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Abstract
This paper presents a new method for edge detec-

tion using one-dimensional processing. The Discrete
Hilbert Transform of a Gaussian function is used as an
edge detection �lter. The image is smoothed using 1-D
Gaussian along the horizontal (or vertical) scan lines
to reduce noise. Detection �lter is then used in the or-
thogonal direction, i.e., along vertical (or horizontal)
scan lines to detect the edges. The proposed method
di�ers from the traditional approaches based on 2-D
operators in the sense that smoothing is done along
one direction and the detection �lter is applied along
the orthogonal direction. The traditional 2-D opera-
tors smooth the image in all directions, thus resulting
in some loss of edge information. Performance of the
proposed method is compared with Canny's method
for a set of real-world images. We also compare the
performance of the proposed �lter with the �rst or-
der derivative of Gaussian (1-D Canny operator) for
di�erent 1-D edge pro�les.

1 Introduction
Edges represent the discontinuities in the intensity

in an image. Edges created by occlusions, shadows,
roofs, textures etc., may have di�erent local inten-
sity pro�les. Edge detection is a process that mea-
sures, detects, and localizes the changes in intensity.
Edge detection is an important step in the process of
segmentation because edges have the desirable prop-
erty of drastically reducing the amount of data to be
processed subsequently, while preserving information
about the shapes of objects in the scene. Most vision
systems use an edge description of the scene as input
to high level image understanding processes. Edges
are used to infer motion in a sequence of images [1].
Edge points or connected edge chains also play a cru-
cial role in most passive stereopsis paradigms.

The most natural way of detecting changes in the
image intensity is to take the �rst or second order
derivatives and look for maxima or zero crossings in
the output. Traditional edge detection operators like
Robert, Sobel and Laplacian [2] were based on this
observation. Piggio et al [3] reported that numerical
di�erentiation is an ill-posed problem because its so-
lution depends continuously on the data. Using regu-
larization techniques they reported that it is necessary
to preprocess the image data by a �lter similar to the
Gaussian. Marr and Hildreth [4] pre�ltered the im-
age by a Gaussian function before taking the second
derivative in the form of a Laplacian. Canny [5] ap-
proximated an optimal �nite length �lter by the �rst
derivative of the Gaussian. Diriche [6] proposed a re-
cursive �ltering structure that drastically reduces the
computational e�ort required for smoothing, perform-
ing the �rst and second directional derivatives and
obtaining the Laplacian of the image. Shen and Cas-
ten [7] showed that In�nite Symmetric Exponential
Filter (ISEF) is an optimal �lter for both mono and
multi step edge detection.

Stochastic approaches like Markov random �eld
models and autoregressive models consider the image
as a random �eld and try to detect the changes of
various statistical properties characterizing an edge,
assuming mainly a step edge model. The main draw-
back of these techniques is that as the models gets
more complicated, the computations increase. Sur-
face �tting approaches [8], [9] for edge detection in-
volve �tting polynomial or non-polynomial functions
to estimate the �rst and second derivatives. But all
these methods are also computationally expensive, al-
though results are sometimes encouraging.

The problem of using Gaussian �lter for smooth-
ing the image is that it will disturb the edge localiza-
tion, while suppressing noise. But smoothing is im-
portant, as the di�erential operators are sensitive to



noise [2], [10]. Thus edge detection methods using 2-
D operators smear the edge information, if a smooth-
ing operation precedes it. To overcome this diÆculty,
a method of one-dimensional processing is proposed
in [11], [12]. The advantage of 1-D processing is that
smoothing is done in one direction, i.e., along rows (or
columns) of an image, and the detecting �lter is ap-
plied along the orthogonal direction i.e., along columns
(or rows). This method of 1-D smoothing will not dis-
turb the gray-level transitions of an edge in the or-
thogonal direction. Thus the desired location of the
edge can be obtained eÆciently by 1-D processing.

Hilbert Transform [13], [14] provides a means of
separating signals based on phase selectivity and uses
phase shifts between the pertinent signals to achieve
the desired separation. In this paper, we extend the
same logic to detect the change in image intensities by
using Discrete Hilbert Transform of the Gaussian as
an edge detection �lter. This method of detection dif-
fers from the conventional operators in the sense that
they detect the changes in intensity by performing the
�rst or second order derivative operation on the image
intensities.

This paper is organized as follows: Section 2 gives
an introduction to the detection �lter and illustrates
the results on di�erent types of 1-D edge pro�les. In
Section 3, we describe the method for edge detection.
The performance of the proposed method on a set of
real-world images is illustrated in Section 4. Finally,
the paper is concluded in Section 5.

2 Edge Detection �lter
We use the Discrete Hilbert Transform [14] of the

Gaussian function as an edge detection �lter. Let g(n)
be a �nite Gaussian sequence of length L represented
as:

g(n) =
1p
2��1

e�
n
2

2�2 ; n = �L=2; :::; L=2 (1)

where � is the spatial spread of the Gaussian. Detec-
tion �lter h(n) can be obtained as:

h(n) = DHTfg(n)g (2)

where, DHTf:g represents the Discrete Hilbert Trans-
form operator.

Fig.1(a) shows the shape of the Gaussian function
for � = 6 and the detection �lter is shown in Fig.1(b).
The �rst derivative of the Gaussian (1-D Canny opera-
tor) for the same value of � is shown in Fig.1(c). Com-
paring both these �lters, the proposed �lter has slower
rate of decay than 1-D Canny operator for the same
�. This characteristic of the proposed �lter makes the

performance in noisy cases better compared to 1-D
Canny operator. This will be illustrated with results
on 1-D noisy edge pro�les at the end of this section.
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Figure 1: (a) Gaussian function for � = 6. (b) The
proposed detection �lter. (c) First order derivative of
Gaussian (1-D Canny operator)

In Figs.2 to 4, we present the comparative study of
proposed �lter and 1-D Canny operator for di�erent
types of edge pro�les. Fig.2(a) shows a step edge, for
which the convolved output of the proposed detection
�lter is shown in Fig.2(b). We will mark the center of
an edge at a local minimum in the convolved output.
For comparison, the result obtained by 1-D Canny op-
erator is shown in Fig.2(c).

A "ridge" pro�le is shown in Fig.3(a) and the corre-
sponding convolved outputs of the proposed �lter and
1-D Canny operator are shown in Fig.3(b) and 3(c)
respectively.

In Fig.4 is the signal has more than one sharp varia-
tion point. The signal shown in Fig.4(a) contains three
di�erent edge pro�les and the convolved outputs of the
proposed �lter and 1-D Canny operator are shown in
Fig.4(b) and 4(c). All the results of the comparative
study presented in Figs.2 to 4, show that the qualita-
tive nature of the output for both these operators are
same for noise-free signals. The magnitude of the peak
in the response of the proposed �lter, at the location
of the edge, is much larger compared to that of 1-D



Canny operator.
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Figure 2: (a) An ideal step edge. (b) Convolved out-
put of the proposed �lter for � = 0:25 (c) Convolved
output of 1-D Canny operator for � = 0:25

In Figs.5 and 6 the compares the performance of the
proposed �lter and 1-D Canny operator for two di�er-
ent levels of noise added to the step edge. Figs.5(b),
5(d), 6(b) and 6(d) shows the outputs of the proposed
�lter, whereas Figs.5(c), 5(e), 6(c) and 6(e) shows the
outputs the 1-D Canny operator. In the location of
the edge the peak is always more prominent than all
the other local peaks. This is not the case with 1-
D Canny operator, speci�cally for lower values of �.
This peak of the output which appears at the location
of the edge will help in locating the edge better us-
ing the hysteresis thresholding strategy suggested by
Canny [5]. This will be evident in the results with
real-world images shown in Section 4.

3 Edge detection in images using 1-D

Processing
In this section, we extend the method of 1-D edge

detection using Hilbert �lter to detect edges in 2-D
images. This technique is similar to those proposed in
[11], [12]. Image is �rst smoothed along all horizontal
scan lines using 1-D Gaussian �lter. The response of
the 1-D Gaussian �lter can be expressed as:

a(m;nr) = i(m;nr) � g(m) (3)

where � denotes the 1-D convolution operator, g(m)
represents the 1-D Gaussian �lter, i(m;nr) represents
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Figure 3: (a) A ridge pro�le. (b) Convolved output of
the proposed �lter for � = 8. (c) Convolved output of
1-D Canny operator for � = 8.
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Figure 4: (a) A signal containing three sharp variation
points. (b) Convolved output of the proposed �lter for
� = 2. (c) Convolved output of 1-D Canny operator
for � = 2.
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Figure 5: (a) Noisy step edge. (b), (d) Convolved
outputs of the Proposed �lter for � = 1, � = 2. (e), (f)
Convolved outputs of 1-D Canny operator for � = 1,
� = 2.
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Figure 6: (a) Noisy step edge. (b), (d) Convolved
outputs of the proposed �lter for � = 1, � = 3. (c), (e)
Convolved outputs of 1-D Canny operator for � = 1,
� = 3.



the rth row of the image i, and a(m;nr) is the cor-
responding �lter response. The response is computed
for all rows in the image to obtain a(m;n).

For the 1-D Gaussian �lter output a(m;n), ob-
tained from Eqn.(3) for all rows, the detection �lter
is applied along each column mc to detect the edges
oriented along the horizontal lines of the pixels. The
result is given by

e(mc; n) = a(mc; n) � h(n) (4)

where h(n) denotes the detection �lter and a(mc; n)
represents the cth column in the 1-D Gaussian �ltered
image a(m;n). The resultant image e(m;n) obtained
by applying Eqn.(4) for all the columns produces the
horizontal components of edge strengths in the image.

Similarly, the vertical components of edge strengths
are detected by applying the 1-D smoothing operator
along all vertical scan lines of the image and further
processing with the proposed �lter along the orthog-
onal direction (i.e., along horizontal scan lines of pix-
els).

Finally, the partial edge information obtained in
horizontal and vertical directions are combined and
thresholded to obtain the edge map of the original im-
age. We have used the hysteresis thresholding strategy
proposed by Canny [5] in our studies. The smoothing
�lter's � is selected 1.3 times that of the detection �l-
ter. This choice provides the best results, which was
observed from the preliminary studies. The choice of
the spatial width of the Gaussian depends on the na-
ture of the image and edges. In fact, for real-world
images one should combine the results obtained by a
set of operators with di�erent �'s.

4 Results and Discussion
The performance of the proposed method is illus-

trated with a set of real-world images in this section.
Fig.7 shows the edge detection results on the picture
"Lena". Fig.7(b) shows the edge map obtained using
the proposed method. For comparison, the edge in-
formation extracted by the 2-D Canny method with
� = 0:85 is shown in Fig.7(c). The �s are chosen to
provide similar spatial spread of the Gaussian func-
tions in both the methods, although the choice of �
was found to be not very critical. Hysteresis thresh-
olding strategy is used in both the methods to ob-
tain the edge map. A careful observation reveals that
the edges obtained using the proposed method are
more smoother, detailed and continuous than those
obtained using the 2-D Canny's method.

The advantage of the proposed method is signi�-
cant in the case of noisy images. The results of edge
extraction using the proposed method and the 2-D

Canny methods are shown in Figs.7(e) and 7(f), re-
spectively, for the noisy image shown in Fig.7(d). The
results clearly demonstrate the superior performance
of the proposed method for noisy images. The main
reason for this advantage is that noise smoothing is
performed on the same pixels using only 1-D �ltering,
thus preserving the edge information in the orthogonal
direction.

Fig.8 shows the edge detection results on an aerial
image of an urban area. The edges extracted by the
proposed method and 2-D Canny's method are shown
in Figs.8(b) and 8(c), for the image shown in Fig.8(a).
For the corresponding noisy image (see Fig.8(d)), the
edge maps obtained by the proposed method and 2-
D Canny's method are shown in Fig.8(e) and 8(f).
Fig.8(a) shows a gray level image of an outdoor scene.
The edges detected by the proposed method and 2-
D Canny's method are shown in Figs.9(b) and 9(c).
Figs.8(e) and 8(f) shows the results obtained by the
proposed method and 2-D Canny methods for noisy
image shown in Fig.9(d). We veri�ed the comparative
performace of the proposed method and 2-D Canny
method for noisy images with di�erent values of SNR.
It was observed that the proposed method produced
better performance, in general. Results of di�erent
SNRs are not shown due to lack of space.

The noise suppression and continuity of the edges
obtained by the proposed method are better than that
obtained by the 2-D Canny's method. The proposed
method gives also signi�cant computational advantage
compared to the 2-D Canny's method. The proposed
method takes only about 1=10th the time required 2-D
Canny's method.

5 Conclusion

In this paper we have proposed a new method for
edge detection based on Hilbert transform. It exploits
the 1-D property of edges by smoothing along one di-
rection and detecting the edge information along the
orthogonal direction by using the Hilbert transform
of the Gaussian as an edge detection �lter. Compari-
son of the results with 2-D Canny's method show that
proposed method works better for noise-free as well
as noisy images, besides providing the signi�cant com-
putational advantage due to 1-D processing. Results
of the proposed method will be useful for applications
like GIS, object recognition and machine inspection.
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Figure 7: (a) Gray level image "Lena". (b) Edge
map obtained by the proposed method, for the image
shown in (a). (c) Edge map obtained by 2-D Canny
method, for the image shown in (a). (d) Noisy im-
age of (a). (e) Edge map obtained by the proposed
method, for the image shown in (d). (f) Edge map
obtained by 2-D Canny operator, for the image shown
in (d).
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Figure 8: (a) Aerial image of an urban area. (b) Edge
map obtained by the proposed method, for the image
shown in (a). (c) Edge map obtained by 2-D Canny
method, for the image shown in (a). (d) Noisy image
of (a). (e) Edge map obtained by the proposed method
, for the image shown in (d). (f) Edge map obtained
by 2-D Canny operator, for the image shown in (d).
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Figure 9: (a) Gray level image of an outdoor scene.
(b) Edge map obtained by the proposed method, for
the image shown in (a). (c) Edge map obtained by 2-
D Canny method, for the image shown (a). (d) Noisy
image of (a). (e) Edge map obtained by the proposed
method, for the image shown (d). (f) Edge map ob-
tained by 2-D Canny operator, for the image shown
(d).


