
A Fast Algorithm to Display Octrees

Sharat Chandran Ajay K. Gupta Ashwini Patgawkar
Indian Institute of Technology Informix National Center for Software Technology

Bombay, India Oakland, USA Bombay, India
sharat@cse.iitb.ernet.in ajayg@informix.com ashwini@ncst.ernet.in

Abstract
The octree is a common data structure used to

model 3-dimensional data. The linear octree is a com-
pact representation of an octree. In this paper we deal
with the problem of displaying three-dimensional ob-
jects represented using linear octree, and offer a new,
efficient solution.

Our algorithm rearranges voxels of a linear octree in
order of increasing distance from the viewer, This list
is rendered using a back to front painter’s algorithm,
or a front-to-back algorithm. We compare our visible
surface determination algorithm with that of a variant
based on prior work.

Keywords: Linear Octree, Front-to-back, Painter’s
Algorithm, Sorting, OpenGL

1 Introduction
There are a number of modeling techniques [9] that

are used in computer graphics to model 3D objects
and the choice of the modeling technique depends on
the application. For example Constructive Solid Ge-
ometry (CSG) is used in CAD/CAM packages based
on which objects are designed and manufactured.

Our interest is in the use of the octree in the form
of three dimensional variable blocks or cubes of differ-
ent sizes. This model is often used for spatial repre-
sentation of geological data like geographical terrain,
mineral deposits, etc., (where a polygonal model rep-
resentation is cumbersome or impossible), and finds
practical use in a Geographical Information System
(GIS). The use of the linear octree has been champi-
oned in [2], [6], [14] for several reasons. Predominant
is the compact representation, and the ability to per-
form operations such as neighbor finding.

Such a representation also requires efficient display
techniques. Techniques to display octree data in gen-
eral form are given in [7], [13], [4]. Techniques to dis-
play linear octree encoded data is given in [5], [10].
1.1 Our contributions

We develop a fast algorithm for displaying octrees.
Our algorithm runs in O(N logN) time where N is

the total number of entities to be displayed. We have
implemented our algorithm on three different plat-
forms. Further, we also implemented a variant algo-
rithm based on prior work. The proposed algorithm
runs faster (see Section 4 for details) than prior meth-
ods.

A highly desirable feature is the display of data
even as the view plane normal [12] (VPN) is changed,
perhaps interactively. Prior algorithms do not address
this issue explicitly; the focus is on one specific view
plane direction (recall that the BSP tree is most useful
for polygonal data, and not for volumetric informa-
tion). As the view plane normal changes, the under-
lying representation of the octree has to be changed.
In contrast, our algorithm “sorts” the data on the fly
based on the view plane normal to produce a correct
ordering which can be rendered using the standard
painters’ algorithm, or the front-to-back technique.
1.2 Roadmap

The rest of this paper is organized as follows. In
the next section, we formally define the problem. In
Section 3, we motivate our algorithm using a weaker
representation of spatial data. We also give our algo-
rithm that uses a linear octree. In Section 4 we analyze
the performance of our algorithm, and compare it to
a variant. Final remarks are made in Section 5.

2 Definitions and Representation
An octree is a hierarchical tree structure used to

represent the solid objects, such that each node corre-
sponds to a (axis parallel) region of the three dimen-
sional space. The octree takes advantage of spatial
coherence to reduce storage requirements. If the ob-
ject space corresponding to an octant is either entirely
contained in the region or entirely disjoint from it, no
further subdivision of the octant is made. This process
is represented by a tree of degree 8 in which the root
node represents the entire object, and the leaf nodes
correspond to those cubes which no further subdivi-
sion is necessary. The number of subdivisions is said
to be the resolution of the octree and the smallest size

(a) The object (b) A pointer based octree

Figure 1: Octree decomposition of simple staircase ob-
ject.

(a) Cartesian representa-
tion

(b) Octree encoding

Figure 2: Multiple encoding for voxels in an object.

octants are termed voxels. Figure 1(a) is an example
of a simple 3D object (a staircase), whose octree block
decomposition is given in Figure 1(b), along with its
tree representation. Note that this figure is shown
only for simplicity. In a GIS system, input data is not
available in polygonal form.

2.1 Linear Octrees
An effective way of storing octrees for 3D represen-

tation of objects is given in [6]. We demonstrate this
representation by means of Figure 2 with n = 2 being
the resolution, and C = 11 represent the total num-
ber of voxels present in the data. All voxels, except
(2, 2, 2), are visible (shaded area) in this example.

In the representation technique for linear octree
each octant at every subdivision level is labeled [0..7],
depending on its position as given in Table 1, and
shown in Figure 2(b). A convention is adopted on
what is meant by forward and backward, and the var-
ious geographical directions (such as east). In the ex-
ample of Figure 2, east is in the direction of the unit
vector î along the x axis, and forward refers to the sit-
uation when we are positioned on the positive z axis
and looking in the direction of −k̂.

Each voxel belonging to the object is represented

Octant Label
forward-north-east 0
forward-north-west 1
forward-south-east 2
forward-south-west 3
backward-north-east 4
backward-north-west 5
backward-south-east 6
backward-south-west 7

Table 1: Encoding of the eight subdivisions of an oc-
tant.

by an octal integer in a weighted system where
the digit of weight 8n−1 identifies the largest oc-
tant according to the encoding given in the Ta-
ble 1, the digit of weight 8(n−2) identifies the sec-
ond largest octant and so forth. The numeric value
of a cubic voxel Q is described by the expression

Q = qn−18n−1 + qn−28n−2 ++ q080

where ql, l = 0, 1, 2, ..., n − 1 is one of the octal
digits { 0, 1, 2, 3, 4, 5, 6, 7}. For instance, the
“invisible” voxel (2, 2, 2) of Figure 2 belongs to
the “forward-north-east” octant in the first subdivi-
sion,. Thus qn−1 = q1 = 0. It belongs to the
“backward-south-west” octant in the second subdivi-
sion. Thus qn−2 = q0 = 7. The encoding for the
invisible voxel is, therefore, 07. Similarly, we have,
for the region shaded in Figure 2, the representation

{10, 01, 00, 03, 02, 05, 04, 07, 06, 24, 40}
It is possible to condense the data further. If

there are eight voxels belonging to the same oc-
tant, they can be grouped together by replacing the
digit relative to the common octant by a marker. If
we denote marker by X then X should be greater
that 7. It will help to keep the data structure
remain sorted. So the final representation (linear
octree encoding) of the 3D object of Figure 2 is

{0X, 10, 24, 40}
The representation structure here is a simple one

dimensional array whose length is determined at run
time consisting of sorted mixed-octal1 codes. Every el-
ement in the digit of the octal code (left to right) gives
the path of leaf node from the root. There are many
algorithms based on the linear octrees for encoding[6],
decoding, neighborhood finding, etc.
2.2 Problem Definition

The input to our algorithm is a linear octree based
representation of the data (for example the list {0X,

1It is referred as mixed-octal because a special character,
here X, is mixed with octal numbers

10, 24, 40} in the case of Figure 2), and a view plane
normal represented by a vector (not necessarily a unit
vector).

Our algorithm produces as output a list of (equal
sized) voxels which may be correctly rendered by a
front-to-back algorithm, or the painter’s algorithm.
(In order to verify the correctness of our algorithm
along with variants, we implemented the actual dis-
play as seen in Figure 6.)

3 The Algorithm

Many approaches ([5], [1], [4]) can be taken for vi-
sualization of octree encoded objects. Unlike these
older algorithms, the main emphasis of our algorithm
is a scenario where we would like to vary the view
plane normal continuously, and see the resulting pic-
ture. For any arbitrary view, prior algorithms require
reconstructing the octree for the given viewing coor-
dinate system. This makes these algorithms compute
intensive for an arbitrary chosen view.

Instead of recomputing the octree data based on the
view plane normal, we develop a method to achieve
front-to-back display of linear octree.

3.1 Using sorting for hidden surface re-
moval

The octree encoding provides position of the octant
in 3D world precisely and stored in a certain order.
Voxels can be sorted according to their distance from
a view point. Traversing this sorted list of octants
and projecting their surfaces gives us a front-to-back
approach that can be rendered using standard algo-
rithms in graphics.

To motivate the algorithm we use three representa-
tions of an octree:

(a) Three tuple indices (i, j, k), which are positional
indices of the voxels as in Figure 2(a). This
scheme provides no data compression, and would
not be a suitable representation in real life sce-
narios.

(b) Linear octree-like encoding where all the octants
are of equal size. This scheme provides data com-
pression, but since it does not use mixed-octal,
one could do better.

(c) The linear octree encoding as discussed in Sec-
tion 2.1.

The algorithm is easy to understand if we use the oc-
tree representation in three tuple form. We use the
idea for the linear octree encoding representation.

(a) Object space is di-
vided into voxels.

(b) Slices of voxels
parallel to the X-Y
plane.

Figure 3: Using the three tuple representation for 3D
data.

3.2 Voxel with three tuples
The idea of the front-to-back approach for octree

encoded objects can be explained easily if (equal sized)
voxels are used as the basis for representation. A 3-
dimensional array of flags is maintained for all voxels
in the object space; a flag is set for voxels which are
part of the object.

Figure 3(a) shows the subdivision of the entire
space with resolution 2. In this case the total number
of voxels is 64. In the three dimensional array of flags,
array subscripts varies from 0 to 3 in all dimensions.

We refer to the the three planes X-Y , X-Z, and
Y -Z as principal. By slices we mean the set of planes
(parallel to a principal plane) that partition voxels.
Figure 3(b) shows an example, where each slice corre-
sponds to sixteen voxels.

Our algorithm relies first on the selection of a prin-
cipal plane, and then within slices, rows and columns.
The selection of the plane is dependent on the view di-
rection. Intuitively, the first plane is selected in such
a way that all the voxels on one slice in the plane are
nearer to the observer compared to the voxels on other
slices in the same plane. Within each slice, voxels are
visited either in row-wise or column-wise in an order
(increasing or decreasing) that is also decided based
on the view direction.

3.2.1 A specific view direction

Let us consider an object viewed from a point which is
located at (x′, y′, z′) such that x′, y′ and z′ are positive
integers and z′ > y′ > x′. If the view direction is
along the vector joining the view point and origin, i.e.,
the view plane normal is given by vector (x′, y′, z′),
then the algorithm for traversing voxels in front-to-
back order is given in Figure 4.

Procedure Front To Back Traversal
for (each slice S on X-Y plane, z varies from 3 to 0)

for (each row R on slice S, y varies from 3 to 0)
for (on row R, x varies from 3 to 0)

if voxel(x, y, z) is part of the object
add voxel(x, y, z) to list to be rendered

Figure 4: Algorithm for front-to-back traversal of
voxels.

3.2.2 An example

Consider the front-to-back traversal for the object,
given in Figure 2(a), from a view point (1.0, 1.1, 1.2).

Flags of the following voxels are
set in the input to the algorithm.

(1, 3, 3), (2, 2, 2), (2, 2, 3), (2, 3, 2),
(2, 3, 3), (3, 1, 2), (3, 2, 2), (3, 2, 3),
(3, 3, 1), (3, 3, 2), (3, 3, 3)

For the given view point slices are made along the
X-Y plane as per the algorithm in Figure 4. The near-
est slice to the observer is all the voxels which are on
the plane z = 3. The voxels belonging to this slice are
(1, 3, 3), (2, 3, 3), (3, 3, 3), (2, 2, 3), (3, 2, 3). The second
slice is for all the voxels on the plane z = 2 and the
voxels are (2, 3, 2), (3, 3, 2), (2, 2, 2), (3, 2, 2), (3, 1, 2).
And the farthest slice is on the plane z = 1 and the
voxels on this slice are (3, 3, 1).

Within each slice we traverse (in this case) the vox-
els in row major order, i.e., all the voxels for y = 3 are
visited first and then the voxels for y = 2 and so on.
Thus, the list of voxels in sorted order to be rendered
is (3, 3, 3), (2, 3, 3), (1, 3, 3), (3, 2, 3), (2, 2, 3), (3, 3, 2),
(2, 3, 2), (3, 2, 2), (2, 2, 2), (3, 1, 2), (3, 3, 1).

From Figure 2(a) it is clear that the above order of
voxels is in non-decreasing order of distance from the
viewer.

3.2.3 An alternate view direction

For the object in Figure 2(a) and the view point
(−x′, y′, z′) where x′ > y′ > z′, we get a picture simi-
lar to Figure 5.

As mentioned earlier, the selection of the plane for
slices, row and column axis and order within each slice,
depends on the view. For this example, the traversal
of voxels should be done in the following order

• Outer loop on slices (Y -Z plane, increasing x from
0 to 3).

Figure 5: Using the algorithm to render from the
viewpoint (−2.0, 1.5, 1.0).

• Within each slice, an outer loop on the rows (Y-
direction, decreasing order).

• Innermost loop in the Z-direction (decreasing or-
der).

3.2.4 The main idea

We observe that for a given view plane normal vector
(i, j, k), the index along the x-axis should be increasing
if i is −ve and should be decreasing if i is +ve. The
order of the axis in the three loops will depend on the
absolute value of i, j, and k of the view plane normal
vector. The smallest value amongst i, j, and k will
decide if the innermost loop is along x, y, or z axis.

This idea is unfortunately difficult to implement if
the input data is not given in the (i, j, k) three tuple
form. This is the case for our linear octree.

3.3 A new encoding mechanism

In Section 3.2 we have used an explicit representa-
tion of octants of the same size. Here we will use an
encoding mechanism of the voxels which will be sim-
ilar to that given in Section 2.1. Using this encoding
mechanism all the voxels of Figure 3(a) will be coded
as given in Figure 2(b). We store codes of only those
voxels which belong to the objects. These encoded
voxels, which consist of octal digits, are kept in sorted
order (as required by many GIS packages [11], [3]).
This encoding mechanism is very similar to the one
used in linear octree, except that here we divide all
the octants to the smallest level, even though, the vol-
ume covered by an octant is homogeneous. In other
words, we do not use the mixed-octal values.

3.3.1 An example

Consider the data in Figure 2(b). If the view-
point is given as, say, (1.0, 1.1, 1.2), the order of
traversal of voxels we desire for the nearest slice is
00, 01, 10, 11, 02, 03, 12, 13, 20, 21, 30, 31, 22, 23, 32, 33
because slices are made along the X-Y plane.
The original octree encoding representation is
00, 01, 02, 03, 04, 05, 06, 07, 10, 11, 12 · · ·.

We achieve the right order by processing the input
sequence such that we produce a new code for each
voxel with the following important property: The new
code when traversed in sorted order produces the vox-
els in front-to-back order.

For the example, we want the mapping
00 to 00 01 to 01
10 to 02 11 to 03
02 to 04 03 to 05
12 to 06 13 to 07

and so on.
For the example, we recompute the new value as fol-

lows. If a voxel is encoded as Q and ql, l = 0, 1, 2, · · ·
are the octal digits in Q, then Q = qn−18n−1 +
qn−28n−2 + · · ·+ q0.

If each octal number ql is represented in bi-
nary digits L,M , and R such that ql = LlMlRl
then Q is represented in binary form as Q =
Ln−1Mn−1Rn−1Ln−1Mn−1Rn−1 · · ·L0M0R0.

We assign new code Q′ by the equation Q′ =
Ln−1Ln−2 · · ·L0Mn−1Mn−2 · · ·M0Rn−1Rn−2 · · ·R0.

The new octal code Q′ produced using the above
encoding mechanism, when sorted, will produce the
voxels in the order which is the same as voxels when
traversed using the following three loops:

• Outer loop on slices (Z-direction, decreasing z
from 3 to 0).

• Within each slice, an outer loop on the rows (Y -
direction, decreasing order).

• Innermost loop in the X-direction (decreasing or-
der).

This procedure is illustrated with the index values
(x, y, z), octal encoding (Q) and the new code (Q′) for
the example in Table 2:

In Table 2 voxels are arranged in the sorted or-
der as they appear in the octree encoding. If we
sort the voxels based on Q′ then we get the voxels
(3, 3, 3), (2, 3, 3), (1, 3, 3), (3, 2, 3), (2, 2, 3), (3, 3, 2),
(2, 3, 2), (3, 2, 2), (2, 2, 2), (3, 1, 2), (3, 3, 1) .

It may be noted that this order of the voxels is the
same, as that in Section 3.2.

(x, y, z) Q Q′ Q′

(1.0, 1.1, 1.2) (−2.0, 1.5, 1.0)
3 3 3 00 00 60
2 3 3 01 01 40
3 2 3 02 04 64
2 2 3 03 05 44
3 3 2 04 20 61
2 3 2 05 21 41
3 2 2 06 24 65
2 2 2 07 25 45
1 3 3 10 02 20
3 1 2 24 30 71
3 3 1 40 40 62

Table 2: Encoding voxels for view plane normals
(1.0, 1.1, 1.2) and (−2.0, 1.5, 1.0).

3.3.2 A second example

For the second case when the view plane normal
(i, j, k) is such that | i |>| j |>| k | and i is
negative, the new code Q′ is computed as Q′ =
Rn−1Rn−2 · · ·R0Mn−1Mn−2 · · ·M0Ln−1Ln−2 · · ·L0

and is also shown in Table 2.
If we sort the voxels accord-

ing to Q′ we get the correct order
(1, 3, 3), (2, 3, 3), (2, 3, 2), (2, 2, 3), (2, 2, 2), (3, 3, 3)
(3, 3, 2), (3, 3, 1), (3, 2, 3), (3, 2, 2), (3, 1, 2).

3.3.3 The general case

For all view plane normals suitable equations for Q′

has been derived formally [8]. We present them in the
appendix. From a computer implementation, all these
forms involve simple bit manipulations.

3.4 Front-to-back traversal of linear oc-
tree

The encoding mechanism we have used in Sec-
tion 3.3 is similar to the one used in linear octree.
In a linear octree whenever an octant contains a ho-
mogeneous part of the object, it is not further divided
into sub-octants. While encoding such an octant a
special character X is used in the code. For example
the object in Figure 2 is encoded as (0X, 10, 24, 40).

In our algorithm, an octant with X in its code is
handled by breaking the octant into (smaller sized)
voxels and a new code is generated for all the voxels of
the octant. In other words, the algorithm degenerates
to the algorithm mentioned in Section 3.3.

Breaking of the large octants is necessary. Given
a large octant, we can always find smaller octants in
the object such that the smaller octants need to be

visited after some part of the larger octant is displayed
and before the rest of the larger octant is displayed.
This becomes clear from Table 2; octant 0X is broken
into voxels 01, 02, 03, 04, 05, 06, and 07; parts of this
octant (e.g., the voxel (3, 3, 3) (or 00 as per Q) come
after the octant (2, 2, 2) whereas other parts (e.g., the
voxel (2, 3, 3) (or 01 as per Q) comes before the octant
(2, 2, 2) in the front-to-back traversal.

In practice, we have observed that breaking large
octants is not a major overhead because the rendering
process is simplified as all the voxels are of equal size.

As an example for the linear encoding
(0X, 10, 24, 40), the new codes generated
given the view direction (−2.0, 1.5, 1.0) is
(60, 40, 64, 44, 61, 41, 65, 45, 20, 62, 71). This list
is sorted and passed to the front-to-back rendering
phase.
3.5 Rendering recoded voxels

VPN Visible face
x > 0 eastern
x < 0 western
y > 0 southern
y < 0 northern
z > 0 front
z < 0 back

Table 3: Visibility test of faces depending on VPN
(x, y, z).

The recoded voxels are converted into polygons rep-
resenting the faces. Depending upon the VPN, the
sides to be drawn are decided as in Table 3. At most
three sides of the voxel are drawn for any VPN.

4 Performance Analysis
We have analyzed our algorithm both in a theoreti-

cal sense, and by explicitly coding our algorithm. The
results are summarized in this section.
4.1 Big-Oh complexity

It is clear that we process and sort all the nodes in
the linear octree after generating the new code. Gen-
erating the new code involves bit manipulation, and
the length of each code is O(n) bits; here n is the level
of subdivision in the linear octree.

If the number of nodes in the linear octree is N
after converting all the octants to (equal size) voxels
(this step is necessary), then the complexity of the al-
gorithm is O(N logN) when we use a standard sorting
algorithm such as heap sort.

If we use the radix sort algorithm, then, using
8 buckets, we can sort the octants in O(Nn) time.

Since N = Θ(8n), n = O(log8N) the complexity is
O(N log8N).

The space requirement for the algorithm is linear.
An array is maintained for keeping the octal codes of
all voxels of the octree. The same array is used to
store the recoded value of the voxels. Given the view
plane normal, indices for any voxel can be computed
using bit manipulations.
4.2 Empirical results: Comparison with

OpenGL
We compared our algorithm to a straightforward

algorithm that does not use our recoding technique.
The idea 2 here is to send the faces of the list of un-
sorted voxels to OpenGL’s z-buffer rendering engine
which performs hidden surface removal. To make the
OpenGL algorithm run faster, we enabled the back-
face culling test so that unnecessary polygons do not
get considered.

Our algorithm was ported on three different imple-
mentations of OpenGL: The SGI Indy machine, a SUN
Solaris Ultrasparc machine, and a Pentium III Win-
dows NT machine. A comparative study of our algo-
rithm and the back face culling method of OpenGL
was done with various parameters on data consisting
of about 4000 voxels to 73,000 voxels. Table 4 sum-
marize the results for one specific case, with three dif-
ferent view directions. Figure 7 and Figure 8 shows
the situation on different platforms. The objects on
which the algorithm was performed was a cube, and
the object shown in Figure 6(d).

We conclude that our algorithm renders objects
faster than the back face culling mechanism of
OpenGL (despite possible hardware optimizations
done on the SGI platform).

5 Final Remarks
Visible surface computation of a part of a scene

is an important step because all other steps (such
as clipping, transformations, perspective normaliza-
tion) in the rendering pipeline take time independent
of other parts of the scene. In this paper, we have
given a new algorithm to render a linear octree that
allows the dynamic change of the view plane normal.
We have compared our algorithm to a variant loosely
based on prior work. Our visible surface algorithm
runs in O(N logN) time.

Just as the selection of representation of 3D data is
open, so is the selection of the display method given
any one representation. The ten different hidden sur-
face algorithms [15], and the subsequent variants are

2This algorithm is a variant of the algorithm in [5] which
converts the input list of voxels to the three tuple representation
(i,j,k) and then performs hidden surface removal.

well known. We have chosen to use the linear octree
representation rampant in 3D GIS, and the front-to-
back traversal display paradigm. A related question is
therefore “What if you use display method X in rep-
resentation Y?” It would be beyond the scope of this
paper to address this issue in its full generality.

References
[1] Louis J. Doctor and John G. Torborg. Dis-

play techniques for octree-encoded objects. IEEE
Computer Graphics and Applications, 1(3):29–38,
July 1981.

[2] S.P. Dunstan and A.J.B.Mill. Spatial indexing of
geological models using linear octree. Computer
and Geossciences, 15(8):1291–1301, 1989.

[3] F.Major, J. Malenfant, and N.F. Stewart. Dis-
tance between objects represented by octree de-
fined in different coordinate systems. Computer
and Graphics, 13(4):497–503, July/Sept 1989.

[4] Gideon Frieder, Dan Gordon, and R. Anthony
Reynolds. Back-to-front display of voxel-based
objects. IEEE Computer Graphics and Applica-
tion, 5(1):52–60, January 1985.

[5] I. Garganitini, G. Schrack, and H.H. Atkinson.
Adaptive display of linear octrees. Computer and
Graphics, 13(3):337–343, July/Sept 1989.

[6] Irene Gargantini. Linear octrees for fast pro-
cessing of three-dimensional objects. Computer
graphics and Image processing, 20:365–374, 1982.

[7] Andrew S. Glassner. Space subdivision for fast
ray tracing. IEEE Computer Graphics and Ap-
plications, 4(10):15–22, October 1984.

[8] Ajay Kumar Gupta. Masters Thesis. Master’s
thesis, Indian Institute of Technology, December
1995.

[9] Jonathan I. Raper. Three dimensional applica-
tions in Geographic Information System. Burgess
Science Press, 1989.

[10] Djaffer Ibaroudene and Raj Acharya. Parallel
display of objects represented by linear octrees.
IEEE Transactions on Parallel and Distributed
Systems, 6(1), January 1995.

[11] Toliyasu L. Kunil, Toshiaki Satoh, and Kazunari
Yamaguchi. Generation of topological bound-
ary representations from octree encoding. IEEE
Computer Graphics and Application, 5(3):29–38,
March 1985.

Data VPN=(1, 0, 0) VPN=(1, 1, 0) VPN=(1, 1, 1)
voxels bfc f2b bfc f2b bfc f2b

µ sec µ sec µ sec µ sec µ sec µ sec
4k 90 40 90 50 100 60
24k 480 190 490 270 500 340
32k 650 260 660 360 710 460
50k 980 390 1000 530 1070 690
64k 1310 510 1310 710 1360 960
73k 1370 580 1490 800 1580 1020

Table 4: Comparison of time required to render the
voxels using OpenGL’s back face culling (bfc) and our
front to back recoding (f2b) on a Pentium III with
Windows NT.

[12] Jackie Neider, Tom Davis, and Mason Woo. The
Official Guide to Learning OpenGL. Addison-
Wesley Publishing Company, 1994.

[13] Ananth Potty. Efficient ray casting. Master’s
thesis, Indian Institute of Technology, December
1997.

[14] Hanan Samet. Neighbor finding in images rep-
resented by octrees. Computer Vision, Graphics
and Image Processing, 46:367–386, 1989.

[15] I. Sutherland, R. Sproull, and R. Schumacker. A
characterization of ten hidden surface algorithms.
Computing Surveys, 6:1–55, 1974.

Appendix A
If a voxel is encoded as Q and ql, l = 0, 1, 2, · · · are

the octal digits in Q, then Q = qn−18n−1+qn−28n−2+
· · · + q0. If each octal number ql is represented in
binary digits L,M , and R such that ql = LlMlRl
then Q is represented, in binary form, as: Q =
Ln−1Mn−1Rn−1Ln−2Mn−2Rn−2 · · ·L0M0R0. Given
the VPN (i, j, k) we first compute three quantities
A,B, and C, whose values depends on the signs of
i, j and k using Table 6.

The value Q′ depends on relative values of | i |, | j |
and | k |. In binary notation Q′ is as in Table 5.

Relative values Q′

| i |<| j |<| k | Q’ = C B A
| j |<| i |<| k | Q’ = B A C
| k |<| i |<| j | Q’ = A C B
| i |<| k |<| j | Q’ = C A B
| j |<| k |<| i | Q’ = B C A
| k |<| j |<| i | Q’ = A B C

Table 5: Bit manipulation for sorting.

(a) VPN=(1,-0.9,0.5)

(b) VPN=(1,1.1,1.2)

(c) VPN=(1,1,1)

(d) VPN=(2,1.0,0.9)

Figure 6: Sample rendered shapes.

(a) VPN = (1, 1, 0)

Figure 7: Comparison of time required to render the
voxels using OpenGL’s back face culling(bfc) and our
front to back recoding(f2b) on an SGI Indy machine.

(a) VPN = (1, 1, 0)

Figure 8: Comparison of time required to render
the voxels using OpenGL’s back face culling(bfc) and
our front to back recoding(f2b) on a Sun Ultrasparc
machine.

(i, j, k) A B C
(+,+,+) Ln−1Ln−2 · · ·L0 Mn−1Mn−2 · · ·M0 Rn−1Rn−2 · · ·R0

(+,+,−) Ln−1Ln−2 · · ·L0 Mn−1Mn−2 · · ·M0 Rn−1Rn−2 · · ·R0

(+,−,+) Ln−1Ln−2 · · ·L0 Mn−1Mn−2 · · ·M0 Rn−1Rn−2 · · ·R0

(+,−,−) Ln−1Ln−2 · · ·L0 Mn−1Mn−2 · · ·M0 Rn−1Rn−2 · · ·R0

(−,+,+) Ln−1Ln−2 · · ·L0 Mn−1Mn−2 · · ·M0 Rn−1Rn−2 · · ·R0

(−,+,−) Ln−1Ln−2 · · ·L0 Mn−1Mn−2 · · ·M0 Rn−1Rn−2 · · ·R0

(−,−,+) Ln−1Ln−2 · · ·L0 Mn−1Mn−2 · · ·M0 Rn−1Rn−2 · · ·R0

(−,−,−) Ln−1Ln−2 · · ·L0 Mn−1Mn−2 · · ·M0 Rn−1Rn−2 · · ·R0

Table 6: Bit manipulation for sorting.

	Introduction
	Our contributions
	Roadmap

	Definitions and Representation
	Linear Octrees
	Problem Definition

	The Algorithm
	Using sorting for hidden surface removal
	Voxel with three tuples
	A specific view direction
	An example
	An alternate view direction
	The main idea

	A new encoding mechanism
	An example
	A second example
	The general case

	Front-to-back traversal of linear octree
	Rendering recoded voxels

	Performance Analysis
	Big-Oh complexity
	Empirical results: Comparison with OpenGL

	Final Remarks

