
A Novel Algorithm to Generate the Cover Map of a Remotely Sensed Image for
GIS Applications

 Arnab Chakrabarti, Abha Jain and A.K.Ray
Department of Electronics & Electrical Communication Engineering

Indian Institute of Technology, Kharagpur-721302, INDIA

Abstract: In this paper, we present a procedure to
approximate the cover map generated from a remotely
sensed image. The procedure can detect the nodes and
branches from a segmented description of an image
resembling a network. In the first of a two part algorithm,
the nodes and branches of the mesh are detected. Once
this has been completed, all those branches encapsulating
a segment are used to generate the cover map. Dominant-
point detection algorithms have been used to detect the
breakpoints on the individual branches. This allows the
entire scene to be represented by a set of polygons.

1: Introduction

 The cover map of a remotely sensed image may
be generated once the image is preprocessed and
segmented and an edge linked description of each segment
in the scene is available. The mesh-like pattern, that
appears after edge detection and edge linking operations
are performed on such an image, is subsequently
processed to extract the nodes and the individual branches.
Polygonal approximation of those branches enclosing a
region are next achieved.

The following few paragraphs briefly introduce the
organisation of this paper. In section 2, some key concepts
have been formally defined in the context of digital
meshes..

The criteria for detecting nodes have been laid down
in section 3. This is followed by a traversal algorithm for
representing the mesh as a set of nodes and branches. This
procedure finds the Freeman chain codes for the branches
in course of the traversal itself. The algorithm for traversal
detects clusters of nodes from which the true nodes are
found using a procedure of sequential elimination, while
the false nodes are accommodated in branches connected
to the node. After this, any suitable dominant point
detection algorithm may be used to find breakpoints on the
branches.

Section 4 provides the steps for generating the cover map
of an image. Firstly, the nodes and branches are
determined and then an iterative procedure is used to find
the enclosures in the image.

In section 5, the procedure presented in section 3 has
been used on an arbitrarily drawn mesh. The nodes and
branches have been detected. This is followed by the
detection of dominant points on these branches and
generation of the cover map. Finally, the mesh is shown in
the form of a set of polygons sharing their sides.

2: Preliminaries

2.1: Definitions of certain terms

Boundary point: A boundary point, as the name suggests,
is a point that lies on the boundary of the image
considered.
Branch: A branch consists of a series of points starting
from a node (or boundary point) and ending at another
node (or boundary point) with no node in between such
that it is possible to represent all the points in the branch
by means of a single Freeman chain code.
Node: If three or more branches meet at a point, it is not
possible to represent all of them by a single Freeman
chain. In such a case, the point at which the branches meet
is called a node. Pnode is a preliminary node i.e., a point
encountered during traversal that may be a node.

2.2: Condition for least deviation

This condition is being defined in order to facilitate the
specification of certain conditions in our scheme for mesh
traversal as well as true node identification.

In any continuous digital curve, there is a sequence of
the points based on which the Freeman chain code is
made.

Say,
 c� i = pi –1 pi

 c
�

i+1 = pi pi+1
We define deviation to be

 Di = (c� i+1 - c
�

i) if (0 < (c� i+1 - c
�

i) ≤ 4)
 Di = 8 - (c� i+1 - c

�

i) if (4 < (c� i+1 - c
�

i) ≤ 7)
 Di = (c� i - c

�

i+1) if (-4 < (c� i+1 - c
�

i) ≤ 0)
 Di = 8 - (c� i - c

�

i+1) if (-7 < (c� i+1 - c
�

i) ≤ -4)
The condition for least deviation, therefore implies that
pi+1 must be chosen (in a mesh, there may be such a choice
between two or more neighboring points) so that the value
of Di is the minimum.

Fig. 1: Nodes, branches and boundary points

3: Scheme for mesh traversal to detect nodes
and branches

In this recursive scheme, there are two fields
associated with each pixel. The first field specifies
whether the pixel has a value 0 or 1. The other field
specifies whether the pixel has been visited i.e., in the
course of graph traversal, the pixel has been encountered
and either classified as a pnode or made part of a branch.
There are also two variables that are used to store the last
visited pixel and the last visited pnode. In the scheme
presented below, it should be assumed that these variables
are suitably updated at each step. There is another point
that needs to be mentioned. In the algorithm, there is no
mention of boundary points. Actually, boundary points are
treated in the same way as hanging branches by adding
two layers of empty pixels on all sides of the image. In
this way, the boundary points also become end points of
hanging branches thereby permitting a more generalized
treatment of the mesh. But before the scheme for traversal
can be suggested, we must have a set of criteria for
spotting points that may be nodes i.e., the pnodes.

3.1: Criteria for pnode identification

Two necessary conditions can be set down for a point
to be a node. They are as below. The points that satisfy the
necessary condition for being a node shall be referred to as
pnodes (preliminary nodes) for convenience. In order to be
classified as a pnode, a point needs to satisfy only one of
the conditions.

Condition 1. In its first neighborhood, the point has one of
the pixel configurations shown in Fig. 2. In each of these
3-pixel configurations, it is impossible to construct a

continuous Freeman chain passing through all the points
that does not pass through any point twice. Thus, it is not
possible for any of these formations to be a part of a
branch. These pnodes shall be called Type 1 pnodes.

 Fig. 2:Type 1 pnodes

or

Condition 2. The point has at least 3 pixels in its first
neighborhood; and its second boundary when traversed as
shown in Fig. 3 provides at least 3 such pairs of
consecutive pixels along the path of traversal which have a
pixel of value 1 immediately followed by a pixel of value
0. Such pnodes shall be called Type 2 pnodes.

Fig. 3:Traversal of the second boundary in detecting
nodes of type 2

This condition is imposed to imply that the branches
must spread out sufficiently so that two branches are
separated by at least a single pixel in the second boundary.
Thus, not only must the second boundary have 3 or more
pixels belonging to the mesh, there must be 3 or more
continuous blocks (the term ‘block’ has been explained
with the help of Fig.4) of such pixels separated by empty
pixels. If this is not true, then at the stage of graph
traversal, there is ambiguity in recognizing separate
branches. So, this condition actually implies that the input
mesh must have an adequate degree of resolution. This is
true in Fig. 4.

 Fig. 4a Fig. 4b

Fig. 4 : Blocks of pixels in 2nd neighborhood of nodes

In both the figures there are 3 branches. In Fig.4a, the
second boundary has three blocks; two of them having two
pixels each (blocks with pixels marked i and j) and one in
the bottom right having a single pixel (block with pixel k).

Similarly, Fig. 4b also has three blocks in its second
boundary. Two of these have exactly one pixel (blocks
with pixel marked i and j) and the other has two pixels
(block with pixels marked k).

As already mentioned, all those points that satisfy
either of the above conditions shall be called ‘preliminary
nodes’ or ‘pnodes’. In practice, this set of conditions
(particularly the second one) may detect a small cluster of
nodes instead of a single one at the meeting point of
several branches. This defect is particularly pronounced
when the resolution in digitizing is poor. Some of the
points detected as preliminary nodes are actually parts of
branches. They must therefore be incorporated into the
proper branch.
 It may appear that by using a higher order boundary
(third, fourth etc.), the pnode may be identified more
accurately. But this also increases the chance of pixels
from an external branch being mistaken for a branch
connected to the node (Fig.5).

B B
B B
B b B

B B
N B
B X

B B B X
B X

X

Fig. 5 : Ambiguity in node-identification that may be
caused by pixels belonging to higher order boundaries

As seen in Fig. 5, the third and fourth boundaries have
pixels from a branch (pixels marked as X) which is not
connected to the node at the center.

The issue for finding the actual nodes of the mesh is
addressed, after the branches of the mesh are detected.
This is because the points that satisfy the necessary
condition for being nodes, but are not true nodes, have to
be incorporated in a branch of the mesh. Thus,
identification of branches is a prerequisite.

After having identified those points that have a high
likelihood of being nodes, the way the branches are joined
is to be determined. In simple closed curves it is assumed
that the Freeman chain code is available initially. But for
real images, particularly involving meshes, such an
assumption cannot be made. Therefore some means has to
be found to detect as well as to represent the connections
of various nodes and branches. For this, the graph has to
be traversed. The following recursive scheme has been
suggested for this.

3.2: Mesh Traversal Algorithm

Step1. Start at an arbitrarily selected pnode.
Go to step 2.
(The function shall return after the mesh has been
completely traversed)

Step2. {
if (the point in question has no more unvisited

first neighbors)
 {

store the point;
if (it is a pnode)

 {
 /* indicate that a pnode has been found */

 /* indicate branch termination */
 return;

 }
 }

 else
 if (the point is a pnode)
 {

store the point;
 /* indicate that a pnode has been found */

 for(all its unvisited first neighbours)
 {

 store the pnode;
traverse the neighbor i.e., go to step 2;

 return;
 }
 }

 else
 {

 if (the point has exactly one unvisited
neighbor)

 {
 store the point;

 traverse the unvisited neighbor i.e., go to
 step 2;

 return;
}

 }

 else /* i.e. the point is not a pnode and has more
 than one neighbor */

 {
 store the point;

 traverse the neighbor that has fewest
 neighbors i.e., go to step 2;

/*if (there is a conflict between two or more
neighboring points i.e., all have the same
number of neighboring points, which is also
the least)

traverse the neighbor that satisfies the
condition for least deviation*/

 /* see section 2.2 for condition for least deviation */
 return;
 }

 }

After the above procedure is complete, each point in
the mesh can be specified as a pnode or as a part of a
specified branch.

3.3: Procedure for finding true nodes of a mesh
Here it is assumed that the mesh has already been

traversed as per the procedure given above. The procedure
is presented as follows:

Step1.Find pnode clusters. A cluster, as the name
 suggests, is a set of pnodes, such that
 a) Each pnode must belong to exactly one cluster.
b) Each pnode in a particular set is a first neighbor
of some other pnode in the same set, except if the
cluster has unit cardinality.
c) No pnode in a particular set is a first neighbor of a
pnode that belongs to a different set.

Step2. Several branches are joined to each pnode cluster.
To each such branch, a pair of terminating nodes must be
assigned unless it terminates in a boundary point or is
hanging at one end. In the process of mesh traversal, the
branches are detected in such a way that each branch has a
pair of terminating nodes, one at each end. These are the
initial, or default terminating nodes. Now, consider those
two points in each branch that are not pnodes but in the
sequence in which points are detected in the branch, they
occur just before or after the pnodes. In case, only one
pnode in the cluster is its first neighbor, then this pnode is
assigned as a terminating pnode of this branch. If there are
several such pnodes as first neighbors, the pnode that
satisfies the condition for least deviation (see Section 2) is
chosen as the terminating pnode.

Step3. The true nodes are obtained through a process of
sequential elimination that progresses in several stages.

A pnode may NOT be eliminated at a particular stage if
a) It is of type 1, or
b) All its first neighbors are pnodes, or
c) Two or more branches terminate on it.

In any of the above three cases, it is not possible to
incorporate the pnode into an existing branch uniquely.
For pnode elimination, the following scheme is suggested.
For each cluster,

Step I. If no more pnodes can be eliminated, stop.
Else go to step II.

Step II. For each surviving pnode, compute
n1 = number of pnodes in its first neighborhood.
n2 = number of points in its first neighborhood which are

not pnodes.
n3 = number of branches terminating at the pnode.

Step III. Of the pnodes that may be eliminated, eliminate
the one that has the minimum value of n1. In case there
are two or more pnodes with the same value of n1, which
is also the minimum, eliminate the one that has the
minimum value of n2. In case there is still a conflict,
eliminate the pnode with the minimum value of n3 (n3
may be zero). It may so happen that the pnode chosen for
elimination has no branches terminating on it. By the
criteria given in Step III of Step3 of the procedure for
finding true nodes, the pnode to be eliminated must have a
neighboring point that is not a pnode. However, it is not
necessary that this neighboring point must belong to a
branch that terminates on this pnode. In such a case, the
terminating pnode of the branch must be changed so that
the branch now terminates on the pnode in question.
Following this, the pnode may be eliminated. If the

conflict is still not resolved, remove that pnode for which
the new terminating point has the maximum value of
(n1+n3). Elimination consists of making the pnode a part
of a branch that shall now terminate on a new pnode
within the same cluster, subject to the condition for least
deviation.
 Sometimes, there may be ambiguity because two
points appear to satisfy the condition for least deviation
equally well. In this case that new terminating node should
be chosen as the one that has the maximum value of
(n1+n3). In case there is still no clear choice, either of the
two pnodes may be chosen for termination. After
elimination go back to Step I.

Step IV. After the above three steps are complete, from
each cluster, one or more true nodes will be obtained. In
some cases, two nodes may be detected that touch. In such
cases, there may be an exceptional condition where these
two nodes may be coalesced into one. Let the nodes be
named a and b. If n branches meet at node a (actually, on
either node), of which n-1 touch node b before terminating
on a, then these n-1 branches may be made to terminate on
b directly while the node a itself may be made part of the
remaining branch which may then be made to terminate on
b.

4: Generation of the cover map

Meshes or networks occur in several different types of
images. In particular, the scheme presented above may be
used for generating the cover maps for remotely sensed
images. Here the problem is one of finding enclosures
bounded by the branches of a mesh. The branches may
represent roads, borders etc.

The basic principle of the scheme is that: from any
point that is neither a node nor a part of a branch (i.e. not a
point ON the mesh), the points are scanned in all eight
directions until a boundary or a branch is encountered. If
even a single boundary point is encountered, it obviously
means that the enclosure extends beyond the limits of the
image. Otherwise, the branches encountered are checked
to see if they can form a complete enclosure. This can be
simply ensured by putting the nodes that form the end
points of the branches encountered into a set (in which
elements may be repeated). When every node occurs
exactly twice in this set, the enclosure is complete. Here, it
is assumed that there are no hanging branches.
Formally, the following procedure is proposed:
Initially, all branches and the ending nodes are available.

Step 1. The various branches are put into two sets,
 a) set A with branches with nodes at both ends,
 b) set B with all other branches.

Step 2. Let N be the set of all the nodes in the mesh.
N = {n1 , n2 , . . . nK}

where K is the total number of nodes

For each of these nodes, put all the second
neighbors that are not a part of the mesh, into a set S.
These points serve as the starting points from which we
start our search for enclosures.

S = {s1 , s2 , . . . sP }
where P is the total number of starting points
Such a set of starting points is chosen because it

nearly always ensures that there will be at least one
starting point within each enclosure. An alternative would
be to start with those points that are not points ON the
mesh, but are first neighbors of the mid-points of the
branches.

Step 3. To each of these points s i , assign two sets Si b and
Si n.

Starting from each point s i in the set S, points are
scanned in all eight neighboring directions. Whenever a
branch is encountered, the branch is made an element of
the set Si b and the two terminating nodes are put into the
set Si n. Si n is not truly a set in the sense that a node may
be put into it twice. An enclosure is said to be complete
when each of the elements in Si n occurs twice, i.e. the
branches enclose the region entirely. If it be found that
traversing in eight directions from a starting point fails to
detect all the branches, then search for remaining branches
may be resumed from other points which are known to be
within the same enclosure; such as points which have been
encountered during the search for branches and which are
not points on the mesh. This process is repeated until all
enclosing branches have been found. In case, a boundary
point, or a branch that terminates on the boundary, is
encountered, it is known that the enclosure extends
beyond the image boundary and the search should be
aborted.

At the end of this exercise, corresponding to each
point s i , we shall have either all the branches surrounding
an enclosure or the information that the search was
aborted. Two or more starting points within the same
enclosure may cause it to be detected repeatedly. These
repetitions should be omitted and this representation of the
collection of enclosures is equivalent to the cover map of
the image.

5: Polygonal approximation

The following are the steps to be followed:
1. Firstly, all nodes must be treated as dominant points
since they contain vital information about the mesh.
2. Regarding the rest of the points on the branches, it is
proposed that each branch be treated individually.
3. Any dominant point detection scheme that is
applicable to closed curves may also be used for
breakpoint detection on the branches. In some such
schemes, modifications may be needed for points near the
nodes. In particular, algorithms that require regions of
support larger than one shall have to be modified to take
into account the endpoints of branches.

In this paper, for finding dominant points, we shall
use the following scheme that requires a region of support
no larger than unity so that no modifications for the ends
of the branch are required.

In this scheme,
Let the points on the closed curve be denoted as

pi , i = 0, . . . ,n – 1

P = starting point
a i = a quantity related to the angle of the ith point,

which is defined as follows
 If (f i + 1 = f i) a i ← 0
 else if (f i + 1 - f i = 1 or -7) ai ← 1
 else if (f i + 1 - f i = -1 or 7) ai ← -1
 otherwise a i ← 2.

t = maximum allowable error limit
 n = total number of points on the closed curve
 pl.x = x co-ordinate of the lth point pl

 pl.y = y co-ordinate of pl
 pf = the point on the portion of the curve between the
dominant points pl and pm that is farthest from the straight
line segment joining pl and pm.
The steps in detecting the dominant points are as below.

Step 1. Determine the parameter a i at each point

Step 2. Start at an arbitrarily chosen point P.

Step 3. If (ai = 2)
set pi as dominant

 If (�ai � = 1)
 Let pk be the previous point encountered in
traversing the curve that had non- - zero curvature (not
necessarily pi - 1).
 If (ai = ak = ± 1)
 set pi , pk as dominant points. (here i
represents i modulo n.)
 If the first point detected as dominant is re-
encountered,
 Go to step 4.
 Else repeat step 3.

Step 4. Consider pairs of dominant points such that no
other dominant point occurs between the pair. Start from
the initial dominant point pair detected.

Step 5. Let the points be pl and pm.
 Let
 pl.x = x co-ordinate of pl

 pl.y = y co-ordinate of pl
 Similarly for pm.
 Now,
 If (� pl.x - pm.x � > t) and (� pl.y - pm.y � > t)

 and (� pl.x - pm.x � − � pl.y - pm.y � > 2 t)
then find which point lying between pl and pm is farthest
from the straight line joining pl and pm.
 Let the point be pf and its distance be df .
 If (df > t)
 store pf as dominant

m ← f
 Else
 l ← m
 m ← the next dominant point.

Step 6. Terminate if all pairs have been considered. Else
repeat step 5.

6 : Results and Conclusions

 As seen above, in Fig. 6, the algorithm works quite
well on the mesh that has been used as input. The satellite
images resemble a network of curves after the operations
of segmentation, edge-detection and edge linking have
been performed. The results after the various stages of the
procedure proposed here have been displayed in different
figures. The criteria for pnode detection detect clusters of
points around the true nodes as shown in Fig . 6a. The
enclosures can be reliably detected (Fig. 6c). This is
followed by dominant point detection, the results of which
have been shown in Fig. 6b. Finally, the entire mesh is
represented by a number of polygons sharing their sides
(Fig. 6d). This algorithm works very well provided that
the resolution is adequate and the edges are continuous.
This is not a serious limitation because these requirements
can be fulfilled without much difficulty. This algorithm
should be useful for approximating a cover map and finds
lot of applications in GIS.. As already mentioned, the
general procedure for node and branch detection is
expected to find applications in other fields also. Some of
the aspects of this algorithm may be further improved. For
instance, identification of true nodes may be achieved

using the genetic algorithm keeping the basic approach
unchanged.

References

1) F.Attneave, “ Some informational aspects of visual
perception, Psychol. Rev., vol. 61, no.3, pp. 183-193, 1954.

2) A.Rosenfeld and E.Johnston, “ Angle detection on digital
 curves,”IEEE Trans. Comput., vol. C-22, pp. 875-878, Sept.
 1993

3) C.Teh and R.T.Chin, “On the detection of dominant points
on digital curves,” IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-11, pp. 859-872, Jan. 1989.

4) N.Ansari and K.Huang, “ Non-parametric dominant point
detection,”Pattern Recognition, vol. 24, No.9, pp. 849-
862,1991.

5) K.Wall and P.E.Danielsson,"A fast sequential method
for polygonal approximation of digitized Curves,"
Comput.Vision,Graphics,Image Processing,vol. 28,pp
220-227,1984.

Fig 6a. Pnodes and Nodes on the Mesh Fig 6b. Dominant Point Detection on
Branches of the Mesh

Fig 6c. Cover region on the scene Fig 6d. Polygonal approximation of
the cover map.

	Abstract: In this paper, we present a procedure to approximate the cover map generated from a remotely sensed image. The procedure can detect the nodes and branches from a segmented description of an image resembling a network. In the first of a two par
	a segment are used to generate the cover map. Dominant-point detection algorithms have been used to detect the breakpoints on the individual branches. This allows the entire scene to be represented by a set of polygons.
	1: Introduction
	We define deviation to be
	
	
	
	
	Fig. 2:Type 1 pnodes

	6 : Results and Conclusions
	References

