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Abstract:
The class of algorithms called Superresolution is applied to
reconstruct signals from apriori known information of
limited spectrum and spatial bound of signals. In practice
target scene information is limited by aperture point spread
function (psf) of sensor and corrupted by noise of the
receiving system. Such signal reconstruction is possible
only when convex set properties are satisfied with relaxed
parameters. A modified Gerchberg algorithm based on
Projection Onto convex sets (POCS) with relaxed
parameters is presented here with performance analysis for
realistic aperture psf characteristic.

I. INTRODUCTION

Images acquired by remotely placed sensors are often
limited in quality by poor dynamic range of target
reflectivity, finite beamwidth of the aperture of sensor,
relative motion between the target and the sensor, etc.
Above all, noises present in the background of the scene and
generated in the receiving system of the sensor cause loss of
information about the scene. Restoration of such images
acquired by scanning sensors in non-coherent mode is a
topic of active research interest, particularly for sensors
working in adverse weather conditions.
The concept of superresolution was formulated by
Gerchberg and simultaneously by Papolouis to extract more
information of a scene than what is provided by the
diffraction limit of the point spread function (psf) of the
aperture through so called   ‘error energy reduction’ [1], [2].
Sementelli, et al [3] has broadened the definition of
superresolution to include any technique that recovers the
signal beyond the cut-off limit of the psf of the imaging
sensor. In this sense Gleed and Lettington [4], [5] reported
advances in superresolution technique for image restoration
using regularized pseudo-inverse of the psf. Several
attempts have been made to achieve higher resolution by
using superresolution technique on a sequence of low-
resolution video frames [6]-[8].
One of the drawbacks of the original Gerchberg algorithm is
its very slow rate of convergence after a few initial
iterations. The convergence to a solution onto a convex set
can be made faster by using relaxed parameter as shown
earlier in Schafer et al [9], Levi and Stark [10] and recently
in Fahmi [11]. It has been shown in [12] that using
Projection Onto Convex Set (POCS) technique with relaxed
parameters, fast convergence of iteration is possible with
noisy images.

This paper is on the performance of a modified Gerchberg
algorithm using relaxed parameters for restoration of images
collected in scanning sensor scenario. Performance of
superresolution techniques is often evaluated on images
modelled with ideal aperture profile causing confusion on
signal reconstruction beyond diffraction limit. A brief
overview of the concept of superresolution with one-
dimensional signal is given in section II. In section III we
present the modified Gerchberg Algorithm; simulation
results are provided for performance analysis of the
algorithm in section IV. Section V draws the conclusion of
the paper.

II. SIGNAL RECOVERY BEYOND
DIFFRACTION LIMIT
(SUPERRESOLUTUION)

Considering a linear shift invariant model of the imaging
sensor, the received signal, g may be expressed as,
                   g  = H f + n  ,                                                (2.1)
where f is the signal representing target scene reflectivity, H
is the psf of the aperture of the sensor and n is the Gaussian
noise of the receiving sensor. Approximation of the target
scene, f^ from equation (2.1) is then an inverse problem;
solution of which within ωc, the cut-off limit of the
spectrum of the psf, is given by deconvolution using
pseudo-inverse of the function H. The restored signal, f^
has the same cut-off, ωc as that of the aperture psf. As
shown in figure 2.1(a) and (b), superresolution is
reconstruction of the signal beyond ωc, incorporating higher
frequencies in the spectrum of f^ and hence achieving better
spatial resolution.

Fig.2.1(a) Low frequency Sinusoid Basis Vector



Fig.2.1(b) High frequency Sinusoid Basis Vector
Such signal reconstruction is possible only when g and f are

members of the intersection of convex sets,  �I and
f^converges to  a solution within this intersection, �0, given
by,

The convex sets �i represent the constraints on the signal,
both in spatial and spectrum domain. After n iterations, the
solution of this POCS technique is given by,
                    f^n = Pm,,n  Pm-1,n …P1,n g ,                           (2.2)
where Pi,n is the projection operator on the ith convex set �i
after n iterations.
In the original Gerchberg-Papoulis algorithm only two
projection operators are used; i.e. positivity constraint of the
signal in the spatial domain and a priori known spectrum in
the frequency domain.
Equation (2.2) is then given as,
                    f^n  = P2,,n  P1,n g                                          (2.3)
The convergence to a solution in �0 may be made faster by
using relaxed parameter. The new projection operator may
be given as,
                    Ti = (1  - α i )I + αi Pi                                  (2.4)
 where I is the identity operator and the bound on the
relaxed parameter, α i is, 1<α i<2, [11].
The result of this POCS technique for superresolution of
one-dimensional signals is shown in figures 2.2(a), (b).

Fig.2.2(a),Superresolution in  1-D
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where (x, j ) represent the discrete positions of scanning.
Hence,
         G (ω1, ω2)  = H (ω1, ω2) ⊗  F (ω1, ω2)                    (3.2)
 in the spectral domain. Here ⊗  represents circular
convolution operator and additive noise may be skipped
without loss of generality of assumptions. Since the data
size and the psf kernel size are large, convolution is done in
spectral domain.

The spectrum of f as is given in equation (3.2) is not only
altered by the magnitude weight of H (ω1, ω2) but also by
the phase function φH (ω1, ω2). If we consider h (i, j) to be of
narrow beamwidth as is shown in figure 3.1(a), its spectrum
is sufficiently flat in the low frequency zone as is shown in
figure 3.1(b).

Fig.3.1 (a), (b), Aperture gain pattern and its
Transform

To approximate the spectrum of F (ω1, ω2) from G (ω1, ω2)
in this low frequency zone, phase alteration by φH (ω1, ω2)
may be compensated by modifying equation (3.2) as,
                   G′ (ω1, ω2)  = G (ω1, ω2). e-j( φ

H
 (ω1, ω2) ) ,      (3.3)

where G′(ω1, ω2) is the phase compensated spectrum of
g(i,j). A signal dependent co-efficient, ξ (j) is used to
compensate the magnitude weighting of H (ω1, ω2).
Thus,                G′′  (ω1, ω2) = ξ(j) * G ′ (ω1, ω2) ,          (3.4)
where ξ(j) is the co-efficient, dependent on the dynamic
range of the signal, g′ (i, j), in the low frequency zone.
Using the spatial domain signal, g′′  (i, j) and low frequency
spectrum of G′′  (ω1, ω2), the iterations of the relaxed POCS
method follows.
The flow of the iterations is shown in figure 3.2.

Fig.3.2, Flow of modified Gerchberg Algorithm

Considering the kth iteration, the algorithm starts from the
kth estimate, g′′ k in the space domain. The Fourier domain
constraint, CF as represented by the low frequency spectrum
of G′′  (ω1, ω2) in equation (3.4) is applied on the Fourier
transform of the image ,G′′ k.
The projection operator applied to the inverse Fourier
transform is given as, g′′ k+1,
            yk    =  α CF g′′ k + (1- α) g′′ k                                        (3.5)
            g′′ k+1  =   y k                                                       (3.6)
Apart from the constraints as given in equation (3.5) and
(3.6), we also use the dc constraint as for the actual target
scenes, most of the signal energy is contained in the dc term
of the spectrum.
After n iterations, the approximation, f^ is given as,
                       f^ = g′′ n+1                                                     (3.7)

IV. PERFORMANCE ANALYSIS

For analyzing the performance of the algorithm presented in
section III we use a narrow beamwidth (0.4 deg.) aperture
psf, the gain pattern and transform of which are given in
figure 3.1(a) and (b). For the spread of the psf, we take five
sidelobes on each side of the gain pattern. The target image,
f is shown in figure 4.1(a) as the strip of a blood cells
image. This image is convolved in column direction only
and blurred sufficiently by taking out all powers below 0 db
and is shown in figure 4.1(b) as the signal, g.
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e compensated version, g′′′′  is shown in figure 4.1
 n = 1000 iterations of the algorithm given in
,the resultant approximation is shown in figure 4.1

 from figure 4.1 (a) and 4.1(b), that apart from
the effect of psf pattern is to alter the phase of the
his is because the dimension of the convolved
increases by (M-1) points, where M is dimension
in pattern vector. Taking this into account, the
mpensated image in figure 4.1(c) represents a
rsion of the target image.
ating the error in approximation, we use the
of mean distance and variance of distance of
ation, ��fn^ - f ��, [10]. The measures are given in

TABLE –I

000;   α = 1.95

Mean Distance,
d_mean =
mean( ��fi  - f ��)

 Variance
Distance,
 d_var =
var(��fi  - f ��)

Error in
% =
d_var/
      var(f)

   0.3264 0.0217 82.36%

   0.2706 0.0101 62.05%

   0.1121 0.0042 37.74%

ONCLUSION

 table of performance analysis it can be seen that
rresolution technique of modified Gerchberg
 can be used to restore sharpness and texture
on of a blurred image in a realistic scenario. For
rate estimation of the low frequency spectra of
ne is necessary. This can be achieved with reliable
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