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Abstract
In this paper, we describe a reformulation of the corner 
detection problem as one in statistical pattern recognition 
enabling us to compute labels that are Bayesian posterior 
probabilities. We have generated the training data for our 
classifier using a grey-level model of the corner feature 
which permits sampling of the pattern space at arbitrary 
density as well as providing a self-consistent validation 
set to assess classifier generalization. Since adequate 
learning the whole mapping by a single neural network is 
problematic we trained a series of modules on data 
partitions and labelled corners by a hierarchical 
classifier. Results on real images are presented together 
with comparisons with the same labelling task performed 
by a monolithic network. 

1 Introduction 
Corners represent important features in images since they 
are highly localized in two-dimensions and consequently 
are points of high information content. A great deal of 
research effort has been expended over the years on 
feature detection however there is general agreement in 
the machine vision community that reliable corner 
labelling is a difficult problem. Conventional techniques 
for corner detection basically fall into two categories: 
those which attempt to estimate the second derivative of 
grey level variation (e.g., [1]), and those which apply 
some convolution-based approach (e.g., [2]). Central to 
both ‘ traditional’  approaches is that having computed 
some (scalar) measure on the image, the presence of a 
corner is inferred if the computed measure exceeds some 
user-defined threshold. In general, there is no principled 
method to set this threshold; indeed what may be 
considered an ‘optimal’  threshold generally varies across 
a single image. These traditional techniques do not 
possess invariance to the grey-levels at which various 
corners are presented and robustness to noise is also a 
significant factor, particularly for techniques which 
numerically compute a second derivative. 

In this paper, we describe a reformulation of the 
corner detection problem as one in statistical pattern 
recognition enabling us to compute labels which are 
Bayesian posterior probabilities. From the consideration 
that the general labelling problem requires the correlated 
evidence from a region to be classified, it is clear that a 
trainable methodology is required and in this work we 
have adopted standard feedforward MLP neural networks 
trained by conventional error-backpropagation. An MLP 
has the advantage that it can be efficiently implemented in 
real-time hardware. Various attempts have been made in 
the past to apply neural networks to feature labelling 
using exemplars obtained from real images but these have 
been largely disappointing, due principally to use of 
grossly inadequate training sets. In this work, we used 
grey-level models of corner features to generate training 
data which adequately spanned the pattern space and thus 
give good generalization. The main problem here is that 
in order to adequately sample the pattern space of all 
corners with arbitrary resolution the training set needs to 
be large; additionally, the mapping proved difficult to 
learn. 

We reduced the complexity of the classification 
problem by applying several pre-processing steps to 
approximately remove known invariance properties of 
corners. Rather than attempting to train a single, 
monolithic network we have stratified the training set and 
trained a series of modules on parts of the labelling 
problem. We have used the outputs of the individual 
modules to generate a second training set of meta-patterns 
which have been used to train a further network which 
combines the results of the individual modules. We 
present the results of corner labelling on real images, and 
compare with the same labelling task performed by a 
monolithic network. We demonstrate that the results of 
labelling real images with this modular approach are 
superior to those from labelling with a single monolithic 
network. Additionally, the overall training time is greatly 
reduced compared to that for training a monolithic 
network. 



 
 
2 Generation of Training Data Set 
Grey level corner training patterns were generated from 
two intercepting straight lines in a 7x7 lattice of pixels. If 
the intersection point of the lines (the ‘corner-tip’ ) lies 
within the central pixel of the patch, the pattern is a 
corner (C). Thus an instance of a corner is described by 
its opening angle (α), inclination to the x-axis (φ), the co-
ordinates of the tip (xo, yo), and high-low intensities (IH, 
IL) - Figure 1(a). Additionally, ‘dark’  corners on a light 
ground are distinct from ‘ light’  corners on a dark ground 
so both ‘polarities’  of corners need to be represented. 

Our ultimate objective is labelling with the Bayes’  
posterior probability and so the total training set needs to 
reflect the prior probability of occurrence of corners and 
non-corners in real images [3]. We typically observe a 
ratio of corners to non-corners in the range 1:50-1000; we 
have taken a figure of 1:100 in this work and so for every 
corner pattern we require 100 non-corner exemplars. 
Within the class of non-corners we require examples of 
all possible features. Within our corner definition, when a 
corner’s tip falls outside the central lattice cell it is a non-
corner - we refer to this as an non-obvious non-corner 
(NONC) - Figure 1(b). For a 7 x 7 patch we require 48 
NONCs per corner. We also require a fraction of edges 
(E) and non-obvious non-edges (NONE) which by 
analogy with NONCs, are edges which do not pass 
through the central cell. Finally, we require a number of 
uniform grey-level patches. 
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Figure 1:  Corner training pattern 

We have used increments in the corner model of ∆φ = 
2.9o and ∆xo = ∆yo = 0.2 pixel; the rational behind this 
choice is discussed in [4]. We have employed a range of 
heights of grey-level step of 1:2,4,6,8,10 [5]. With these 
increments, each corner ‘polarity’  for a single opening 
angle yields 900 patterns resulting in 90,000 (900 x 100) 
non-corners although in practice we sub-sample this 
number - see Sub-section 3.2. 

3 Neural System Architecture 
In practice, we would like to detect corners in range of 0o 
< α < 180o, however, this requires an extremely large 
training set. Additionally, this training set is highly 
imbalanced. Chen [4] adopted a two-pronged strategy for 

reducing the data-size: firstly pre-processing the training 
data to remove the known invariances, and secondly 
altering the priors by sub-sampling the non-corner data. 
Despite this data compression Chen found that learning 
the necessary mapping of all corners on a single network 
was difficult. We attribute this to the possible effects of 
temporal cross-talk [6] where the presence of conflicting 
training information retards learning. So we have added a 
third strategy in the form of ‘ functional-decomposition’  
where different training subsets are mapped on individual 
networks. 

3.1 Pre-processing to Remove Invariances 
    As a first step towards easing the network learning task 
we have pre-processed the grey level data to 
(approximately) remove the known invariances. To 
reduce the required number of examples at different step 
heights we have taken the common logarithm of the pixel 
intensities; this produces a significant compression in the 
training set. Then we rotate the patch according to a 
measure of orientation of the (putative) corner such that 
the corner is always directed into the positive quadrant. 
Finally, since we are looking for regions of grey-level 
discontinuity we calculate image gradient using a 3x3 
Sobel operator. Thus the input to neural classifier is a 5x5 
vector - Figure 2.  
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Figure 2: Overall System Architecture 

3.2 Altering the Priors and De-biasing 
An additional practical problem is that since corners 

are comparatively rare events, the training set is 
unbalanced and would produce difficulties in training. 
One solution lies in a modified back-propagation learning 
algorithm [7] but such modification alters the posterior 
probabilities of classification and is not appropriate to 
Bayesian labelling of the image features. We have 
surmounted this problem by deliberately training with a 
corner prior of 1:24 (instead of 1:100) by sub-sampling 
the non-corner data and then removing the resulting bias 
in the posterior probability by remapping to the correct 
prior [8]. Let )|( XCN  and )|( XNCN  be the numbers 



 
 
of corners and non-corners examples, respectively; then 
the original prior probability )|( XCP of a corner is: 

)|()|(

)|(
)|(

XNCNXCN

XCN
XCP

+
=  

On scaling the number of non-corners to 
)|( XNCN where γ = 0.24, the revised prior probability 

of a corner pattern in this recomposed pattern space is: 
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On rearranging these equations, the original prior-
probability is restored to 
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This prior remapping has been applied as a final 
(non-neural) processing step 

3.3 Bootstrapping to Modularity 
The experience of Chen [4] is that learning the necessary 
mapping for all corners is difficult and so we have 
employed a modular approach wherein we have stratified 
the corner data according to opening angle, α. Starting 
with a single module trained on 90o corners alone, we 
have used essentially a bootstrap procedure [9] to 
partition the training data. From the response of this first 
trained module to a verification set containing corners 
with all opening angles, we select the single opening 
angle for the next module such that its minimum response 
would rise to 0.5 at the point where the minimum 
response of the 90o module fell to 0.5. Thus we obtain a 
modular network composite of overlapping responses. In 
fact this procedure gives two angles, one below 90o (i.e., 
70o) and one above 90o (i.e., 110o). This bootstrap 
procedure was repeated resulting in five modules each 
trained on single opening angles of: 50o, 70o, 90o, 110o 
and 130o, respectively. 

Adding further modules is unlikely to be of value 
since there is genuine confusion between the patterns; as 
the opening angle increases towards 180o there is 
increasing confusion with straight lines. Similarly, trying 
to locate corners with very acute angles is genuinely 
problematic. 

Visualization of the training data using standard 
ordination techniques showed the two types of corners 
(light and dark) to be rather disjoint. Indeed it proved 
difficult to learn both light and dark corner patterns with 
one network so separate modules were used for each 
opening angle for both light and dark corners giving a 
total of ten modules which were used to generate the 
meta-pattern data. 

One simple solution for combining the outputs of 
multiple learned net would be a winner-takes-all strategy, 
however selecting the largest output may not be an ideal 
choice since potential valuable information may be 
wasted by discarding the results of less successful 
modules [10]. This observation motivates us to ignore the 
winner-takes-all strategy and combine the outputs of 
several modules through learning of meta-patterns. There 
are potentially many approaches for integrating multiple 
learned models for improving class-prediction, see [11] 
for the state of art of the research. We combined this 
meta-pattern data, comprising some 224 thousand 
examples to train the fusing network which in turn 
outputs the final class probability. This approach has the 
advantage that we could suppress some of the false 
positives and lower the confidence level of a few others in 
the final labelling stage which otherwise would have been 
present in a winner-takes-all strategy. Some weak labels 
were also strengthened. The overall classifier system is 
illustrated in Figure 3. 
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Figure 3: Modular classifier architecture 

3.4 Learning and Generalization 
Each sub-network was a multi-layer feedforward network 
with a sigmoid activation function at each node. The 
modules used to learn the individual corner opening 
angles comprised 25 input nodes, 4 hidden nodes and a 
single output node. The fusing network comprised: 10 
input nodes, 4 hidden nodes and again a single output 
node. We used the resilient backpropagation (RPROP) 
learning algorithm [12], a local adaptive learning scheme 
for faster learning but we applied a very small weight step 
in each iteration of weight adaptation so that the weights 
do not adopt very large values. Additionally, we use a 
moderate value of weight decay term in the cost function 
so that the weights are not increased arbitrarily; again this 
is solely guided by the generalization of the network. 
Generalization becomes still difficult to control for 
networks trained with noisy data. Training with noise is 
equivalent to Tikhonov Regularization [13], the 



 
 
overfitting may be controlled to some extent. However, in 
this work we restrict training of networks with clean data. 

One important aspect of this training is the 
generalization of the network and the avoidance of 
overfitting. This phenomenon is important because our 
training set consists of synthetic data, the validation set is 
synthetic but the test data is real. We have used the 
validation data generated with those parameter values 
which were not used for the training data and with smaller 
parameter increments for a denser sampling. Though there 
is no principle for deciding the number of hidden nodes in 
a network, it is always desirable to minimize the number 
of free parameters. We have employed the number of 
hidden node units dictated by the significantly sized 
eigen-values of the training data [14], which in our case is 
roughly equal to four. By adopting such a small number 
of hidden units for a very large training data the training 
becomes quite slow, but we are more interested in 
avoiding overfitting than easy learning. There are, 
however, other heuristics as well for approximating the 
minimum number of hidden layer neurons, e.g., [15]. We 
experimented with networks of different number of 
hidden units but found that the network-responses of four 
hidden nodes are the best for the corner pattern-data used. 

4 Application to Real Images 
Figure 4 shows the labelling results of a complex real 
scene for the module trained with 90o dark corners on a 
light ground. We also trained with 90o light corners on a 
dark ground. (Throughout, our test images were 256 x 
256 pixels and digitized to 256 grey-levels, crosses 
indicate the points where the label is greater than 0.5). A 
number of correctly labelled corners are evident in Figure 
4, however, it is evident that not all unambiguous corners 

are labelled consistently by modules. It is also evident that 
there are a number of false positive labellings, particularly 
in the results for light corners on a dark ground although 
many of these originate from the highly cluttered region 
around the house windows. We discuss the false positive 
labelling below with reference to the grey levels present 
in this test image. Interestingly, none of the dark corners 
labelled in Figure 4 is re-labelled with the module trained 
with light corners, and vice-versa; this phenomenon 
indicates a reasonably disjoint mapping of dark and light 
corners on the respective modules. 

 

Figure 4: Labelling results for individual modules trained 
with 90o dark and light corners. 

 

Figure 6: Results of labelling with the modular network - 
Output probability map. 

 

Figure 5: Results of labelling with the modular network - 
Labels thresholded with 0.5 



 
 

Figure 5 shows the results from labelling a typical 
image above using the modular network which combines 
the individual responses in Figures 4 and nine other 
modules trained on different opening angles for both th 
epolarities. Figure 5 shows the original grey level image 
with the points for which Pout ≥ 0 5.  superimposed as 

crosses, while Figure 6 shows the output probability map. 
Almost all the perceptual corners in this image are 
correctly labelled here. From the probability map in 
Figure 6 the general background label is rather small - as 
it should be - and only those regions containing 
significant spatial grey-level changes have significant 
label values. It is evident that the bottom edges of the 
house together with the horizontal features on the side of 
the house are strongly labelled and in a number of places 
these label values rise above 0.5 producing false positives. 
Since our primary motivation is to use the outputs of the 
present corner detector as input to further machine vision 
tasks, we have been keen to explore the origins of these 
false positive labels. Close inspection of the original 
image reveals that these false positives are almost always 
associated with some extended distortion or region which 
is not apparent when viewing the image at full scale. The 
two ‘corners’  at the very bottom of the image, for 
example, are some kind of dark blot several pixels across, 
and the cluster of false corners at the top, front edge of the 
house are due to the (unresolvable) fixing pegs on top of 
the Lego bricks - insofar as these are two-dimensional 
structure they are arguably ‘corner-like’ . A close-up of 
the front bottom edge of the house shows significant pixel 
aliasing, so the consequent two-dimensional structure 
produces quite strongly labelled false positives. 

Figure 7 shows the labelling results from a single 
monolithic network trained on the union of all the data 

used to train the individual modules of the modular 
network. This figure shows the best labelling result we 
obtained from repeatedly reinitializing and training a 
number of networks with differing numbers of hidden 
nodes. The probability map from the monolithic network 
displays a general background ‘ fog’  in contrast to the 
background for the modular network in Figure 6. 
Interestingly, the edge features which are considered 
somewhat corner-like by the modular network are 
considered less so by the monolithic network than the 
uniform background. We suggest this may be a 
consequence of the temporal cross-talk phenomenon 
discussed by [6]. Monolithic network has a poor mean-
square-value (MSE) after a very long training time. 
Figure 7 shows the points for which the labels were 
greater than 0.5 and although some corners are correctly 
labelled, many are not. Overall, the results for the 
combined modular network are greatly superior to those 
of the monolithic network; moreover the training time of 
the monolithic network was a factor of two larger than 
that of the total time required to train the modular 
network.  

Finally, we make comparison with the results from 
employing the well-known Harris & Stephen’s corner 
detector in Figure 8. Here we have adjusted the heuristic 
threshold in this algorithm to obtain the ‘best’  
performance but it is apparent that the labelling is inferior 
to that obtained with our modular neural network 
approach. Due to space limitations, we are unable to 
include more results. 

5 Discussion 
In presenting the preceding results we have taken a 
probability of 0.5 as the threshold for deciding whether or 

 

Figure 7: Labelling results from single, monolithic 
network - labels thresholded with 0.5. 

 

Figure 8: Labelling results with Harris & Stephen’s corner 
detector - thresholding is adjusted to get the ‘Best’  results. 



 
 
not a corner is present. In the sense that our modular 
network approximates the Bayesian posterior probability 
and that this quantity can be interpreted as a measure of 
belief about the presence of the corner, a decision 
threshold of 0.5 can be viewed as rather conservative 
since it represents a level at which we are only marginally 
more confident that a site is a corner as opposed to a non-
corner. Raising our decision threshold to, say, 0.6 means 
the confidence level of having a corner is 50% greater 
than our belief that the same site is a non-corner, a 
significant number of false positives disappear for this 
raised belief threshold although we also lose a few of the 
corners from the side of the house. This latter observation 
is consistent with the observation from the Harris & 
Stephen’s labelling in Figure 8 that the corners on the 
house’s side are somewhat harder to correctly identify. 

The problems caused by aliasing that are apparent in 
Figure 6 are of great practical importance. We speculate 
that one way of reducing the effect of such aliasing may 
be to further extend our modular approach to include not 
only direct pixel-level evidence from the immediate 
neighborhood of a corner but also indirect regional 
evidence of edge configurations compatible with the 
existence of a corner.  

All the networks discussed in this paper were trained 
on noise-free corner examples and when applied to real-
images (obviously corrupted with noise) give superior 
performance to those obtained with conventional corner-
techniques. We did not experiment with training corner 
patterns corrupted with noise. But it is beyond doubt that 
a monolithic network which can not be well trained on 
noise-free data can not be trained with data corrupted with 
noise. However, the modular network certainly can have a 
better mapping. Hence we infer that the modular network 
if trained with an appropriate level of sensor-noise 
simulated in the imaging model or with another better 
modelling of corner patterns will give even better 
performance than has been achieved in the present work. 
Thus the current technique is directly applicable to a re-
modelling of training-data which better samples a 
universe. Such flexibility is not possible with 
conventional methods of corner detection. 

6 Conclusions 
In this paper, we have presented a modular neural 
network for labelling corner features with posterior 
probabilities. The network has been trained on data from a 
grey-level model of corners which has been partitioned 
across modules using a bootstrapped procedure. The 
results from the modular network are shown to be 
superior to both those from a single, monolithic network 
and conventional corner detectors. 
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