotates, it also moves forward. A point A on
the rim (representing a nail on a tire) thus undergoes
simultaneous rotation and translation and reaches A0.
It is possible to derive a closed from expression for the

curve (called as trachos) representing this motion. In
general, as we see below, a closed form expression is
impossible.

1.2 Multiple rotations

Consider, in a small way, how the solar system is
at any given instant, and the question: \Is the sun
in the line of sight from New Delhi?" Note that New
Delhi might be \away" from the sun (night time), or
the moon might be \in-between" (an eclipse).

To answer this question, we might model, in order,
the earth's rotation, its revolution around the sun, the
motion of other planetary bodies, and then a snapshot
of the system at the given time. A computer generated
picture at this point in time would then permit an easy
answer to the posed question. To depict the earth, for
instance, we model the earth as a sphere, and postu-
late an initial position for its center. The principal
task is to calculate future orientation and positions of
the earth. For simplicity, a \
at" approach is taken
and we model the problem simply in two-dimensions:
the earth then becomes a circle, with di�erent cities
appearing within the circle.as shown in �gure 1(a).

If the earth were to simply rotate around its cen-
ter, it will always appear as a circle, but the absolute
position of cities will change. It is common to calcu-
late the new positions as a matrix transformation of
the initial position. In mathematical terms, if P is a
matrix that represents the initial position, and P 0 rep-
resents the new position, then P 0 = RP , where R is a
well known matrix. However, since the center of the
earth also rotates about the sun, the position of cities
will, of course, change considerably with time. The
matrix needed for the transformation is a bit more
complicated. We don't have a closed form solution for
the general case.

1.3 Rotation with Scaling

The traditional potter starts working with a mound
of clay placed on a platform which constantly rotates.
As the base rotates, he is able to obtain desired shapes
by moulding. One might envisage this as a set of
points that get scaled while rotating.



(a) A snapshot of the Solar System

(not to scale)

(b) A potter's wheel

Figure 1: Possible scenarios

1.4 Animation Algebra

Given the three situations described above, it is
natural to ask how a point would appear as it under-
goes the e�ects of a multiple number of translations,
rotations, and scaling. In fact, this leads us to an al-
gebra consisting of the above three primitives, which
might be particularly useful in editing animation. The
physics of every case is bound to be di�erent, but we
ask the question: Given a transformation sequence,
how do we generate intermediate positions. In this
paper, we systematically consider the various issues
involved.

1.5 Algorithmic animation

The proposed problem (posed formally in Section 2)
also raises the issue of traditional key frame animation
versus, what we call, algorithmic animation. In key
frame animation, we are given two event points P and
P 0, and we are asked to de�ne the scene between P
and P 0. Implicit in this method is the assumption that
we know the path between P and P 0 precisely, or at
least, we are allowed to assume this (typically, linear).

In algorithmic animation, we are essentially given
P . The �nal position P 0 is algorithmically de�ned by
virtue of operations such as rotation and scaling. We
are asked to determine intermediate positions. As an
example, for the nail on the tire (trachos), we are given

P’

P

Key Frame 5

Key Frame 1

Key Frame 2

Key Frame 3

Key Frame 4

(a) Typical key frame anima-
tion

P1

Step 7

P’

P

P

P

P

P

2

3

4

5

6

P
Step 1

Step 2
Step 3
Step 4
Step 5
Step 6

(b) Application of matrices for
animation

P1

6

P

P’

P

P

P

P

P

2

3

4

5

(c) An alternative to calculate
intermediate positions

the initial position P . We are told that the nail reaches
a new position because of translation while rotation
by one turn. We are asked to generate intermediate
positions. In this speci�c case, we are fortunately able
to generate the path. If the �nal position is described
in an algorithmic way, the closed form expression for
the path is impossible.

Our notion of algorithmic animation is similar to
traditional forward animation (Figure 2(b)) in which
a programmer uses matrices to specify intermediate
positions. It di�ers, however, in the crucial aspect
that, in our case, the parameters for computing inter-
mediate positions are not explicitly speci�ed.

In other words, algorithmic animation is like key-



frame animation in that intermediate positions are not
speci�ed using any parameters generated. It is like for-
ward animation in that we use a hierarchy of embed-
ded matrices to generate the actual positions (once the
parameters for intermediate positions are computed
within the algorithm).

1.6 Summary of our work

In this paper, we introduce the problem of algorith-
mic animation algebra (examples of applicability are
indicated in Section 1.7). We also provide two solu-
tions for this problem: a matrix based method and a
geometric method. These solutions may be viewed as
\unraveling the matrix stack hierarchy," and are appli-
cable in their own right as an optimization technique
for matrix concatenation (as might appear in forward
animation). Note that we do not automatically com-
pute constraints involved in the physical world in this
work.

1.7 Application domain

As alluded earlier, the methods suggested in this
work would be most useful in an animation editing
system. An animation editor would be a superset of
a conventional picture editor, but would also allow an
editing sequence such as \Show the animation when
point A moves 100 units about another point B which
in turn rotates 35 degrees about point C which in turn
scales with respect to yet another point."

Further, this system would be even more useful in a
multimedia authoring system which allows one to de-
velop lessons for students to understand various con-
cepts in animation. A less gifted student might be
interested in only two levels of rotation, for instance
whereas an advanced student would be interested in a
very complicated situation. Extended further, a likely
domain for this work is in applications related to vir-
tual reality and modern 3-D gaming, where, the pro-
grammer is unlikely to know in advance what opera-
tions a user is likely to be interested in.

This work would not be particular interesting if the
objects to be modeled are so complex, that it is impos-
sible to break up the animation as a sequence of the
primitives supplied here. An example of this would be
a handkerchief falling on a table { it is better to go
directly to physics based modeling [1].

The rest of this paper is organized as follows. In the
next section, we specify the problem formally and fol-
low it up with generic solutions. Details of a straight-
forward method is given in Section 4. A new method
is proposed in Section 5. Finally, we conclude in Sec-
tion 6 with a summary of the paper and a tabular
comparison of both methods.

2 Problem De�nition

Given the assumption of a standard Cartesian co-
ordinate system, we de�ne an animation scenario as
follows:

� Each translation is speci�ed in terms of two vari-
ables, �x and �y, each representing the net
translation of a point parallel to the two axes.

� Each rotation is de�ned in terms of three vari-
ables, cx, cy and � , where (cx; cy) is the center
of rotation and � is the total angle of rotation
that each point must undergo.

� Each scaling is de�ned in terms of four variables,
sx, sy, �x, and �y, where (sx; sy) is the center of
scaling and �x and �y are the scale factors in the
X and Y directions, respectively.

� Any animation is speci�ed in terms of a combi-
nation of zero or more translations, zero or more
rotations and zero or more scalings.

The problem is now de�ned as follows: Perform an
animation by generating intermediate positions, given
a speci�cation in terms of some set of translations,
rotations, and scaling. The goal, of course, is to
perform this as eÆciently as possible.

2.1 The setting

An animation is performed by breaking up the en-
tire motion into a given, �nite number of steps, N .
Then, at each step each point must be transformed
by the appropriate amount (to be determined), erased
from its previous position and drawn at the new loca-
tion.

The number of steps required to perform an ani-
mation controls the speed of animation along with a
delay factor that may be introduced between each step
of animation.

An object may be de�ned as some �nite set of
points. To animate an object, the following procedure
is adopted (from the computational eÆciency point of
view).

� Perform some calculations (termed overheads in
this paper) common to all points that need not
be repeated for each individual point.

� Perform transformations on each individual
point.



3 Overview of the solutions

A matrix based solution (e.g., [2], [3]) would (i)
keep a copy of the original points, (ii) get the speci�-
cations for each translation, rotation and scaling, (iii)
at each step, calculate the transformation required for
each translation, rotation and scaling and generate the
corresponding matrix. (For example, if a translation
of 100 pixels must be done in �fty steps, the trans-
formation at the tenth step would be 20 pixels, or if
a rotation of 180 degrees must be completed in hun-
dred steps the transformation at the tenth step would
be calculated for 18 degrees.), and (iv) the matrices
are then multiplied to generate the �nal matrix and
this matrix is \applied" to each point undergoing the
animation. Figure 2(b) illustrates the paradigm.

One way to avoid matrix multiplications at run
time is to calculate the incremental transformation
that would be required at each step. This may be
achieved by generating the incremental transforma-
tion matrix for each speci�cation and then multiply-
ing the matrices before beginning the animation. We
see below (see Section 4.3) that this strategy is not
always possible, ruling out the possibility of an easy
way to embed the forward approach to algorithmic
animation. This has been seen before in the use of
quaternions [4, 5] for the simple case involving transla-
tion and rotation. Figure 2(c) describes this approach,
which we term as the di�erences approach.

We also propose a geometric approach based on
prior work [6]. The geometric method has essentially
three stages. In the �rst stage some preprocessing is
performed on an object. In the second stage the ac-
tual animation is displayed step by step and in the last
stage some amount of \resetting" may be required.
The geometric method is similar to the di�erences ap-
proach of the previous paragraph. However, the do-
main of situations that this method can handle is sig-
ni�cantly larger.

4 The matrix based method

In Section 4.1 we �rst describe the method for
translation, rotation, and scaling, and then explain in
some detail how these are combined. The power of the
method is apparent only in the latter cases (combina-
tion); the former is presented primarily for illustrative
purposes.

4.1 Elementary Operations

By elementary operations, we mean the operations
that involve only translation, or only rotation, or only
scaling. The gross deformation (i.e, the net result of
the speci�cation) in each of the three cases are given
by [7] the matrices Mt;Mr and Ms where

Mt =

0
@
1 0 �x

0 1 �y

0 0 1

1
A

Mr =

0
@
cos� � sin� cx(1� cos�) + cy sin�
sin� cos� cy(1� cos�)� cx sin�
0 0 1

1
A

and

Ms =

0
@
�x 0 (1� �x)sx
0 �y (1� �y)sy
0 0 1

1
A

The coordinates of the points are in a column vector
format. For instance, the net result P 0 =MrP in the
case of rotation.

4.2 The di�erences approach

Once the net result is known, we need to obtain
intermediate positions. In each one of the three ad-
mittedly trivial cases, we have the situation where we
are given a position vector P and a matrix M such
that the new vector P 0 is obtained as P 0 =M � P .

In the di�erences approach, the goal is to compute
a di�erence matrix A such that the N intermediate
positions P1 = A � P , P2 = A � P1, and so on, till
PN = A� PN�1 are obtained.

In general, then A is the N th root of the transfor-
mation matrix which achieves the same e�ect in one
step.

Fortunately, in the three cases under consideration,
we are able to obtain A. In particular, the di�erences
matrix At, Ar and As for pure translation, rotation
and scaling are

At =

0
@
1 0 Æx
0 1 Æy
0 0 1

1
A (1)

Ar =

0
@
cos � � sin � cx(1� cos �) + cy sin �
sin � cos � cy(1� cos �)� cx sin �
0 0 1

1
A (2)

and

As =

0
@

x 0 (1� 
x)sx
0 
y (1� 
y)sy
0 0 1

1
A (3)



Here, Æx = �x=N , Æy = �y=N , 
x =
log�1((log �x)=N), 
y = log�1((log �y)=N) and � =
�=N

It can be shown [8] that the matrices At, Ar and
As are indeed the N th roots of the matrices Mt, Mr

and Ms de�ned earlier. To summarize, to handle any
elementary operation, we compute one of the relevant
matrices above, and at run time, apply, for each point,
the desired matrix. Once an intermediate position is
obtained, the algorithm applies the same matrix to
obtain a new intermediate position. The principal ad-
vantage of the di�erences approach is that the com-
putational complexity at run time is signi�cantly low;
however, as seen below, this method cannot be applied
in general.

4.3 A non-trivial case

Consider Fig 2 where a vertical slot indicated by
the shaded circle translates, and while it translates, it
also rotates.

Figure 2: The top view of a vertical slot is shown.
The slot on the left translates and rotates to reach the
position on the right wheel.

Since this case is a combination of translation and
rotation, we are in fact justi�ed in writing the �nal po-
sition of the slot as P 0 =MrMtP . In such situations,
we might (correctly) write the net transformation ma-
trix as

B =

0
@

cos� � sin� �x cos �� �y sin� + cx(1 � cos�) + cy sin�
sin� cos� �x sin� + �y cos � + cy(1 � cos �)� cx sin�
0 0 1

1
A

We are tempted to write the di�erential transforma-
tion (using the notation of Section 4.2) as

A =

0
@

cos � � sin � Æx cos � � Æy sin � + cx(1 � cos �) + cy sin �
sin � cos � Æx sin � + Æy cos � + cy(1 � cos �) � cx sin �
0 0 1

1
A

It can, however, be shown that in all but pathological
situations, A does not serve the purpose.

4.4 The Full Matrix Approach

The previous section indicates that it is not always
easy to �nd the di�erence matrix. We are essentially
forced to calculate the N th root of a matrix. In fact,
if we had no way of knowing how a point reached its
�nal position from the start position, we would have

no recourse but to compute this quantity if we are to
determine intermediate positions. In this work, this is
not the unhappy situation. The �nal position is ob-
tained from the initial position using only three prim-
itives, namely, translation, rotation, and scaling.

Note that determining the N th root of a matrix is
not the same as �nding the root of the elements of a
matrix; for details see [9]. A further diÆculty with
the di�erences approach is that one may not be able
to �nd a real di�erence matrix since the N th root in
general could contain complex numbers.

We therefore abandon determining a single di�er-
ence matrix A. Instead, we compute N matrices Ai,
1 � i � N such that the N intermediate positions
P1 = A1�P , P2 = A2�P , and so on, till PN = AN�P
are obtained. This is the full matrix approach.

The �rst step in the full matrix approach is to de-
termine the sequence of primitives (determined by the
alphabet T, R and S) used in determining the �nal po-
sition. In the example of the previous section, the se-
quence is RT (indicating \rotation" and \translation")
although the string could be \long" in general. Let the
size of the string be m. Then each of the m primitives
will determine an incremental matrix aik , 1 � k � m
such that Ai is the product of these individual matri-
ces. Further, each aik can be computed fairly simply.

We �rst demonstrate the approach for sample cases
in the sequel.

4.4.1 Translation with Rotation

For the translating slot of �gure 2, the string is simply
RT. Here P1 = A1 � P where A1 = a11 � a12 where
a11 = Ar and a12 = At (See Equations 1 and 2). Next,
P2 = A2 � P where A2 = a21 � a22 and where a21 is
the square of the matrix a11 and a22 is the square of
the matrix a12 . In general, Pi = Ai � P where Ai =
ai1 � ai2 and where a11 is the ith root of the matrix
ai1 and where a12 is the ith root of the matrix ai2 .
Note that the �nal position is correctly determined by
the boundary conditions and the fact that we could
determine the N th root of the elementary cases. That
is, PN = RTP , where R and T represents the net
rotation by de�nition, and R = AN

r from Section 4.2.

4.4.2 Translation with Scaling

Was it unfortunate that we were unable to determine
the incremental matrix in the above case but had to
fall back to full matrix multiplication at run time?
We investigate further for the case of �gure 3 where
an elastic compressible ball falls down (translates) due
to gravity while simultaneously undergoing reduction



in size. Note that the use quaternions is precluded
when it comes to combining operations with scaling.

Figure 3: An elastic, compressible object traveling
through a funnel.

In this case, once again the gross deformation is
obtained from

M =

0
@

�x 0 �x�x + (1� �x)sx
0 �y �y�y + (1� �y)sy
0 0 1

1
A (4)

It is shown [8] by means of proof by contradiction
that presuming the di�erence matrix to be

A =

0
@


x 0 
xÆx + (1� 
x)sx
0 
y 
yÆy + (1� 
y)sy
0 0 1

1
A (5)

is incorrect.
Therefore, we return to the full matrix solution.

Here the editing sequence is ST.
For this case, P1 = A1 � P where A1 = a11 � a12

where a11 = As and a12 = At (See Equations 1 and
3). Next, P2 = A2 � P where A2 = a21 � a22 and
where a21 is the square of the matrix a11 and a22 is
the square of the matrix a12 . In general, Pi = Ai � P
where Ai = ai1 � ai2 and where a11 is the ith root
of the matrix ai1 and where a12 is the ith root of the
matrix ai2 .

4.4.3 The general case

We are now ready to describe the general case. The
animation is speci�ed as a string fj1fj2 : : : fjm from
the alphabet T R and S.

The algorithm generatesN matrices Ai, 1 � i � N .
As the base case, A1 is the product of m matrices

a1k , 1 � k � m where, a1k = At if fjk is T; a1k = As

if fjk is S; and a1k = Ar if fjk is R
To generate the ith point Pi, we use Ai as the prod-

uct of m matrices aik , 1 � k � m where, aik is the i
th

power of the matrix a1k .
The method to perform animation is then as fol-

lows. For the �rst intermediate position, we compute

the matrixA1 and then apply this matrix on all points.
We next erase these intermediate position, compute
the matrix A2 and then apply this matrix on all points
to generate the second stage of the animation. The al-
gorithm proceeds in a similar manner for subsequent
stages.

4.5 Computational Complexity

In the following, by overheads we refer to pre-
processing (and post-processing) computational costs
that are not incurred in the main animation loop.
We illustrate only one case here (for a comprehensive
treatment, see [8]) to show the optimizations that can
be performed.

For the sequence TS we have

Ak =Mk
t �Mk

s =

0
BBBB@


kx 0
sx(1� 
kx)

+kÆx

0 
ky
sy(1� 
ky )

+kÆy
0 0 1

1
CCCCA

where 
x, 
y, Æx and Æy are as de�ned previously. The
use of the above matrix would yield the point say Pk
from P . To obtain the next intermediate position say
Pk+1 from P we have the matrix

Ak+1 =

0
@

k+1x 0 (1� 
k+1x )sx + (k + 1)Æx
0 
k+1y (1� 
k+1y )sy + (k + 1)Æy
0 0 1

1
A

We observe that the elements of matrix Ak+1 can be
obtained by re-substituting the elements of Ak. In-
fact the elements of Ak+1 can be computed from the
variables that constitute the elements of matrix Ak as
is obvious from the de�nition of matrix Ak+1. The
additional computations required for this is less than
full matrix multiplications.

4.5.1 Overhead Analysis

� 4 Non-Arithmetic computations(log and antilog),

� 4 Divisions(2 to compute 
x and 
y and 2 to com-
pute Æx and Æy),

� 2 Multiplication, 2 Additions and 2 Subtractions
to setup the initial matrix.

4.5.2 Per Step Run-Time Analysis

� 2Np Multiplications, 2Np Additions

� 4 Multiplications, 4 Additions and 2 Subtractions
in order to obtain matrix Ak+1 from matrix Ak



5 Geometric Method
The disadvantage of the full matrix method is that

it, by and large, does not generate a new intermediate
point based on points already computed. We need
to do matrix multiplication at run time. We have
developed a di�erent method, based on geometry that
avoids run time multiplication. The disadvantage of
this method is that it requires a case by case analysis
of the string employed and is, as a result, harder to
implement.

The geometric method has essentially three stages.
In the �rst stage some preprocessing is performed on
an object. In the second stage the actual animation
is displayed step by step and in the last stage some
amount of \resetting" may be required.

The intuition behind this is simple to understand
when we consider the case of elementary scaling, and
elementary rotation, discussed in Section 5.1. More
complex cases are considered in [8]. A comparison
with traditional matrix based methods is also made
later and this might well enhance the understanding
of this method.

5.1 Rotation about an arbitrary point

To rotate a point (x; y) about the origin we use the
equations for shear rotation[10], which sets in order

x = x+ (a � y)

y = y + (b � x)

x = x+ (a � y) (6)

where a = � tan(�=2) and b = sin(�).
The above equations have the same e�ect of the

matrix Mr of Section 4.1 if we assume that the center
of rotation is at the origin. In the general case, the
animation consists of the stages

1. Before animation translate the object such that
the center of rotation is at the origin. That is, for
each point (x; y) in the object do x = x� cx and
y = y � cy.

2. At each step

� Rotate each point using Equation 6

� Draw the object using the co-ordinates (x+
cx; y+cy) without actually incrementing the
point (x; y).

3. After the animation is completed the �nal loca-
tions are available by setting x = x + cx and
y = y + cy.

We remark that the primary motivation for adopt-
ing Equation 6 is to reduce run time computations.
Equation 2 could well have been employed here. We
also notice that a third stage is necessary in this case.

6 Concluding Remarks.
In this paper we have introduced the notion of al-

gorithmic animation, and placed it in the context of
key-frame animation (intermediate positions are ob-
tained by trial and error), and forward animation (in-
termediate positions are speci�ed by a programmer
before compilation). To our knowledge, this topic has
not been explored elsewhere, although it is conceivable
that some proprietary commerical systems may have
implemented animation algebra in partial form. We
de�ned algorithmic animation in terms of primitive
transformations, and considered the cases where these
transformations form a possibly long, animation alge-
bra string. We noted that a naive way of embedding
the forward animation in the context of algorithmic
animation is incorrect, and provided two di�erent so-
lutions to the problem. We have implemented some of
the transformations on the X-windows platform.

Animation Matrix Method Geometric
String Method

T 2Np 2Np

S 4Np 2Np

R 8Np 8Np

T S 4Np + 10 2Np

S T 4Np + 12 2Np

T R 8Np + 18 8Np + 2
R T 8Np + 23 10Np + 6
R S 8Np + 31 16Np

S R 8Np + 27 10Np

T R S 8Np + 33 16Np + 2
R R R ... n 8Np + 14n� 20 8Np + 8n� 4

Table 1: Run-time complexity comparison for one an-
imation step for an object with Np points. T, R, and
S stand for translation, rotation, and scaling respec-
tively.

The comparison of the two methods been tabular-
ized in Table 1 and Table 2. In several cases, the
geometric method is superior.

The geometric method philosophy mixes ideas from
the incremental di�erences method (Section 4.2) with
the correct full matrix method (Section 4). When a
speedup is obtained, it is from two sources: shifting a
large part of the calculations to pre and post run-time
overheads, and by storing a few intermediate results
to do \incremental" calculations. This leads to an in-



Pre Post

Processing Processing

Animation Matrix Geometric Geometric

String Method Method Method

T 2 2 0

S 6 8 0

R 10 2Np + 4 2Np

TR 12 2Np + 4 2Np

RT 18 2Np + 2 2Np

ST 14 6Np + 8 0

TS 14 6Np + 6 0

RS 35 6Np + 6 2Np

SR 34 16Np + 15 2Np

TRS 35 6Np + 10 2Np

RRR...n 10n 2Np + 6n - 2 2Np + 2n - 1

Table 2: Comparison of overheads for the two meth-
ods. The Matrix method requires no post procssing.
The numbers are for one animation step for an object
with Np points.

crease in the overheads, which unfortunately depends
on the number of points. These overheads reduce the
running time during the main animation loop.

A direct implementation of the matrix method
would make it inferior to the geometric method in all
situations. By reusing prior computed values, we nar-
rowed the gap between the two methods in some cases,
and made it superior to the geometric method in some
cases.

References
[1] S. Chandran and N. Damodharan, \Modeling the

behaviour of cloth drape," in ICVGIP 98 (S. Na-
yar and S. Chaudhuri, eds.), Viva Publishers, De-
cember 1998.

[2] \Matrix FAQs."
http://skal.planet-d.net/demo/matrixfaq.htm,
September 1997.

[3] J. Neider, T. Davis, and M. Woo, The OÆ-
cial Guide to Learning OpenGL. Addison-Wesley
Publishing Company, 1994.

[4] K. Shoemake, \Quaternions and 4� 4 matrices,"
in Graphics Gems II (J. Arvo, ed.), ch. VII, pp.
351{354, Academic Press, 1991.

[5] D. Hearn and M. Baker, Computer Graphics.
Prentice-Hall, 1995. pp. 419{420.

[6] M. G. Nanda and S. Chandran, \On transfor-
mations for two-dimensional animation," in Pro-
ceedings of the Second National Conference on

CAD/CAM, (Coimbatore{641 004, India), PSG
College of Technology, August 1994.

[7] D. F. Rogers and J. Alan,Mathematical Elements
for Computer Graphics. McGraw-Hill Publishing
Company, Singapore, 1990.

[8] S. Chandran, Y. Kulkarni, and P. Nath,
\On transformations for animation,"
tech. rep., Computer Science and
Engg Department, IIT-Bombay, 2000.
http://www.cse.iitb.ernet.in/~ sharat/twod.html.

[9] G. H. Golub and C. F. Van Loan, Matrix Com-
putations, ch. 11, pp. 397{400. North Oxford,
Oxford, 1983.

[10] A. W. Paeth, \A fast algorithm for general raster
rotation," in Graphics Gems (A. S. Glassner, ed.),
pp. 179{195, Academic Press, 1990.


