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Abstract: In a hybrid raster/vector system, two
representations of the image are stored. Digitized raster
image preserves the original drawing in its exact visual
form, whereas additional vector data can be used for
resolution-independent reproduction, image editing,
analysis and indexing operations. We introduce two
techniques for utilizing the vector features in context-
based compression of the raster image. In both
techniques, Hough transform is used for extracting the
line features from the raster image. The first technique
utilizes the line features to improve the prediction
accuracy in the context modeling. The second technique
uses a feature-based filter for removing noise near the
borders of the extracted line elements. This improves the
image quality and results in more compressible raster
image. In both cases, we achieve better compression
performance.

1. Introduction

In a hybrid raster/vector storage system, both raster and
vector representations of the images are encoded and
stored [1,2] see Fig. 1. The raster representation provides
an exact digitized replica of the original image. The
vector representation contains semantic information
extracted from the image. It benefits from vector editing
capabilities and is suitable for further image processing
and semantic analysis [3,4]. The compressed file consists
of the extracted line features and the compressed raster
image.

The advantage of raster representation is that the images
can be easily digitized and stored compactly using latest
compression technology. Vector representation, on the
other hand, allows better editing capabilities and
resolution independent scaling and reproduction.
Complete raster-to-vector conversion, however, is not a
realistic solution because the conversion systems are of
high complexity and they cannot capture all possible
vector features reliably without human interaction. Either
the file will be filled by huge number of small vector
elements, or some of the undetected information will be
lost.

We consider the storage problem of hybrid raster/vector
systems. In an ideal situation, all background features
would be in raster format and all line features in vector

format. In practice, hybrid raster/vector representation
means that a lot of new data will be stored in the vector
format without any saving in the storage of the raster
image.

In this paper, we introduce two novel techniques for
utilizing the vector features in context-based image
compression of the raster image. In both techniques, we
use Hough transform [5,6] for extracting the line features
from the raster image. The first technique utilizes the line
features to improve the prediction accuracy in the context
modeling. The compressed file consists of the extracted
line features and the compressed raster image.

The second technique uses a feature-based filter for
removing the noise near the borders of the extracted line
elements. This improves the image quality and results in
a more compressible raster image. The filtering is based
on a simple noise removal procedure using a mismatch
image between the original and the feature image. The
method is near-lossless because the amount of changes is
controlled – only isolated noise pixels are reversed.

2. Context-based compression

Binary images are favorable source for context-based
image compression because of the spatial dependencies
between neighboring pixels [7,8]. In context-based
compression, the pixels are coded on the basis of their
probability estimates in respect to the context. The
context is defined by the combination of the color values
of already coded neighboring pixels within the template.

JBIG is the current international standard for
compression of the bi-level images in communications
[9,10]. In JBIG, the image is coded by default in raster
scan order using context-based probability model and
adaptive arithmetic coder, namely QM-coder. The
probability estimation in the QM-coder is derived from
the arithmetic coder renormalization [11]. Instead of
maintaining pixel counts, the estimation process is
implemented as a state automaton consisting of 226
states. The backward-adaptive modeling of JBIG has the
advantage that only one pass over the data is required and
no overhead (models or code tables) needs to be stored in
the compressed file.
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Fig.1. Hybrid raster/vector storage system

The emerging standard JBIG2 [12-14] improves the
compression of text images using pattern matching
technique for extracting symbols from the image. This
enhancement, however, is of limited usage in the case of
line-drawing images, as they do not contain large number
of text elements.

The context modeling of JBIG can also be improved
using variable-size context template [15,16]. The
contexts are stored in the leaves of a variable-depth
binary tree, referred as context tree. The use of variable-
size context model enables selective context expansion
and utilizes larger context templates without
overwhelming the learning cost.

Another way to improve compression is to filter the
image for noise removal. Filtering reduces irregularities
in the image caused by noise, and in this way, makes the
image more compressible without degrading the image
quality. Noise appears in the image as randomly scattered
noise pixels (additive noise), and as content-dependent
noise distorting the contours of printed objects (lines,
characters) by making them ragged.

Several methods have been considered in literature for
image pre-processing before the compression [17-20].
These filtering methods work by analyzing local pixel
neighborhood defined by a filtering template and include
logical smoothing, variations of median filtering, isolated
pixel removal, and morphological filters [21]. Recent
research in mathematical morphology have shown that
morphological filtering can be used as an efficient tool
for pattern restoration in environment of heavy additive
noise [22-25]. Such approaches, however, are not
necessarily suitable for filtering content-dependent
quantization noise. Another problem is that the filtering
may destroy fine image structures carrying crucial
information if the amount of filtering is not controlled.

3. Feature extraction using Hough transform

Hough transform is used for extracting the vector features
from the image [5,26,27], as summarized in Fig. 2. The
motivation is to find rigid fixed length straight lines in the
image. The extracted line segments are represented as
their end-points. A feature image is reconstructed from
the line segments and it is utilized in the compression
phase. The extracted line segments are also stored in the
compressed file.

End-point
detection

Encoding

Input Image

Feature Image

Hough Transform

FEATURE EXTRACTION

Line parameters

Reconstruction

Feature File

Fig. 2. Block diagram of the feature extraction.

3.1. Hough transform

The lines are first detected by the Hough transform (HT)
as follows:

1. Create a set of coordinates from the black pixels in
the image.

2. Transform each coordinate (x, y) into parameterized
curve in the parameter space.



3. Increment the cells in the parameter space
determined by the parametric curve.

4. Detect local maxima in the accumulator array. Each
local maximum may correspond to a parametric
curve in the image space.

5. Extract the curve segments using the knowledge of
the maximum positions.

The parameter space is a k × k accumulator array where k
can be tuned according to the image size, e.g. k = the size
of the image. The slope-intercept ( )θρ, parameterization

is used. The accumulation matrix is quantized with equal
intervals.

3.2. End-point detection

The Hough transform is capable to determine the location
of a line (as a linear function) but it cannot resolve the
end-points of the line. In fact, HT does not even
guarantee that there exists any finite length line in the
image but it only indicates that the pixels (x, y) along
y a x b= ⋅ + may represent a line. The existence of a
line segment must therefore be verified. The verification
is performed by scanning the pixels along the line and
checking whether they meet certain criteria. We use the
scanning width, the minimum number of pixels, and the
maximum gap between pixels in a line as the selection
criteria. If predefined threshold values are met, a line
segment is detected and its end-points are recorded.

3.3. Reconstruction of the feature image

A feature image of equal size is created from the
extracted line segments to approximate the input image.
The image is constructed by drawing one-pixel width
straight lines using the end-points of the line features.
The Hough transform does not determine the widths of
the lines but wider lines are represented by a bunch of
collinear line segments. The line segments may also be
deviated from their original direction and/or have one-
pixel positional error because of the quantization of the
accumulation matrix. Therefore we do not utilize the
feature image directly but process it first by consequent
operations of morphological dilation and closing [23].
These operations make the lines one pixel thicker in all
directions (dilation) and fill gaps between the line
segments (closing). We apply a symmetric 3×3 structure
element (Block) for the dilation, and a 3×3 cross
structure element (Cross) for the closing. The cross
element is chosen to minimize the distortion in line
intersections caused by closing.

3.4. Storing the line segments

The extracted line segments are stored as {(x1,y1), (x2,y2)}
representing the end-points of the line. A single
coordinate value takes  log2 n bits where n is the

dimension of the image. For example, a line in an image
of 4096×4096 pixels takes 4×12 = 48 bits in total. A
more compact representation could be achieved if the line
segments are sorted according to their first coordinate x1.
Instead of storing the absolute value, we could store the
difference between two subsequent x1’s. Most of the
differences are very small (about 40 % of them are in the
range 0..2). An improvement of about 7 bits (from 12 to 5
bits) was estimated when entropy coding was applied to
these difference values. In the present implementation,
this idea was not applied.

4. Feature-based context modeling

There are two basic approaches for utilizing the feature
image: (1) lossless compression of the residual between
the original and the feature image, (2) compression of the
original image using the feature image as side
information. The first approach does not work in practice
because taking the residue destroys spatial dependencies
near the borders of the extracted line features. The
residual image is therefore not any easier to compress
than the original one. On the other hand, the effectiveness
of the second approach has been proven in practice in the
case of text images [10,12]. We thus adopt the same idea
here for line drawing images.

The compression method denoted further as HTC is
outlined in Fig. 3. The original image is compressed
using the JBIG-like technique, which uses previously
coded neighboring pixel as context. The context is
determined by combining index out of the neighboring
pixel values and accessing to the model using a look-up
table. Additional context pixels are taken from the feature
image. An important point is that any pixel in the feature
image can be utilized, even the current pixel that is to be
compressed. Here we use ten pixels from the original
image as in three-line JBIG modeling and five pixels
from the feature image, see Fig. 4. The actual coding is
performed by QM-coder, the binary arithmetic coder of
JBIG [9]. The line features are also stored in the
compressed file.
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Fig. 3. Block diagram of the new hybrid compression system.
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Fig. 4. Illustration of the two-level context template.

5. Feature-based filtering

The compression method utilizing feature-based filtering
and denoted further as HTF-JBIG is outlined in Fig. 5.
The image is preprocessed by a feature-dependent
filtering for improving the image quality. The filtering
removes noise by the restoration of the line contours and
therefore it results in better compression performance.
The line features are used only in the compression phase
and therefore they need not be stored in the compressed
file. The filtered image is compressed by the JBIG
without any modifications. Decompression is exactly the
same as the JBIG.

The filtering is based on a simple noise removal
procedure, as shown in Fig. 6. A difference (mismatch)
image between the original and the feature image is
constructed. Isolated mismatch pixels (and groups of two
mismatch pixels defined by 8-connectivity) are detected
and the corresponding pixels in the original image are
reversed. This removes random noise and smoothes
edges along the detected line segments. The method is
near-lossless because the amount of changes is controlled
– only isolated noise pixels are reversed. Undetected
objects (such as text characters) are left untouched
allowing their lossless reconstruction.

The noise removal procedure is successful if the feature
image is accurate. However, the feature extraction of HT
does not always provide exact width of the lines. The
noise removal procedure is therefore iterated three times
as shown in Fig. 7. The first stage applies the feature
image as such, but the feature image is dilated in the 2nd
stage and eroded in the 3rd stage before input into the
noise removal procedure. This compensates inaccuracies
in the width detection.

The stepwise process is illustrated in Fig. 8. Most of the
noise is detected and removed in the first phase.
However, the rightmost diagonal line in the feature image
is too wide and its upper contour is therefore filtered only
in the third stage where the feature image is eroded. The
results of the entire filtering process are illustrated in
Fig. 9. In these examples, pixel-level noise is mainly
filtered out but some of the roughness remains along the
lines. These consist of larger groups of noise pixels and
therefore are not filtered by the method. Symbols and
other non-linear elements are not completely detected by
Hough transform, and therefore parts of them may have
not been processed.

It is noted that the noise removal procedure does not
guarantee the retention of connectivity of the lines. It is
therefore possible that very thin lines may be broken
apart because of a pixel removal. Although the situation
is rare, the retention of connectivity can be important in
some application. In this case, an additional procedure
must be applied to check whether pixel removal would
break connectivity. For example, the method in [30] can
be implemented by a simple look-up table consisting of
the pixels within the 3×3 neighboring.
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Fig. 5. Block diagram of the near-lossless compression system.
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6. Test results

The performance of the proposed methods is tested
by compressing the set of test images of Fig. 10.
Three different feature sets were constructed from
each image with different amount of line segments
(sets 1, 2, and 3). The number of extracted lines was
controlled by varying the parameters in the Hough
transform.

The effect of the feature-based context modeling on
the file size is shown in Fig. 11. The feature-based
context modeling improves the compression of the
raster image of about 1 to 10 %, depending on the
image and the number of extracted line elements.
The amount of saving, however, is too small to
compensate the overhead required by the feature
file. For example, the vector data requires 6.3
kilobytes for the image Bolt, and the size of the
raster data can be reduced from 12.7 to 11.2
kilobytes. In total, the file takes 17.5 kilobytes.

Output Image

Input imageFeature Image

FILTERING

Dilation

Erosion

Noise
removal

Noise
removal

Noise
removal

Fig. 7. Block diagram of the three-stage filtering
procedure.

The second method (HTF-JBIG) applies feature-
based filtering for noise removal and standard JBIG
for image compression. In this case, the number of
extracted line features does not affect the file size
because the features are not stored. It is therefore
better to use as many features as can be reliably
detected. In our case, the set 3 (most line segments)
gives the best results among the three tested sets.
The method improves the compression performance
of about 12 % on average, in comparison to JBIG.
For example, the image Bolt requires 10.3 kilobytes
in comparison to 12.7 of JBIG, or 17.5 of the
hybrid compression.

The storage sizes of the two proposed methods are
summarized in Table 1. In a hybrid compression
both raster and vector data are included in the
compressed file. The column “vector” contain the
storage size required by the vector features. The two
columns “raster” refers to the two alternatives for
compressing the raster image: using JBIG and using



the proposed HTC method with feature-based
context modeling. The table includes also results
(last column) where the new techniques have both
been utilized at the same time. In the case of image
Bolt, the size of the raster decreases to 9.1 kilobytes
but in this case, the vector data must also be stored.

The running times of the proposed methods in total
for the test set using Pentium-200 machine are
shown in Fig. 12. The feature extraction dominates
the running time in the compression phase and

makes it an order of magnitude slower than JBIG.
The method is therefore suitable only for
applications where compression can be made off-
line. Decompression of filtered images in HTF-
JBIG is performed using the standard JBIG routines
and therefore is as fast as JBIG. In the hybrid HTC
compression, the decompression phase is about
35 % slower because of the processing of the vector
features.

FIRST STAGE SECOND STAGE THIRD STAGE

Input image Filtering result (1st) Filtering result (2nd) Filtering result (3rd)

Feature image Dilated feature image Eroded feature imageHough Transform
image

Mismatch pixels (1st) Mismatch pixels (2nd) Mismatch pixels (3rd)

Filtered pixels (1st) Filtered pixels (2nd) Filtered pixels (3rd)

Fig. 8. Illustration of the three-stage filtering procedure.
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Fig. 9. Filtering examples from left to right: sample from the original image, from the filtered image, and their
difference.



Bolt (1765 × 1437) Plan (2167 × 1788) House (4803 × 2873)

Chair (2842 × 2748) Module (1480 × 2053) Plus (2293 × 1787)

Fig. 10. Set of test images.

Table 1. Summary of the storage sizes of the different methods (in bytes).

Image Hybrid compression Filtering only Filtering + Hybrid

vector raster (JBIG) raster (HTC) (HTF-JBIG) (HTF-HTC)

BOLT 6,438 12,966 11,514 10,536 9,287
PLAN 2,370 5,098 4,578 4,325 3,786

HOUSE 13,398 15,688 13,961 13,336 11,553
CHAIR 16,710 52,384 50,140 51,529 48,023

MODULE 3,468 7,671 7,222 6,431 6,057
PLUS 5,268 17,609 17,132 16,273 15,739

TOTAL 47,652 111,416 104,547 102,430 94,445
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Fig. 11. Illustration of the compressed file sizes for
Bolt with variable amount of line elements.
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Fig. 12. Running times of the HT-based
compression.



7. Conclusions

Two methods were introduced for improving
compression performance in hybrid raster/vector
applications. The first method uses the feature
image as side information but the improvement is
found to be too small to compensate the overhead
required by the feature file.

The second method applies feature-based filtering
for removing noise from the original image. It
improves the image quality and results in about
12 % improvement in the compression. At the same
time, the quality of the decompressed images is
visually the same (or even better) because the
reversed pixels are mainly random noise or
scanning noise near the line segments.

Overall, the benefit of utilizing feature-based
information was moderate at best, and cannot
compensate the increase in the storage size caused
by the inclusion of vector features. We therefore
conclude that we must either give up the
requirement of preserving exact replica of the
original image, or improve the quality of the
vectorizing drastically if the we want to store the
hybrid file structure efficiently.
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