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Abstract

In this work we propose a network model for the
retinex computation. This model provides a better in-
sight on the retinex theory. By drawing analogy from
neuro-physiological activities in human vision system,
we have suggested to replace the logarithmic function
used in earlier models by a sigmoidal function. It has
produced good color rendition. In addition in this case
we do not require any color restoration filtering as a
post-processing stage. Considering the interactions be-
tween rod and cone cells through the bipolar cells in
the human vision system, we have further proposed the
retiner computation using the diffusion of luminance
component only. We found that this has produced al-
most similar color constancy and color rendition in
the processed images.

1 Introduction

In recent years a lot of interest has been shown in
using the retinex theory for color enhancement and for
obtaining color constancy. Edwin H. Land used the
term retinex for the first time in the context of the
processing of fluxes to generate lightness, which ac-
cording to him could occur either in the retina or in the
cerebral cortex or partially in both [1]. Since the lo-
cation of that mechanism was uncertain it was termed
as retinex in short. In the last paper on the retinex
theory Land [2] had proposed a center/surround re-
sponse model for spatially opponent colors in relation
to the neuro-physiological functions of the individual
neurons in the primate retina, lateral geniculate nu-
clei and cerebral cortex. This has lead to the devel-
opment of an elegant computational model for achiev-
ing color constancy under varied spatial and spectral
illumination of a scene. Using this model Jobson, Ra-

haman and Woodell [3] has developed computation
techniques for color enhancement. Initially they used
Single Scale Retinex(SSR) for achieving color con-
stancy. Later they used Multi Scale Retinex(MSR)
[4] which provides superior results to those obtained
by SSR. They have also performed a post-processing of
the retinex computed images for obtaining good color
rendition. This operation is termed by them as color
restoration filtering (CRF). Even though Jobson et al.
[4] have shown good color renditions over different set
of color images, Barnard and Funt [5] have pointed out
that they still suffer from perturbing colors in some
cases.

There are other approaches also for exploiting
retinex theory to achieve color constancy. Hurlbert
[6] proposed a computation model using an artificial
neural network. Moore et al [7] implemented the
retinex model through the Very Large Scale Integra-
tion(VLSI) of resistive networks. Barnard and Funt
[5] decoupled the computation of color constancy from
dynamic range compression using a trained neural net-
work capable of predicting chromaticity of the scene
illuminant [8]. They have shown that their technique
is able to remove the complement color bleeding effect
and the unwanted bluish artifacts are restored to their
desired colors.

In this paper we have considered a network model
for the retinex computation. We have considered the
same MSR, computational model used by Jobson et
al [4] and performed Gaussian smoothing of the spec-
tral bands by solving standard isotropic heat diffusion
equation [9] in 2D. The iterative diffusion of spectral
bands provides a network model for retinex compu-
tation. This model provides a better insight on the
functioning of different computation blocks and com-



putation stages. By drawing analogy from neuro-
physiological activities in human vision system, we
have suggested to replace the logarithmic function by
a sigmoidal function, a popular choice for simulating
nonlinear behavior of artificial neurons in neural com-
putation. We have further noticed the interaction be-
tween rod and cone cells through the bipolar cells [10]
in the human vision system. As rods are responsi-
ble for achromatic vision and cones are responsible for
chromatic vision we have proposed the retinex com-
putation using the diffusion of luminance component.
This has increased the speed of the computation. At
the same time, this has delivered almost similar color
constancy and color rendition in the processed images.
In the following section we have described the multi
scale retinex computation as used by Jobson et al [4].
Subsequently we present our network model and re-
lated modifications for retinex computation.

2 Traditional
Computation
Consider a color image having pixel values in three
spectral bands. Let us denote each spectral band as
I;,i =1,2,3. The pixel value for the ith spectral band
at (z,y) location is denoted as I;(z,y). The single
scale retinex is given by the following expression [3]:

Multi-scale Retinex

Ri(z,y) = log(Ii(z,y)) — log(G(z,y) * Ii(z,y)) (1)

where R;(z,y) is the retinex output for the ith spec-
tral band at the (z,y) pixel location in the image
space. It may be noted that ‘«’ denotes the convo-
lution operation in the above expression. G(x,y) is
the surround function which is a 2D Gaussian mask
with the standard deviation ¢ (uniform in both the
principal directions). The MSR output is then given
by the weighted sum of the outputs of the several dif-
ferent SSR outputs using Gaussian masks of different
values of o. Jobson et al [4] have used three surround
functions and given equal weight-age for each of them
for the retinex computation. Typically the values of
o’s taken by them are 15 ,80 and 250.

As MSR computation produced a greyish appear-
ance of the processed images, Jobson et al [4] have
used a color restoration function(CRF) as a post-
processing of the retinex computation. The modified
MSR is obtained as:

Ri(w,y) = Ci(w,y)-Ri(z,y) (2)

Here C;(x,y) represents the color restoration function
of the ith spectral band which is based on computation

of the chromaticity coordinates. C;(z,y) is computed
as:

Ci(z,y) = B.(log(a.Ii(z,y)) — log (L, Li(z,y))) (3)

where (8 is the gain constant and a controls the
strength of the nonlinearity and S represents the num-
ber of spectral channels which is 3 for RGB color
space. Using the color restoration function the final
version of the multi-scale retinex is given by the fol-
lowing equation:

R{(z,y) = g.(Ri(z,y) +b) (4)

where g is the final gain and b is the offset value.
The constants g and b intrinsically depend upon
the implementation of the algorithm in the software.
These are used to bring the values in the display do-
main. !

However we have observed that in our implemen-
tation the final retinex values (R}') have a very large
dynamic range (typically, -32000 to 72000), which is
image dependent also. We have used the full dynamic
range to map the values in the range of 0 to 255 to get
the display of the processed images. A typical pair of
MSR processed images are shown in Figures 1 and 2.

Figure 1: (a) Original image: MOUNTAIN

One may observe the color bleeding effect in the sec-
ond example (cf. Figure 2(b)). It may be noted here
that we are not able to attain same visual quality as
demonstrated by Jobson et al in [4]. This may be due

10On an enquiry to Dr. D. J. Jobson, it has been found that,
at the immediate post-retinex stage an intermediate gain/ offset
was applied as:

R'(z,y) = R(z,y) * 28.44 + 128.

Then color restoration was applied to yield R (z,y). Finally
a final gain/offset was applied as:

R"(z,y) = (R"(z,y) — 20.) x 2.7 to reach 0 — 255 display.



to the largely varying dynamic ranges obtained at the
end of the computation, which are left untreated here.
There was no mentioning of such a post-processing in
[4]. But we feel that the major reason for the poor
performance in our implementation is the improper
selection of parameter values. As it is found to be ex-
tremely difficult to empirically choose these values due
to the large dimensionality of the parameter space and
the large computation overhead, the values of those
parameters are taken from [4] and also from Dr. D. J.
; Jobson on electronic mail correspondences. However,
g this shows that their technique is heavily dependent on

the proper tuning of the parameter values for getting

the desired color rendition. The similar difficulties are
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Figure 1: (b) Retinex image by JRWMSRCR also reported by Barnard and Funt [5].

3 Isotropic Diffusion and Network
Model for MSR Computation

An image is convolved with a Gaussian mask (space
surrounding function G(z,y) in MSR computation)
when it is fed as an initial input to the solution of
the 2D heat diffusion equation. For a spectral band I;
this may be written as:

oI,

oI, w(a21,- 82I;
at

9z | 9y?

), where w is a constant (5)

The well known discrete formulation of this equa-
tion is given below:

@y = @y +w(@-1y)

+Ii(t) (x+1,y)+ IZ-(t) (z,y—1)

+I @,y + 1) — 4% I (2, y))
(6)
The above equation shows that as the number of it-
erations increases the amount of smoothing will in-
crease. In fact at the nth iteration, the resulting image
is same as the convolved one with a Gaussian mask of
an equivalent o of Von. Tt may also be noted that
for the convergence of the above equation the value of
w should lie in between 0 and 0.25 [9]. Typically at
w = 0.25 the equation assumes the following simple

form:

:

e 1 Iy = j00 -1y + 1@+ 1Y)

- g 1@y =) + 10 @y + 1)
i ———4 | (7)
: o : = = Given these formulations one is capable of contin-
Figure 2: (b) Retinex image by JRWMSRCR uously varying the o of the surrounding function in

MSR and accumulate the resulting retinex values after
each iteration of the diffusion process. The operation



at a single pixel is described by the network model
given in Figure 3.
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Figure 3. Network Model for MSR Computation

The mathematical expression for the MSR for the
ith spectral band is given below:

Ri(r,y) = 524 (log(1°) (2,9)) ~ 1og (1" z.)
(8)
In the above equation N is the total number of iter-
ation and IZ-(O) (z,y) is the original pixel value of the ith
spectral band at (z,y) pixel location. However as we
find that it is not necessary to consider each and every
iteration for accumulating retinex values, we have ac-
cumulated these values after a fixed interval (typically,
50 iterations in our implementation). The average of
the accumulated values provide R; for each spectral
band. We have obtained similar results as obtained
previously [4] by applying similar color restoration op-
erations with a different set of values for the respective
parameters. In our case we have kept the value of N
as 10000. For lower values of N, the processed im-
age appear more greyish and less bright. However, we
have noticed that even if we increase the number of
iteration to a great extent (say N=30000), the results
do not improve much.

4 Replacement of Logarithmic Func-
tion by Sigmoidal Function

It is not clear how the retinex information is pro-
cessed in our vision system. Land [1] has hypothesized

that the retinex computation is carried out in the re-
gions of the cerebral cortex. A type of elements called
blobs are identified as responsible for this computation.
However we have noticed from the network model that
there are three stages of this retinex computation:

1. The diffusion layer where the smoothing or aver-
aging of pixel values from surrounding space takes
place and produces an inhibitory signal in propor-
tion to the logarithm of the averaged value.

2. The excitation part on the other hand is con-
tributed by the logarithm of the input pixel value.

3. Integration or accumulation of the single scale
retinex values.

We propose that these computations are carried out
by the bipolar cells in cooperation with the horizontal
cells. The bipolar cells have a center/surround exci-
tation/inhibition Receptive Field(RF) and this may
be conjectured that the basic retinex computation (as
given by the equation 1) is being carried out by those
cells, whereas the diffusion process is carried out by
the horizontal cells. It may be noted that all the cells
in the visual path from rods and cones to ganglions
give a graded response for an input excitation or in-
hibition [10]. In fact sigmoidal functions are being
used for simulating the non-linear response behavior
of artificial neurons. Hence we also propose here to re-
place the logarithmic function by a sigmoidal function,
which takes the following form:

1
1+ e(—(z+9)/T)) 9)

Sigmoid(z) =

Here the parameters € and T denote the threshold
and the scale for setting up of the activation level of
the sigmoid function. The value of the threshold is
taken as 128 where as scale has been fixed at 100 in our
computation. So the modified retinex computational
model is given below:

Rizy) = %2(Sigmoid(” (r,9)~ 0,
Sigmoid(I" (z,y)))
4.1 Merits of using sigmoidal function
There are several reasons why someone should opt
for a logarithmic function in computing retinex values.
The logarithmic function is well known for their abil-
ity to bring large dynamic ranges to smaller ranges.
The other reason for using the logarithmic function
is that it decouples the illumination component from
the reflectance in the retinex computation. The sub-
traction causes the removal of illumination component



and retains the relative reflectance at the image point.
Use of logarithmic function may be motivated also by
the fact that rods and cones in our retina respond log-
arithmically to the optical illumination [10].

However the sigmoidal function has its advantages
too. It is defined for the whole real axis, whereas log-
arithm is defined for only positive values. Specially,
one has to take care of handling zeroes in this case.
The dynamic range of the output of the logarithmic
function is from —oo to +00. The output of a sig-
moidal function has the dynamic range from 0 to 1.
In fact one of the difficulty in the retinex computation
is the suitable mapping of final retinex values to the
displayable range (typically 0 to 255). The use of log-
arithmic function in this case causes a wide variation
of dynamic ranges for different types of images. The
sigmoidal function on the other hand produces a dy-
namic range within —1 to 1 (cf. equation ( 10)). It
is interesting to note that in a recent paper [11] sig-
moidal functions are used for displaying high contrast
images. The property of dynamic range compression
of sigmoidal functions facilitates these operations.
4.2 Color restoration

We have observed that the use of sigmoidal func-
tions in the retinex computation directly provides
the required color rendition in the processed images.
Hence there is no need of color restoration operation
in the post-processing of retinex computed images.
Moreover as the dynamic ranges are restricted within
a known interval, we have conveniently applied his-
togram stretching here. In this case, range of values
containing 98% of the pixels are used for mapping to
the displayable range. In Figures 4(a) & (b) images
obtained from MSR computation using sigmoid func-
tions are shown. One may note that the color bleeding
phenomenon as observed earlier (cf. Figure 2(b) ) does
not appear in this case (cf. Figure 4(b)).

.
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Figure 4(a) Using sigmoidal function : for MOUNTAIN

Figure 4(b) Using sigmoidal function: for SUNSET

5 Rod-Cone Interaction and Retinex
Computation

So far in all the available retinex computational
model [2] [3] [4] [5] , the information processing is
solely restricted to an individual spectral band. But in
the visual path of our vision system, interactions be-
tween rods and cones also take place in bipolar cells.
In fact there are bipolar cells where four rods and a
single cone are connected [12]. This connectivity has
encouraged us to consider the diffusion of the lumi-
nance values only (as rods are responsible for lumi-
nance encoding). Then the retinex values for individ-
ual spectral band is computed with respect to these
diffused luminance values. Given a color image in the
RGB space, in this work the luminance value L is com-
puted at any pixel using the following equation:

L(z,y) = 0.177r(z,y) + 0.813¢g(x,y) + 0.011b(x, y)
(11)
where r(z,y), g(x,y) and b(z,y) are respectively red,
green and blue components at the image point (z,y).
Hence the diffusion of the luminance component of
the image is expressed as:

L0 (gy) = LIO@-1,)+ IO +1,y)
+L(t)(:l;,y—1)+L(t)(x,y+1))
(12)

Finally, the retinex values computed using these dif-
fused values are given below:

Sigmoid(LO(z,y)) ¥

In this case also we have not used any color restora-
tion after obtaining the retinex values. It may also be
noted that as we are carrying out the diffusion process
only in one component (the luminance component),
the algorithm runs much faster in this case (almost



three times of the technique described in the previous
section).

6 Results

We have experimented with various images for com-
paring the performances of our proposed algorithms.
We have made our observations for the following three
techniques:

1. MSR computation as proposed by Jobson et al.
(JRW-MSRCR).

2. MSR computation using sigmoidal function (SIG-
MSR).

3. MSR computation using luminance value in the
diffusion process and sigmoid function in the
retinex computation (LUM-SIG-MSR).

Here we present two typical results. One is with an
image having wide range of variation (cf. Figure 5(a)
of ‘BRIDGE”) and the other one is photographed with
active (and artificial) illumination (cf. Figure 6(a) of
‘CITY-PROFILE’). These are taken from the web-
site at http://dragon.larc.nasa.gov /viplab /projects
/retinex /retinex.html. It may be noted that the pro-
cessed images by JRW-MSRCR are directly obtained
from the same web-site. For each the retinex processed
images using JRW-MSRCR, SIG-MSR and LUM-SIG-
MSR are shown in Figures 5(b) to (d) and 6(b) to (d)
respectively. The computational advantages in SIG-
MSR and LUM-SIG-MSR techniques against JRW-
MSRCR are in their speed and less number of param-
eters in adjusting the retinex values to the displayable
range. LUM-SIG-MSR runs even faster (three times)
than SIG-MSR method. Another advantage in these
techniques is that they do not require any color
restoration filtering (CRF) operation. Color bleed-
ing effects are also not observed in these cases. On
the other-hand, we found that JRW-MSRCR produces
excellent color rendition in various images. Moreover
LUM-SIG-MSR fails to deliver good quality of color
rendition for artificially illuminated images. Our ob-
servations are summarised in the Table 1.

From the figures one may observe that the results
obtained by JRW-MSRCR are excellent. It is inter-
esting to note that for the image ‘CITY PROFILE’,
SIG-MSR technique provides more detailed informa-
tion (cf. Figure 6(c)). In some places it has recovered
greenish spots and the small objects on the road are
more highlighted in the processed images. It has been
also noted that LUM-SIG-MSR performs poorly in the
artificially illuminated scene (cf. Figure 6(d)).

Figure 5(a) BRIDGE: original
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Figure 5(d) BRIDGE: LUM-SIG-MSR

Figure 6(a) CITY PROFILE: original

Figure 6(d) CITY PROFILE: LUM-SIG-MSR

Figure 6(b) CITY PROFILE: JRWMSRCR



Table 1: Comparitive assesments of various al-
gorithms

JRW-MSRCR

SIG-MSR

LUM-SIG-MSR

Largely varying
dynamic ranges.

Dynamic ranges
are fixed within
a known limit.

Dynamic ranges
are fixed within
a known limit.

Heavily dependent
on parameter

More robust
with less number

More robust
with less number

tuning. of parameters. of parameters.
CRF CRF CRF
required. not required. not required.

Color bleeding No color No color

effect observed. bleeding effect. bleeding effect.
Slow Moderate Fast

computaion computation computation
speed. speed. (Typically speed. (Typically

three times

of JRW-MSRCR).

three times
of SIG-MSR).

Delivers excellent
visual quality in

Delivers good
quality.

Delivers good
quality. Images

the most of
the cases.

appears greyish
in artificial
illumination.

7 Conclusion

In this paper we have developed a network model
for the retinex computation by performing Gaus-
sian smoothing of the spectral bands through their
isotropic diffusions in 2D space. This model pro-
vides a better insight on the functioning of different
computation blocks and computation stages. In our
model we have also suggested to replace the logarith-
mic function by a sigmoidal function, a popular choice
for simulating nonlinear behavior of artificial neurons
in neural computation. We have found that the use
of sigmoidal functions also provides color constancy
with good color rendition. In fact in this case we do
not require any color restoration filtering in the post-
processing stage. We have further studied the con-
nections of different types of cells in the visual path of
human vision system. We have noticed the interaction
between rod and cone cells through the bipolar cells
in the human vision system. As rods are responsi-
ble for achromatic vision and cones are responsible for
chromatic vision we have proposed the retinex com-
putation using the diffusion of luminance component.
This has produced similar color constancy and color
rendition in the most of the cases.
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