
An EÆcient Decoding Algorithm for WFA

Raghavendra Udupa U Vinayaka D Pandit Tanveer A Faruquie

IBM India Research Lab.

New Delhi 110016

India

furaghave,pvinayak,ftanveerg@in.ibm.com

Abstract

Several promising image/video data compression
techniques that explicitly exploit self-similarity in im-
ages and videos have been proposed in the recent past.
While most of these fractal techniques are variants
and/or enhancements of Jacquin's Iterated Function
Systems (IFS), the Weighted Finite Automata (WFA)
techniques (introduced by Culik and Kari) are based
on automata theory and are known to yield better com-
pression rates than the IFS techniques in practice. The
algorithm proposed by Culik and Kari for decoding W-
FA is simple but ineÆcient. It is very slow and has
very high memory requirements. In this paper we give
a simple decoding algorithm which is not only faster
but also requires considerably less memory.

1 Introduction

The emergence of Internet and Multimedia tech-
nologies has led to the development of data inten-
sive multimedia applications. Uncompressed multi-
media data requires considerable storage capacity and
transmission bandwidth which may not be available
in many legacy networks or may not be available in
network of limited bandwith. There is a need for ef-
�cient compression techniques which yield good com-
pression ratios. Several image compression paradigm-
s have been proposed and studied [9]. In the past
few years, fractal image compression has shown a lot
of promise. Since the publication of Jacquin's path-
breaking work on automated fractal image coding a
decade ago [5], numerous variants and enhancements
of the Iterated Functions Systems (IFS) have been
proposed [8], [7]. The IFS based techniques are all
based on the representation of an image by a �nite set
of contractive mappings on the space of images [10].
The �xed point of these contractive mappings is an
approximation to the original image. Culik and Kar-
i have proposed a fractal coding technique which is
based on automata theory [1]. In contrast to the IF-
S based techniques, their technique �nds a weighted

�nite automaton (WFA) representation of the image.
Such a representation is more compact than the orig-
inal image, and hence very high compression ratios
can be achieved. The process of computing the W-
FA representation of an image is called encoding the
image. The conjugate of this is the decoding of the
WFA where the image is generated from the WFA. In
practice, an image is usually encoded once but decod-
ed many times. High performance processors can be
used for encoding, while decoding should be possible
even with the simplest equipment having small memo-
ry and limited processing power. This scenario is par-
ticularly relevant when more and more people want
to view images and video on small hand-held devices
which have memory and processing power constraints.
Culik and Kari have given a decoding algorithm for
WFA in [1] which is very simple but requires a lot of
memory and is slow. In this paper we present a new
algorithm for WFA decoding. Our algorithm requires
signi�cantly less memory and is faster than the algo-
rithm proposed by Culik and Kari while retaining the
simplicity of original algorithm.

2 Weighted Finite Automata

A WFA is a 5-tuple A = (Q;�;W; I; F) ([1]) where

� Q is a �nite set of states,

� � is a �nite alphabet,

� Wa : Q�Q! <; for each a 2 �, is the matrix of
weights of transitions with label a,

� I : Q! < is the Initial Distribution, and

� F : Q! < is the Final Distribution.

A WFA A computes a function fA : �� ! < as
follows:

fA(a1 : : : ak) = IWa1 : : :WakF

1

0 2

3

Figure 1: Quadrant Labelling

Figure 2: An image computed by a WFA

for each k � 0 and a1 : : : ak 2 ��.

In case of images, the alphabet � is the set
f0; 1; 2; 3g, where each symbol corresponds to a quad-
rant of a sub-square (see Figure 1). Every sub-square
of the image can be addressed by a unique string of
these symbols. If w is the label of a sub-square, then
the labels of its quadrants are w0; w1; w2; w3. Thus,
the label of the entire image is �, i.e., the null sym-
bol and the labels of the four quadrants of the image
are 0; 1; 2; 3. If the image is of resolution 2n � 2n,
then each pixel of the image can be addressed by a
unique string of length n. Figure 2 shows an example
of an image computed by WFA. Notice that the quad-
rants 0; 1; 2 of the image are scaled copies of the image.
The WFA that computes this image is the following:
W0 =W1 =W2 = [1];W3 = [0]; I = [1]; F = [1]. More
examples of images computed by WFA with very few
states can be found in [1]. The same paper also de-
scribes an encoding algorithm which can generate a
WFA that approximately computes a given image.

A WFA is an average preserving WFA, if for every
w 2 ��, fA(w) =

1

j�j

P
a2� f(wa): The WFA returned

by the encoding algorithm of Culik and Kari [1] is an
average preserving WFA. It can be easily seen, from
the de�nition of WFA, that the function computed by
it is multiresolutional. In other words, once we obtain
a WFA representation of an image, we can decode the
image at any desired resolution.

2.1 EÆcient Decoding of WFA

We now describe a very eÆcient decoding algorithm
for WFA. Culik and Kari observed that a WFA A
de�nes a multiresolutional function p for every state
p of the WFA:

 p(�) = F (p);

 p(aw) =
X

q2Q

Wa(p; q) q(w); a 2 �; w 2 ��

or equivalently,

 p(a1 : : : ak) = (Wa1 : : :WakF)p ; a1 : : : ak 2 ��:

The function computed by A is a linear combination
of these functions:

fA(w) =
X

q2Q

I(q) q(w):

To compute the image fA at any given resolution,
we could use these mutually recursive relationship-
s among the ps. This is the gist of the Culik and
Kari algorithm. It can be easily shown that this al-
gorithm computes fA(w) for all w 2 �n; n > 0, in
O(m2tn + mtn) = O(m2tn) time at the expense of
O(mtn) space. Here t = j�j and m = jQj.

We observe that a WFA A de�nes another multires-
olutional function, �p, for every state p of the WFA:

�p(�) = I(p);

�p(wa) =
X

q2Q

Wa(q; p)�q(w); a 2 �; w 2 ��:

or equivalently,

�p(a1 : : : ak) = (IWa1 : : :Wak)p ; a1 : : : ak 2 ��:

It is easily seen that the function computed by A is a
linear combination of these functions:

fA(w) =
X

q2Q

�q(w)F (q):

A more important observation is the following.
Suppose we know �p(u) and p(v), for all p 2 Q,
where u; v 2 ��. We can compute fA(uv) as

fA(uv) =
X

p2Q

�p(u) p(v):

Our algorithm makes use of this observation to reduce
space and time.

Algorithm DECODE WFA

Input: A WFA A; and n > 0.
Output: fA(w) for each w in �n.

� For all p 2 Q let �p = I(p) and p = F (p):

� For i = 1; 2; : : : ; n1 do the next step.

� For all p 2 Q; w 2 �i�1 and a 2 � compute

�p(wa) =
X

q2Q

Wa(q; p)�q(w):

� For i = 1; 2; : : : ; n2 do the next step.

� For all p 2 Q; w 2 �i�1 and a 2 � compute

 p(aw) =
X

q2Q

Wa(p; q) q(w):

� For each u 2 �n1 ; v 2 �n2 compute

fA(uv) =
X

q2Q

�q(u) q(v):

In the above algorithm, n1 + n2 = n. Notice that
the Culik and Kari algorithm is a special case of our
algorithm with n1 = 0 and n2 = n.

3 Analysis
Let t = j�j. For the sake of simplicity we assume

that n = 2l: It is easy to see that to compute �p(u)
for all u 2 �n1 , our algorithm requires O(m2tn1) time
and O(mtn1) space. Similarly, the computation of
 p(v) for all v 2 �n2 requires O(m2tn2) time and
O(mtn2) space. Finally, the computation of fA(uv)
for all uv = w 2 �n in the last step requires O(mtn)
time. Therefore, the time taken by the algorithm
is O(m2tn1 + m2tn2 + mtn) and the space taken is
O(mtn1 + mtn2). To minimize both time and space,
we should choose n1 = n2 = n=2 = l. Thus the
time complexity of our algorithm is O(m2tl +m2tl +
mt2l) = O(m2tl +mt2l) and the space complexity is
O(mtl + mtl) = O(mtl) while the corresponding �g-
ures for the Culik and Kari algorithm are O(m2t2l)
and O(mt2l) respectively. For each pixel our algorith-
m takes O(m2=tl +m) time and O(m=tl) space while
the Culik and Kari algorithm takes O(m2) time and
O(m) space. In a typical image compression applica-
tion, t = 4, m > 25, and l � 4. Therefore, it is clear
that our algorithm reduces drastically both time and
space needed for decoding the WFA.

Figure 3: Face

Figure 4: Tree and building

4 Experiments and Results
We generated WFA for several images (of di�er-

ent sizes) and decoded them at di�erent resolutions.
For each of the test images, we generated several W-
FAs that approximate that image. Some images used
in our experiments are shown in �gure 3 and 4. We
carried out our experiments on IBM's RS-6000 (sin-
gle processor RISC) machine with 256 Megabytes of
memory.

The images used were of size 128 X 128. Figure 5
shows the time required to decode a particular WFA
(of 63 states) computed on image shown in �gure 3 at
di�erent resolutions. In the plots, time and memory
are plotted as functions of n, instead of the resolu-
tion 2n � 2n. Figure 6 shows the amount of memory
required for decoding the same WFA at di�erent res-
olutions. We see in �gure 6 that the system could
not allocate the memory required by Culik and Kari
algorithm for resolutions 512 x 512 and higher since
the requirement exceeded the total available memory
on the system (256 Mb). This also explains why we
could not measure the time needed for decoding the
WFA using Culik and Kari algorithm at those reso-
lutions. In �gure 5 both the plots have two major
bumps. The �rst bump occurs when the data (i.e.,
the images representing di�erent states of the WFA)
does not �t into the cache of the system. The second
bump occurs when the data does not �t into the main

memory. From these plots it is evident that the pro-
posed algorithm gives a better performance in terms
of both speed and memory.

We encoded the image shown in �gure 4 with WFA
of di�erent sizes (by the size of a WFA we mean the
number of states in the WFA). Figure 7 shows the
time required to decode these WFA at resolution 256
x 256. The corresponding memory requirements are
shown in �gure 8. Again we see that our algorithm
requires less time and memory than Culik and Kari
algorithm.

3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

Resolution

Ti
m

e
(m

se
cs

)

Culik−Kari algorithm
our algorithm

Figure 5: Decoding time as a function of resolution

3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Resolution

M
em

or
y

in
 M

eg
ab

yt
es

Culik−Kari alorithm
our algorithm

Figure 6: Memory required as a function of resolution

4.1 Further Improvements

In practical applications the WFA may have limit-
ed amount of nondeterminism, i.e., many of the values
of I(p) and Wa(p; q) may be zero. In such cases fur-
ther improvement to our basic algorithm is possible.
We need not compute many of the functions at some

20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

18

20

No of states

Ti
m

e
(m

se
cs

)

Culik−Kari algorithm
our algorithm

Figure 7: Decoding time as a function of the size of
the WFA

20 30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

40

45

No of states

M
em

or
y

in
 M

eg
ab

yt
es

Culik−Kari algorithm
our algorithm

Figure 8: Memory required as a function of the size of
the WFA

stages in the computation. We �rst identify the �ps
and ps that have to be computed at level l in order
to compute fA. We then identify the �ps that have
to be computed at level l� 1 to compute �ps at level
l, and so on. We similarly identify the ps that have
to be computed at levels l � 1; : : : ; 1. In the algorith-
m, instead of computing all �ps and ps at all levels
from 1 to l, we compute only those which are actually
needed.

5 Conclusions

In this paper we have proposed a fast and memory
eÆcient decoding algorithm for WFA. We have proved
that our algorithm requires less memory and has lower
time complexity than the earlier decoding algorithm
proposed by Culik and Kari. We have veri�ed our
claims through experimentation.

References
[1] K. Culik and J. Kari, \Image Compression Us-

ing Weighted Finite Automata", in Fractal Image
Compression: Theory and Techniques, Ed. Yuval
Fisher, Springer Verlag, pp 243-258 1994.

[2] K. Culik and J. Kari, \Finite State Methods for
Compression and Manipulation of Images", Data
Compression Conference, 1995.

[3] K. Culik and S. Dube, \Using Fractal Geometry
for Image Compression", Data Compression Con-
ference, 1991.

[4] K. Culik, J. Kari, and V. Valenta, \Compression of
Silhouette-like images based on WFA", Data Com-
pression Conference, 1997.

[5] A. Jacquin, \A Novel Fractal Block-coding Tech-
nique for Digital Images", ICASSP-90, 1990.

[6] A. Jacquin, \Image Coding based on a Fractal
Theory of Iterated Contractive Image Transforma-
tions", IEEE Transactions on Image Processing,
1(1), pp 18-30, Jan, 1992.

[7] B. Wholberg and G. Jagger, \A Review of the
Fractal Image Coding Literature", IEEE Trans-
actions on Image Processing, 8(12), pp 1716-1729,
Dec, 1999.

[8] A. Jacquin, \Fractal Image Coding: A Review",
Proceedings of the IEEE, 81(10), pp 1451-1465,
Oct, 1993.

[9] D. Salomon, \Data Compression: The Complete
Reference", Springer, 1997.

[10] J. C. Hart, \Fractal Image Compressions and Re-
current Iterated Function Systems", IEEE Com-
puter Graphics and Applications, 16(4), pp 25-33,
Jul, 1996.

