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Abstract
Segmentation of satellite images is an important issue in
various applications. Though clustering techniques have
been in vogue for many years, they have not been too
effective because of several problems such as selection
of the number of clusters. This proposed work tackles
this problem by having a validity measure coupled with
the new clustering technique. This method treats each
point in the data set, which is the map of all possible
color combinations in the given image, as a potential
cluster center and estimates its potential with respect to
the other data elements. The point with the maximum
value of potential is considered to be a cluster center
and then its effect is removed from the other points of the
data set. This procedure is repeated to determine the
different cluster centers. At the same time we compute
the compactness and the minimum separation among all
the cluster centers, also the validity function as the ratio
of these quantities. The validity function can be used in
making a choice of the number of clusters. This
technique has been compared to the Fuzzy C-means
technique and the results have been shown for a sample
color image of satellite data.

1. Introduction
Segmentation of satellite images is an important task
required in many fields. It is especially of a great
significance in the area of Geographical Information
Systems (GIS) as this helps in planning the activities in
the development of resources, study of changing
environment and observing the impact of disasters. The
basis of segmentation may be mainly made on the image
properties such as color or texture [1] or both. Mostly,
color can be used in the segmentation of such images,
but textural features may also prove to be useful. The
perfect segmentation has eluded the researchers still
forcing them to try alternative approaches.  However, we
will make an attempt to use the color property in this
paper. In view of wide acceptability and facility of fuzzy
approach, we mainly devote our attention on these
approaches for the segmentation of color images [2].
Some of the important contributions are the fuzzy C-
means approach [3] and robust clustering [4]. However,
we will follow the mountain clustering of Yager and
Filev [5] but modify the same for increased efficiency
and adaptability to the color imagery in the lines of
Azeem et al. [6].

The organization of this paper is as follows: Section
2 presents a brief review of modified mountain
clustering technique. Results of application this to color
images are given in Section 3. Discussion of the results
is relegated to Section 4 followed by conclusions in
Section 5.

2. Modified Mountain Clustering
The purpose of clustering is to do natural groupings of
large set of data, producing a concise representation of
system’s behavior. Yager and Filev [5] proposed a,
simple and easy to implement, mountain clustering
algorithm for estimating the number and location of
cluster centers. Their method is a grid based three-step
procedure. In the first step the hyperspace is discretized
with a certain resolution in each dimension so that grid
points are obtained. The second step uses the data set to
construct the mountain function around all grid points.
The third step generates the cluster centers by an
iterative destruction of mountain function. Though this
method is simple but the computation grows
exponentially with the dimension of hyperspace. In the n
dimensional hyperspace with m number of grid lines in
each dimension, the number of grid points that must be
evaluated is mn.

We present a modified form of Yager and Filev’s
method as reported in Azeem et al. [6]. For an image of
size r×c with l color levels, our data set consists of the R,
G, B components of each color, and the frequency of
occurrence of the intensity. We assume that each data
point, which in this case is represented by four
dimensions each, has potential to become a cluster center
instead of grid points. This modification makes the
computation complexity independent of the dimension,
because the number of grid points is equal to the number
of data points. The second advantage of this
modification is that it eliminates the need to specify a
grid resolution, in which a compromise between
accuracy and computational complexity must be struck.
The procedure of the modified method is as follows:

Let us define the jth data in x×yp hyperspace as
follows:
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where, xj={x1(j),x2(j),…,xn(j)}. Without loss of
generality, we normalize each dimension of hyperspace,
so that data points are bounded by hypercube. The
normalized data point jpx are defined as:
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Treating each data point as a cluster center, we
define a measure of potential, which is a mountain
function, of data point 

rpx as a function of distance

( ) ( ) ( )′−−= jprpjprpjprpd xxQxxxx   ,2  between rpx  and all
other data points given as
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Where, Q is a (n+1)×(n+1) positive definite matrix
and d1 is the positive constant defining the neighborhood
of data point. Data points outside radial distance d1 have
a little influence on the potential. It is evident from the
mountain function that potential value of datum is an
approximation of the density of data point (cardinality)
in the vicinity of datum. The higher the potential value
of each of the data points in hypercube, the higher the
chance of being a cluster center.  The first cluster center
is selected with the highest value of Pr, 1 as follows:
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For the selection of second cluster center, the
potential value of each data point is revised in order to
deduce the effect of mountain function around the first
cluster center as follows:

( )
Mr

d

d
PPP prp

rr      2 1             2
2

1
2

112 ,...,,
,

exp*
,, =∀

�
�

�

�

�
�

�

�

�
�

�

	






�

�
−−=

cx   (7)

where, d2 is the positive constant defining the
neighborhood of cluster center. It is evident from Eqn.
(5) that the data points near the first cluster center have
greatly reduced potential value and are unlikely to be
selected as the next cluster center. After revision of
potential value of each data point, second cluster center
is selected with the highest value of Pr,2 as under:
 ( )2,1222 max   r

M

rpp PP
=

∗∗ =⇐= xc (8)

Similarly, for the selection of kth cluster center, revision
of potential value for each data point is done as:
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and kth cluster center is selected with the  highest value
of  Pr,k as under
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To stop this procedure, Yager and Filev [5] have used
the criterion Pk

*/P1
* < δ (δ is a small fraction).  The

choice of δ affects the results. Small value of δ results in

large number of cluster centers and large value of δ
results in less number of cluster centers. It is difficult to
establish a single value for δ that works well for all data.
To overcome this difficulty a gray region of δ value
bounded by two limits δu and δl is used. The upper limit
δu is the threshold for absolute acceptance of cluster
center and the lower limit δl is the threshold for complete
rejection and the end of clustering process. In the gray
region, a good trade-off between reasonable potential
value and sufficient distance from the existing cluster
center is used to accept a data point as a cluster center:
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where, dmin = minimum distance between 
kpc  and

previously selected all cluster centers.
The optimum number of clusters for the data set

DM={xt , yp(t)}M
t=1 is decided by the validity function S

which is the ratio of compactness and separation [7] :
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where, the membership function µr,k represents the
degree of association of rth data to the kth cluster center
and is defined as:
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Let cΩ  denote the optimal candidate at any value of c ;
then the solution of
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is assumed to yield the most valid fuzzy clustering of the
data set. S  has a tendency to decrease eventually when
the number of cluster centers is very large. So, the value
of S  is meaningless when the number of cluster centers
gets close to M . Since in practice the feasible number of
clusters is much smaller than the number of data points
M there is a reason to select d1,min=0.2d1,max

3. Results and Discussion
The algorithm described above has been applied to the
340×320-pixel pseudo colored satellite image of a
glacier with 256 color levels shown in Fig.1. During the
application, matrix Q in Eqn. (5) has been considered to
be an identity matrix, making the distance ( )jprpd xx ,2

Euclidean in nature. The value of d1 was taken as 0.15
and d2 as 0.23. Though the effect of d1 is on mountain
function makes the two potential values closer or farther
numerically.  The effect of d2 is noticed in terms of
number of significant clusters. A large d2 makes
membership larger hence more pixels are grouped in to
one cluster. Eventually, the number of cluster decreases
with increase in d2.



While grouping the color levels into various clusters, we
consider only a quarter of the cluster centers initially
calculated based on their corresponding potential values
considered along with the user defined validity criteria.
By this, the number of clusters is found to be 11, which
are sufficient for the reconstruction of the original
image, almost entirely. These are shown as clusters 1-11.
It is observed that when the modified mountain
clustering technique is applied on test images, we obtain
the most acceptable results for images in which colors
are visibly more distinct. The results of modified
mountain clustering have been compared with those
fuzzy C-means clustering. Identical results are also
obtained with fuzzy C-means clustering when number of
required clusters is taken to be 11. The validity mesures
for the clusters are given in Table 1 and Table 2. Also,
the normalized cluster centers are listed in the tables. It
is observed that in modified mountain clustering, clusters
are identified one after another. Some of the segments in
modified mountain clustering are more prominent in
color. In fuzzy C-means clustering, we too have similar
clusters but they are dim. This is because replicas of the
same clusters with less intensity also occur. This fact can
be used to assert that with the modified mountain
clustering, we can choose the distinct numbers of
clusters. If we want to have more number of clusters,
then inclusion of one or more new cluster does not pose
any problem in the proposed approach, whereas in fuzzy
C-means clustering, the clustering has to be done all over
again. For small images, the fuzzy C-means is  better
but clustering of large image size, the modified mountain
clustering is a better option.

4. Conclusions
This paper presents a new clustering approach called
modified mountain clustering for the segmentation of
images. The main concept is that we define a mountain
function at each element of the data set, i.e., a set of all
possible colors in the given image, which forms a
potential cluster, and calculate the strength of this
function as a function of distance of neighboring
elements. On the basis of the strength it is declared as a
cluster and the effect of this is removed on all other data
elements. Next, another element is chosen as next
potential cluster center. This procedure is repeated until
a validity criterion comprising a ratio of compactness of
the clusters to the separation among the clusters is
violated. The results are comparable to the results of
fuzzy C-means technique but computationally much
more efficient.
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Table 1 : Normalized Cluster Centre and Validity
with modified mountain clustering

_____________________________________________
Segment   R      G         B            Freq of   Validity
    No.                                          Intensity      x 10-5

_____________________________________________
   1     0.7031   0.2891   0.1250    0.0010 0.49
   2     0.8672   0.5781   0.2891    0.0008 0.53
   3     0.5781   0.4141   0.2891    0.0017 1.83
   4     0.8672   0.4141   0.1250    0.0015 1.97
   5     0.4141   0.1250   0.0004    0.0025 1.51
   6     0.2891   0.1250   0.1250    0.0025 2.10
   7     0.7031   0.5781   0.2891    0.0002 2.06
   8     0.7031   0.1250    0.0006   0.0005 2.03
   9     0.4141   0.2891   0.2891    0.0002 2.43
  10    0.8672   0.7031   0.4141    0.0003 2.55
  11    0.5781   0.2891   0.1250    0.0017 2.81

Table 2 : Normalized Cluster Centre and Validity
with fuzzy C-means  clustering

_____________________________________________
Segment   R      G            B            Freq of   Validity
    No.                                           Intensity      x 10-5

_____________________________________________
   1     0.9710   0.9300   0.8495    0.0006 0.10
   2     0.1226   0.0473   0.0487    0.0045 0.43
   3     0.3621   0.1104   0.0549    0.0021 2.61
   4     0.6770   0.1093   0.0380    0.0006 4.27
   5     0.6999   0.4025   0.2722    0.0007 4.51
   6     0.4150   0.3326   0.3088    0.0003 3.21
   7     0.9259   0.5535   0.0958    0.0007 3.64
   8     0.6688   0.5811   0.4230    0.0006 2.23
   9     0.9221   0.5907   0.3519    0.0005 2.38
  10    0.6974   0.3231   0.0963    0.0012 5.75
  11    0.8836   0.7365   0.6225    0.0008 3.47
_____________________________________________



Fig.1 : Results Using Modified Mountain Clustering
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Fig. 2 : Results Using Fuuzzy C-Means Clustering
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