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Abstract

This work presents an approach to the extraction

of rotation invariant features for texture segmentation

using multiscale wavelet frame analysis. The texture

is decomposed into a set of bandpass channels by a

circularly symmetric wavelet �lter, which then gives a

measure of edge magnitudes of the texture at di�erent

scales. The texture is characterized by local energies

over small overlapping windows around each pixel at

di�erent scales. This gives features that are rotation

invariant and describe the scale-space signature of the

texture. A simple clustering algorithm is applied to

this signature to achieve the desired segmentation.

Index- Feature extraction, texture segmentation,
wavelet transform, wavelet frames, non-separable �l-
ters.

1 Introduction

Texture analysis plays an important role in com-
puter vision and pattern recognition and is widely
applied to many areas like remote sensing, biomedi-
cal image processing, query by content in large im-
age databases etc. A wide variety of texture analysis
methods have been proposed in the past [1]. Earlier
approaches focused on the analysis of the �rst-order
or second-order statistics of textures, Gauss-Markov
random �eld, local linear transforms.

Recently multiresolution and multiscale methods
have been extensively studied [2] [3]. Multiresolution
techniques intend to transform images into represen-
tation in which both frequency and spatial informa-
tion is present. Wavelet transform provides a unifying
framework for the analysis and characterization of im-
ages at di�erent scales [4]. These recent �ndings have
motivated several important studies for texture anal-
ysis [5] [6].

The majority of the existing work on texture anal-
ysis assumes that all images are acquired from the
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same view point. Practically this is an unrealistic as-
sumption. A texture analysis approach should ideally
be invariant to orientation of the texture. Extraction
of rotation invariant texture features is a very di�cult
task. Kashyap et.al [7] �rst recognized the importance
of rotation-invariant texture feature extraction. He
developed a texture classi�cation scheme based on au-
toregressive (AR) model. But the di�culty with their
model is that, it could not be used for textures with
strong anisotropy. To overcome this problem they in-
corporated two AR models, but still this did not suf-
�ce, because features derived from this type of AR
models are invariant to rotations which are multiples
of 450.

Cohen et.al. [8] modeled textures as Gaussian
Markov random �elds and used the maximum like-
lihood (ML) method to estimate coe�cients and rota-
tion angles. The problem with this method is that the
likelihood function is highly nonlinear and local min-
ima may exist, also this algorithm is computationally
very intensive.

Chen and Kundu [3] used multichannel subband de-
composition and a hidden Markov model (HMM) to
solve this problem. The two dimensional (2-D) images
were decomposed into subbands using quadrature mir-
ror �lter (QMF) bank, and modeled features of these
subband images as an HMM. Texture samples with
di�erent orientations are treated to be in the same
class. But it is obvious that for an image the signal
components in each subband will be di�erent for dif-
ferent orientations. So variability in texture feature
vectors increases with increase in the number of tex-
tures to be analyzed.

Wu et.al [9] tried to solve this problem by con-
verting the 2-D textured images into one dimensional
(1-D) signals by spiral resampling, then QMF banks
is used to decompose the signal. High order auto-
correlation functions are taken as features and these
features are modeled as an HMM. That is in this



case rotational-invariance is simulated as translation-
invariance. But this method too is computationally
expensive.

Another approach to rotation-invariant texture fea-
ture extraction could be the implementation of non-
separable �lter banks using non-separable subsam-
pling lattices in the decomposition scheme like the
quincunx lattice, but still it is very di�cult to get
su�cient angular localization in this way.

Most recently Fountain et.al [10] have worked on ro-
tation invariant texture features by taking the Fourier
transform (FT) of the gradient direction histograms of
the textures. The direction histograms being a peri-
odic function of 2�, a rotation of the image is reected
as a translation of this histogram function. Therefore
magnitudes of the FT of this function provides rota-
tion invariant features.

But inspite of all these e�orts we are of the opinion
that if features are extracted from the texture itself
and if by some means it is possible that the features
themselves contain the rotational information, then we
can get much improved results. This appears to be a
more general method to cope with this problem and
is precisely what we try to achieve in this paper.

In the present work, texture properties are charac-
terized by wavelet frame analysis mainly as suggested
in [11]. While discrete wavelet transform gives a non
redundant representation of the textures, the discrete
wavelet frame uses an overcomplete representation.
This technique is employed to study the performance
of a texture segmentation problem with respect to ro-
tational invariance.

A fast and powerful scheme for implementing the
1-D - discrete wavelet transform (DWT) using a �lter-
bank has been designed [4] [12]. The 2-D extension is
obtained in two steps by successive application of the
1-D �ltering along rows and columns of an image. Due
to the separable nature of implementation of the two
dimensional discrete wavelet transform, it is strongly
oriented in the horizontal and vertical directions. Such
a decomposition cannot e�ciently characterize direc-
tions other than 00 and 900. This is particularly inad-
equate while dealing with oriented textures. So what
we need is a non-separable nature of implementation
of the wavelet transform in 2-D. We make use of a
wavelet �lter which is circularly symmetric and hence
is invariant to rotation.

In the next section, we review the wavelet frame de-
composition. Section 3 describes the wavelet param-
eter computation which gives the features for texture
discrimination and integration of these features. In
section 4 we present our results and critical remarks

about the performance and �nally conclude our study.

2 Wavelet transforms and frames
2.1 Discrete wavelet transform

The wavelet decomposition can be interpreted as
signal decomposition in a set of independent, spatially
oriented frequency channels. Under these constraints
an e�cient real space implementation of the transform
using quadrature mirror �lter exists [4]. The discrete
normalized scaling and wavelet basis functions are de-
�ned as,

�i;k(l) = 2i=2hi(2
il � k)

 i;k(l) = 2i=2gi(2
il � k)

(1)

where i and k are the dilation and translation parame-
ters and hi and gi are respectively the sequence of low-
pass and bandpass �lters of increasing width indexed
by i, which are expanded by inserting an appropriate
number of zeros between taps and satisfy the quadra-
ture mirror �lter condition. The full discrete wavelet
expansion of a signal x 2 l2 (l2 is the space of square
summable functions) is given as,

x(l) =
X
k 2 Z

c(d0)(k)�d0;k +

d0X
i=1

X
k 2 Z

d(i)(k) i;k (2)

d(i)'s are the wavelet coe�cients and c(d0)'s are the
expansion coe�cients of the coarser signal approxi-
mation x(d0). The cd0 's and di's can be interpreted
in terms of simple �ltering and downsampling opera-
tions.

f c(d0)(k) = 2d0=2[hTd0 � x]#2d0 (k)
d(i)(k) = 2i=2[gTi � x]#2i(k) for i = 1; � � � ; d0 (3)

where the symbol T denotes the transpose operation
(i:e:hT (k) = h(�k)) and where [:] # m is the down-
sampling by factor m. In practice the 2-D DWT is
computed by applying a separable �lter bank to the
image.

ci(x; y) = [hi;x � [hi;y � ci�1]#2;1]#1;2(x; y) (4)

d1i (x; y) = [hi;x � [gi;y � ci�1]#2;1]#1;2(x; y) (5)

d2i (x; y) = [gi;x � [hi;y � ci�1]#2;1]#1;2(x; y) (6)

d3i (x; y) = [gi;x � [gi;y � ci�1]#2;1]#1;2(x; y) (7)

� denotes the convolution operator, # 2; 1 (# 1; 2)
denote subsampling along the rows (columns) and
c0 = I(x; y) the original 2-D signal. hi;x (gi;x) and
hi;y (gi;y) are the lowpass (bandpass) �ltering along
x and y directions respectively corresponding to dif-
ferent scale. ci(x; y) corresponds to the lowest fre-
quencies, the dni are obtained by bandpass �ltering



in a speci�c direction and thus contain the detail
information at scale i. d1i (x; y) corresponds to the
vertical high frequencies (horizontal edges), d2i (x; y)
the horizontal high frequencies (vertical edges ) and
d3i (x; y) the high frequencies in both direction ( the
corners). I(x; y) is represented at several scales by,
fcd0 ; dni j n = 1; 2; 3; i = 1; : : : ; d0g

2.2 Wavelet Frames

Wavelet frame leads to an overcomplete decompo-
sition of the signal

f dDWF
i (k) = hgi(l � k):x(l)il2
cDWF
d0

(k) = hhd(l � k):x(l)il2 (8)

Due to the special structure of the analysis �lter
bank, this decomposition has an interesting property
of energy conservation. The frame is a spanning set,
that requires �nite limits on an inequality bound of
inner products. If we want the coe�cient in an ex-
pansion of a signal to represent the signal well, these
coe�cients should have certain properties, that are
stated best in terms of energy and energy bounds.

The family of sequences F = fg1(l� k); � � � ; gd0(l�
k); hd0(l�k)g constitutes a frame of the Hilbert space
l2, if there exists two constants A > 0 and B < 1
such that,

A : kxk2l2 � P
k 2 Z hx(l); hd(l � k)i2

+
Pd0

i=1

P
k 2 Z hx(l); gi(l � k)i2 � B : kxk2l2

(9)

With the help of Parseval's theorem it is easy to show
that the energy conservation property is preserved

kxk2l2 = kcd0k2l2 +

d0X
i=1

kdik2l2 (10)

By de�nition, ci(k) = hx(l); hi(l � k)i and
di(k) = hx(l); gi(l � k)i, where h:; :i is the corre-
sponding inner product. The fundamental di�erence
with an orthogonal system is that the representation
may be redundant, this property together with the
de�nition of wavelet coe�cients in (3), leads to the
simple reconstruction formula

x(l) =
X
k 2 Z

cd0(k)hd0(l�k)+
d0X
i=1

X
k 2 Z

di(k)gi(l�k)

(11)

3 Multiscale feature extraction
The feature extraction scheme consists of three

main stages given in �g. 1. Basically the purpose of
the �lter is to extract local frequencies of the textures,

Filter SmoothingNonlinear operator ClusteringInput

Figure 1: Fast iterative implementation of the algo-
rithm used for extracting texture features

a subsequent nonlinear stage followed by a smoothing
�lter (both these constitute the local energy extima-
tor). The objective of local energy estimator, is to
estimate the energy of the �lter ouput in a local re-
gion.

The wavelet function in 2 dimensions is de�ned by

 a(~b) = 1p
a
 (~x�

~b
a ). The directional information,

can be incorporated in the wavelet function, by in-
cluding a rotational parameter in it [13].

 a;�(~b) =
1

a
 (R�(

~x �~b
a

)) (12)

where R� is the rotation operator denoted by the ma-
trix �

cos � � sin �
sin � cos �

�

Now if the wavelet is circularly symmetric i:e R� has
no inuence in (12), such an wavelet would gener-
ate rotation invariant features. Therefore the wavelet
function has to satisfy two conditions one is  ̂(0) = 0,
which implies that the wavelet function has to be a
zero mean function and  ̂(~r; �) =  ̂(~r; 0), this ensures
that the rotation operator has no e�ect in (12).

We have chosen the wavelet used by Mallat in [14],
which is the second derivative of a smoothing function.
This choice have been made because this closely ap-
proximates the second derivative of Gaussian, which
has circular symmetry and the basis functions are
symmetrical, which means that there is no phase dis-
tortion.

3.1 Multiscale wavelet representation

The transform employed in this work is based on
non-orthogonal (redundant) discrete wavelet frames
introduced by Mallat [15] �g. 2. Let �(x; y) be a
smoothing function. We call the smoothing function
the impulse response of a lowpass �lter with a total
mass of one and compact support, i.e.

R1
�1

R1
�1 �s(x; y)dxdy = 1 and 9� > 0 : �s(x; y) = 0;

8 j x j; j y j> �:

(13)
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Figure 2: The wavelet decomposition scheme

Supposing �(x; y) is di�erentiable, we de�ne two
wavelet functions,  1(x; y) and  2(x; y) such that,

 1(x; y) =
@2�(x; y)

@2x
and  2 =

@2�(x; y)

@2y
(14)

Let,

 1s(x; y) =
1

s3
 1(

x

s
;
y

s
) and  2s(x; y) =

1

s3
 2(

x

s
;
y

s
)

(15)
be the dilations of the functions  i by a factor s and
�s(x; y) =

1
s�(

x
s ) the dilation of �(x; y) by s.

Let I(x; y) be an image in 2-D and I(x; y) 2 L2(R).
The wavelet transform of I(x; y) at scale s has two
components de�ned by,

w1
s(x; y) = I �  1s(x; y) and w2

s(x; y) = I �  2s (x; y)
(16)

s is the scale parameter which commonly is set equal
to 2i with i = 1; � � � ; d0: This yields the traditional oc-
tave band wavelet transform of depth d0. w

1
s and w2

s

are referred to as the detail images, since they contain
the horizontal and vertical frequency informations of
I at scale s.

This transform is computed by iterative �ltering by
a set of lowpass �lters hi associated with the smooth-
ing function � and bandpass �lters gi associated with
the wavelets  1 and  2. These �lters have �nite im-
pulse responses, which makes the transform fast and
easy to implement.

c2i+1(x; y) = [hi;x � [hi;y � c2i ]](x; y)
w1
2i+1(x; y) = [�i;x � [gi;y � c2i ]](x; y)

w2
2i+1(x; y) = [gi;x � [�i;y � c2i ]](x; y)

(17)

c1I is the original image and � is the Dirac �lter whose
impulse response equals 1 at 0 and 0 otherwise. � de-
notes the convolution operator. A � (B � C) denotes

a.i) b.i) c.i)

a.ii) b.ii) c.ii)

a.iii) b.iii) c.iii)

a.iv) b.iv) c.iv)

Figure 3: Rotated samples (00, 200, 450 and 550) of
some of the textured images used in our experiment

separate convolution of the rows and columns respec-
tively of the image A with 1-D �lters B and C.

Then the wavelet representation of depth d0 of
the image I(x; y) consists of the low resolution im-
ages fc2ig and detail images fwj2ig for fj = 1; 2g and
fi = 1; � � � ; d0g.
3.2 Texture features computation

Feature extraction is a crucial step in accomplishing
reliable classi�cation. A good feature representation
should be consistent among the pixels with the same
class, while as disparate as possible between classes for
authentic and reliable classi�cation. This means that
it should reect some global view while keeping some
discrimination capability at the pixel level. Therefore
the problem in general is one of spatial- spatial fre-
quency analysis. We now discuss the computation of
the rotation invariant parameters from wavelet trans-
formed images.

Substitution of (14) and (16) in (15) yields the fol-
lowing,�

w1
s(x; y)

w2
s(x; y)

�
= s2

 
@2

@2x(I � �s)(x; y)
@2

@2y (I � �s)(x; y)

!

= s2r2(I � �s)(x; y)
(18)
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Figure 4: Gradient magnitude histogram plots of tex-
tures shown in �gure 2 for textures a)2.a.i - 2.a.v
b)2.b.i - 2.b.v c)2.c.i - 2.c.v d)2.d.i - 2.d.v

where r2 denotes the Laplacian. It de�nes edge mag-
nitudes of the image and since it has the same prop-
erty in all directions is invariant to rotations in the
image. That is the wavelet transform of an image
consists of the components which give a measure of
the edge magnitudes of the image, smoothed by the
dilated smoothing function �s. The edge magnitudes
of the image is given as,

wrs(x; y) =

q
(w1

s(x; y))
2
+ (w2

s(x; y))
2

(19)

The wrs(x; y) contain a measure of the edge magnitude
at (x; y), which is proportional to the magnitude of
the local gray level variation of the image and clearly
yields a rotation invariant multiscale representation
hs = f(wrs)(s=1;���;2d0) ; c2d0 g.

Figure 3 shows some of the textured images that we
have used to generate the composite textures used in
our experiment. We �nd out the histograms of the gra-
dient values given by (19) of these textures at di�erent
rotations. The histograms so obtained has many local
minima and maxima which can be removed by local
smoothing of the histogram. This is accomplished by
local averaging of neighboring histogram elements.

We have taken three adjacent elements at a time
and the process is repeated for a number of iterations.
A plot of these histograms after smoothing is given in

�g. 3 to give a feeling that the edge magnitude of the
textures are indeed rotation invariant. We calculate
the �rst, second and the third order moments of the
unrotated texture edge magnitude histogram and also
its several rotated versions, to measure the similarity
between these histograms, which is given in table 1.

Texture Rotation Order of moments
data in deg.

First Second Third
unrotated 1.126 0.0014 0.0016

20 1.127 0.0014 0.0016
Texture 1 45 1.128 0.0014 0.0016

55 1.129 0.0014 0.0016
90 1.126 0.0014 0.0016

unrotated 1.288 0.0024 0.0029
20 1.307 0.0023 0.0030

Texture 2 45 1.313 0.0023 0.0031
55 1.317 0.0024 0.0031
90 1.291 0.0023 0.0029

unrotated 1.411 0.0029 0.0041
20 1.444 0.0028 0.0039

Texture 3 45 1.419 0.0029 0.0042
55 1.432 0.0030 0.0043
90 1.405 0.0029 0.0040

unrotated 1.334 0.0024 0.0032
20 1.339 0.0024 0.0033

Texture 4 45 1.336 0.0024 0.0032
55 1.341 0.0024 0.0033
90 1.331 0.0024 0.0032

Table 1. Moments of the magnitude histograms tab-
ulated for comparing the similarity between the unro-
tated texture histograms and their rotated versions.

The moments so calculated suggest that the texture
features are indeed rotation invariant.

3.3 Local energy estimation

The next step is to estimate the energy of the �lter
responses in a local region around each pixel. The
local energy estimate is utilized for the purpose of
identifying areas in each channel where the bandpass
frequency components are strong resulting in a high
energy value and the areas where it is weak into a
low energy value. Energy is usually de�ned in terms
of a squaring nonlinearity. However in a generalized
energy function, other alternatives are used. We sim-
ply compute the average absolute deviation from the
mean in small overlapping windows. One reason for
choosing this nonlinear operator is that it is parameter
free, meaning it is independent of the dynamic range
of the input image and also of the �lter ampli�cation.

The local energy es(i; j) around the i; jth pixel is
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Figure 5: a.i-c.i) Composite textured images with
their corresponding segmented outputs (K=2)

formally given as,

es(i; j) =
1

R

WX
m=1

WX
n=1

j (hs(m;n)� hs(i; j)) j (20)

where, W is the window size and R = WXW , while
hs(i; j) is the mean around the (i; j)th pixel and
hs(i; j) is the �ltered image at di�erent scales for
s = 1; � � � ; 2d0 .

The nonlinear transform is succeeded by a Gaussian
low pass (smoothing) �lter of the form,

HG(u; v) =
1

2�
p
�
e

1

2�2
(u2+v2) (21)

Formally, the feature image fs(i; j) corresponding to
�ltered image hs(i; j) is given by,

fs(i; j) =
1

G2

X
(a;b)2Gij

j 	(hs(a; b)) j (22)

where 	(�) is the local energy estimator and Gij is
a GXG window centered at pixel with coordinates

(i; j). The size G of the smoothing or the averaging
window in equation (22) is an important parameter.
More reliable measurement of texture feature calls for
larger window sizes. On the other hand, more accu-
rate localization of region boundaries calls for smaller
windows. This is because averaging blurs the bound-
aries between textured regions. Another important
aspect is that, Gaussian weighted windows are nat-
urally preferable over unweighted windows, because,
the former are likely to result in more accurate local-
ization of texture boundaries.

The images resulting from these operations are the
feature maps Fs(i; j) at di�erent scales.

3.4 Unsupervised classi�er

Having obtained the feature images, the main task
is to integrate these feature images to produce a seg-
mentation. We de�ne a scale - space signature as the
vector of features at di�erent scales taken at a single
pixel in an image,

F (i; j) = [F0(i; j); F1(i; j); F2(i; j); : : : ; FN (i; j)]
(23)

Suppose these scale-space signatures are considered as
feature vectors in a feature space. If the signatures of
one texture are distinct from the signatures of another
texture a pattern recognition system can be used to
identify several di�erent textured regions in the scale
space.

Let us assume that there are M texture categories.
C1; : : : ; CM , present in the image. If our texture fea-
tures are capable of discriminating these categories
then the patterns belonging to each category will form
a cluster in the feature space which is compact and iso-
lated from clusters corresponding to other texture cat-
egories. Pattern clustering algorithms are ideal modes
for forming such clusters in the feature space. Segmen-
tation algorithm accept as input a set of features and
put a consistent labeling for each pixel. Fundamen-
tally this can be considered a multidimensional data
clustering problem. Clustering algorithms that have
been previously used for texture segmentation can be
divided into two categories : supervised and unsuper-
vised segmentation.

We emphasize on the feature extraction (represen-
tation) part in this work. So we have used a traditional
K-means clustering algorithm. Although other sophis-
ticated algorithms like watershed clustering could have
been used. We normalize each scale-space signature by
dividing each value in the signature by the signature's
total magnitude. This is to ensure that no particular
feature dominates the feature space. For the image I



a.i) a.ii)
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Figure 6: Composite textured images with their cor-
responding segmented outputs (K=3)

the normalized scale-space signature is,

F (i; j) =

"
F0(i; j)PN
k=0 Fk(i; j)

; : : : ;
FN (i; j)PN
k=0 Fk(i; j)

#

4 Experimental results
We have experimented our segmentation algorithm

on a number of textured images taken from the Bro-
dazt album which clearly exhibit anisotropy. We have
considered both integer and fractional rotations, be-
cause integer rotations are distortion free and it is very
di�cult to characterize fractionally rotated textures.
Several rotations have been considered, like 15:50, 200,
37:50, 450, 550, 600 and 900. Several composite tex-
tured images have been generated from the rotated
versions of these textured images. Since we are mainly
interested in the e�ectiveness, reliability and robust-
ness of the rotation - invariant features that are ex-
tracted rather than the segmentation performances,
we have experimented on composite textured images
consisting of a moderate number of texture classes.

Figure 5 show two class test images that we have
worked on, which consist of 5 regions, out of which
two regions are unrotated textures and the rest three
comprise of rotated textures. The images were decom-
posed into three levels of resolution as given in �g. 2.
We have taken into account all the three detail images
and two of the low frequency images leaving out the
lowest frequency image at the third level of resolution,
to estimate the local energies around each pixel at dif-
ferent scales. That is in all we are left with only �ve
feature elements which means a huge reduction in the
dimensionality of the feature space, compared to other
methods so far reported in the literature. Segmenta-
tion was performed with K-means clustering with �xed
K=2, results are shown in �gure 5. Percentage of cor-
rect classi�cation have been taken as the measure of
performance in this work. The classi�cation percent-
age for �gures 5a.i, 5b.i and 5c.i are 99.31 %, 98.93 %
and 97.41 % respectively.

Figure 6 show some composite textured images that
we have tested on, which comprise of three di�erent
texture classes. The images consist of 5 regions with
three unrotated textured regions and two rotated tex-
tured regions. Segmentation is carried out using K-
means clustering with �xed K=3, the experimental
results are shown in �g 6. The classi�cation percent-
ages for test images 6a.i, 6b.i and 6c.i are 98.24 %,
97.61 % and 98.49 % respectively.

5 Conclusion

This paper studies the issue of rotation-invariance
for texture segmentation. Simple and computationally
e�cient features have been extracted based on the fact
that circularly symmetric wavelets give rotationally -
invariant features, as these wavelets are independent of
orientation. We have seen that wavelet frame analysis
is appropriate over the standard subsampled wavelet
analysis for rotational invariance. We have also seen
that the features that we have extracted are really
invariant to rotation by studying the gradient magni-
tude histograms of the several rotated versions of the
same texture class. Another important aspect of our
algorithm is that we make use of only �ve features
to achieve the desired segmentation and this entails a
huge reduction in feature dimensionality.

Studying the results of our experiment over sev-
eral composite textured images we can conclude that
our scheme performs appreciably well. But some edge
inaccuracies are observed apart from some misclassi�-
cation. One reason for this might be because for the
purpose of segmentation the features that are com-
puted are pixel based, i.e. features are the measure of
local energies over a small window around each pixel.



A proper choice of this window size is very essential.
The window size should be such that it captures the
total periodicity of the microtextures of each class this
calls for larger window size, where as for accurate tex-
ture boundary localization between classes the window
size should be small.

It is to be noted that we have not done any post-
processing over the classi�ed images. Where postpro-
cessing like median �ltering or simple morphological
operation like dilation would have de�nitely improved
the classi�cation results. But inspite of that we have
achieved good classi�cation and hence we can claim
that our approach gives an e�ective rotation invariant
texture segmentation.

Another important point to be noted is that, the
standard two-band wavelet decomposition imply �ne
frequency resolution in the lower frequency band than
in the higher band and hence are not suitable for the
analysis of high frequency signals with relatively nar-
row bandwidth. Therefore we conjecture that an M -
band wavelet analysis where M is greater than two
can characterize textures better than the two-band
wavelets. Since our segmentation algorithm is based
on the concept that two di�erent texture classes com-
prise of di�erent signal energies. So the accuracy of
our algorithm lies on the fact that how e�ectively we
can characterize each texture in terms of its signal
energies. This in turn demands for decomposition of
each textures into a large number of subbands. So
we are of the opinion that M -band wavelets are more
suitable for this purpose of segmentation. We have
already done a work in support of this [16].

References

[1] M. Tuceryan and A. K. Jain, \Texture analysis,"
in Handbook of Pattern Recognition and Com-

puter vision, pp. 235{276, World Scienti�c, 1993.

[2] T. Chang and C. C. J. Kuo, \Texture analysis and
classi�cation with tree structured wavelet trans-
form," IEEE Transactions on Image Processing,
vol. 2, no. 4, pp. 42{44, 1993.

[3] J. L. Chen and A. Kundu, \Rotation and gray
scale transform invariant texture identi�cation
using wavelet decomposition and hidden markov
model," IEEE Trans. Patt. Anal. Mach. Intell.,
vol. 16, no. 2, pp. 208{214, 1994.

[4] S. Mallat, \A theory for multiresolution signal de-
composition: The wavelet representation," IEEE
Trans. Patt. Anal. Mach. Intell., vol. 11, no. 7,
pp. 674{693, 1989.

[5] A. Laine and J. Fan, \Texture classi�cation by
wavelet packet signatures," IEEE Trans. Patt.

Anal. Mach. Intell., vol. 15, no. 11, pp. 1186{
1190, 1993.

[6] M. Unser, \Texture classi�cation and segmenta-
tion using wavelet frames," IEEE Transactions

on Image Processing, vol. 4, no. 11, pp. 1549{
1560, 1995.

[7] R. L. Kashyap and A. Khotanzed, \A model-
based method for rotation invariant texture clas-
si�cation," IEEE Trans. Pattern Anal. Machine

Intell. PAMI, vol. 8, no. 4, pp. 472{481, 1986.

[8] F. S. Cohen, Z. Fan, and M. A. Patel, \Clas-
si�cation of rotation and scaled textured im-
ages using gaussian markov random �eld mod-
els," IEEE Trans. Pattern Anal. Machine Intell.

PAMI, vol. 13, no. 2, pp. 192{202, 1991.

[9] W. R. Wu and S. C. Wei, \Rotation and gray
scale transform invariant texture classi�cation
using spiral resampling, subband decomposition
and hidden markov model," IEEE Trans. on Im-

age Process., vol. 5, no. 10, pp. 1423{1434, 1996.

[10] S. R. Fountain and T. N. Tan, \E�cient rota-
tion invariant texture features for content - based
image retrieval," Pattern Recognition, vol. 31,
no. 11, pp. 1725{1732, 1999.

[11] M. Acharyya and M. K. Kundu, \Robust texture
classi�cation using wavelet frames," Accepted in

Image Processing and Communication, 2000.

[12] G. Strang and T. Nguyen, Wavelets and Filter

Banks. Wellessley - Cambridge Press, 1996.

[13] I. Daubechies, Ten Lectures on Wavelets.
Philadelphia: Soc. Ind. Applied Math, 1992.

[14] S. Mallat, \Zero-crossings of a wavelet trans-
form," IEEE Trans. Patt. Anal. Mach. Intell.,
vol. 37, no. 4, pp. 1019{1033, 1993.

[15] S. Mallat and S. Zhong, \Characterization of sig-
nals from multiscale edges," IEEE Trans. Patt.

Anal. Mach. Intell., vol. 14, no. 7, pp. 710{732,
1992.

[16] M. Acharyya and M. K. Kundu, \An adaptive
approach to unsupervised texture segmentation
using m-band wavelet," Communicated, 1999.


