Design of Embedded Systems for Real-Time Vision

Vivek Haldar'

Subhashis Banerjee!

Gokul Vardhan'!

Abhishek Saxena?

M. Balakrishnan®

'Department of Computer Science and Engineering
2Mathematics Department
Indian Institute of Technology, New Delhi 110016, India
Email: {suban,mbala}@cse.iitd.ernet.in

Abstract

In this paper we present a design methodology of
real-time vision based embedded systems on PCs and
other low-end platforms. We first develope vision al-
gorithms on the Linux platform and port the applica-
tion on to a real-time kerner with pluggable scheduling
policies and real-time guarantees. The kernel has been
ported to both X86 and Philips Trimedia platforms.
The methodology has been validated by porting three
vision applications on both thee platforms.

1 Introduction

In this paper we address the issues of design of
embedded systems for real-time vision applications.
Most real-time vision applications have a sensing-
perception-action loop which involves i) video capture
at frame rate (25 Hz) ii) vision processing which is
mainly compute bound and iii) robot control. Such
systems often have hard real-time deadlines to enable
small latency reaction to real world events and en-
sure stability of control. Real time vision applications
are typically developed in reasearch environments us-
ing high-end visual workstations which provide out-
of-the-box solutions for frame capture and sophisti-
cated tools for image processing, display, multithread-
ing etc. The operating systems in such workstations
are general purpose with large overheads and often do
not provide any real-time guarantees. Consequently, a
programmer has to mainly rely on the fast processors
available in such systems to meet real-time require-
ments and can seldom enforce them in a systematic
way.

However, the end use of most such vision applica-
tions lie in special purpose embedded systems requir-
ing low cost solutions. Such embedded systems are
often required to be built around low cost processors
like the Intel X86 family or around special purpose

DSP processors. They must necessarily support high
speed frame capture and facilitate control of robotic
and other special purpose equipment. Rather than
being general purpose programmable boxes, embed-
ded systems are special purpose application systems
which require the vision algorithms to be integrated
with the operating system to provide one complete
application.

In this paper we present the basic design philosophy
of a real-time operating system ‘RTKER’ developed
at IIT Delhi specially for real-time vision based em-
bedded systems. The main features of the operating
system are:

1. It uses only light weight threads and provides for
flexibility in the choice of the scheduling algo-
rithm. The user can experiment and decide on
a scheduling policy to suit his/her requirements.

2. It provides hard real-time guarantees and meth-
ods of graceful recovery in case the real-time spec-
ifications cannot be met.

3. Most of its API’s are similar to those available in
Linux. These include the API’s for the threads
package, APT’s for system calls, and device driver
APD’s. Consequently any application or device
driver code developed on Linux can be ported
with minimal changes on to the real-time kernel.

4. Tt provides a standard C interface to the appli-
cation programmer enabling him/her to integrate
the vision application with the real-time kernel to
produce a single executable binary image which
can be burnt in to a boot PROM.

5. The kernel is portable. In fact it has been origi-
nally developed on Intel X86 and has been succes-

N\ N\
BT848 Video ROBOT
VIDEO IN CONTROL TO ROBOT
— Capture Card CARD
DMA via —T T
ideodlinux ‘
Data Movement Bus (PCI/ISA/USB)
MAIN
CONSOLE CPU
MEMORY

Figure 1: Hardware Architecture for reactive vision
applications.

fully ported on to Philips Trimedia (a multimedia
DSP processor).

We also present a methodology of design of vision
applications wherein vision algorithms are first devel-
oped on the popular Linux operating system running
on X86 processors and are subsequently ported, with
minimal changes in code, on to RTKER with real-time
guarantees.

We have chosen three prototypical real-time vision
applications, developed earlier at IIT Delhi, to demon-
strate our approach:

1. Motion segmentation
2. Collision detection [1]

3. Tracking of isolated objects using active robotic
head [2]

We show the hardware system architecture in Fig-
ure 1.

We run the three applications in three separate
threads and introduce a separate control thread to
switch/schedule the individual applications depending
on real world events. The system normally runs only
the segmentation and the collision detection threads
and the robotic device is made to take evasive action
when an impending collision is detected. In case the
motion segmentation thread detects a moving object
in the visual field, then the control is passed on to
the tracking thread after suitable initialization. The
tracking thread runs till we either lose track or the
object disappears, in which case the control is passed
on to the segementation/collision detection thread.

In Section 2 we briefly describe the computational
requirement of the three vision algorithms and present
the overall control structure. In Section 3 we discuss
the operating systems requirements to support such
applications. In Section 4, we describe our real-time
kernel and porting of the vision applications. In Sec-
tion 5, we present some performance results.

for each pixel p in image do
Compute E,(p), E,(p) and E.(p)
if B2 + EZ > T then

o1 = —E/\J(E2 + E2)

Figure 2: Computation of optic flow parameters.

Common code for segmentation and collision detec-
tion.

Figure 3: Segmentation in Progress.

2 Vision Algorithms

In this section, we briefly present the computation
invovlved in each of the three vision functionalities.
The collision detection and segmentation algorithms
are based on optic flow [7]. They require the compu-
tation of normal component of the optic flow (Here
E,, E, and E; are the image gradients in z, y and ¢
(time) directions respectively)

v =—E/\/(EZ+ E2)

at dominent edge pixels where

\/ E3 + E; > T a pre-determined threshold

The psuedo code for the common part is given Figure
2.

Once the above common computation is finished,
segmentation and collision detection algorithms run
as two separate threads.

2.1 Segmentation

In Figure 3, we give typical instances of segmenta-

tion. The algorithm proceeds as follows:

1. First, we mark individual pixels as “moving” or
not by thresholding on the normal component of
the optic flow field.

2. Subsequently, we consider blocks of 8 x 8 pixels,
and mark each block as moving or not moving
by thresholding on the fraction of pixels moving

within the block. We finally mark a block as mov-
ing only if 5 out of the 8 blocks around it are
moving.

. Once the moving blocks in the image have been
located, we fit the moving pixels into the simple
translation model

E = —(E, E@)(").

For a least square minimisation, this equation
transforms to

zi = H; X 4+ w;
with
X = (u,v),
Hi = _(Ewa);

z; = Ey,, and
w; are iid Gaussian noise with zero mean
and covariance R.

The least square solution for X minimizes
J(X)=>,(Z; — H;X)"(Z; — H;X)
Differentiating this equation, the stationary val-
ues of X satisfy

HX =Z
where, H = Y ,(H!H;) and Z = Y, (H!Z;). We

solve this equation using LU decomposition.

The centroid and the bounding rectangle of the
moving region are passed passed as initialization
parameters for the tracker.

2.2 Collision Detection

In Figure 4, we show a typical instance of a collision
detection. The collision detection algorithm follows [1]

1. Pixels are classified as moving or not, by thresh-
olding on normal component of the optic flow.
This step is identical to step [1] of segmentation
and its results can be shared by the two.

. We use the affine model for the image velocity
field, i.e.

HEFR PRI HEE S

This can be put into a standard measurement
equation form for least square solution as:

where X = (ug vo Uy uy vz vy)t,
H; = (E., By, v;E;; y;Es; 2;Ey, y;E,,), and
Zi=—E,,.

3. The least square solution for X minimizes
J(X)=>,(Z;— H;X)"(Z; — H;X)
Differentiating this equation, the stationary val-
ues of X satisfy

HX =7

where, H = Y ,(H!H;) and Z = Y (H!Z;). We
solve this equation using LU decomposition.

4. v, + vy gives us the image divergence which is
inversely proportional to the time to collision [1].
An interrupt is raised if this number drop below
a certain threshold.

2.3 Tracking

In Figure 5, we show two typical frames correspond-
ing to tracking an object. The tracker combines the
traditional Kalman filter based prediction with addi-
tional structure related information and uses this to
more accurately predict the position of a corner. Its
execution is briefly described below. See [2] for details.

1. Detect corners in the image. Again, this step
makes a pass over the entire image, this time on
a high resolution (384 x 288) image.

2. Predict the position of each corner in the next
frame using the Kalman filter prediction equa-
tions (a constant image velocity model) and find
the best match by correlation. Compute affine
basis for the matched corners.

Figure 5: Snapshots showing a hand being tracked.

3. If basis computation is successful, compute affine
structure.

4. Reject outliers using the affine structure and the
basis computed in the previous steps.

5. If recomputation of basis is successful, then com-
pute the affine strcuture and force matches us-
ing it; locate gaze point using affine structure. If
the recomputation was unsuccessful, then set gaze
point to the centroid of the matched corners.

6. Move the robot head to point to the gaze point.

2.4 Overall Control Structure

The segmenter computes the centroid of the major
moving segment and the bounding rectangle in the im-
age. We use this information to initialise the tracker.
The two threads work exclusively in time - as soon as
the segmenter finds a moving region in the image, it
wakes up the tracking thread and suspends itself and
the collision detection thread. The control code for
accomlishing this is given in Figure 6.

Figure 7 shows the control flow diagram for this
scheme.

3 Operating System Requirements
3.1 System Architecture

The hardware of our system consists of a Pentium
III based PC running Linux (Kernel version 2.2.12 and
above with video4linux enabled) along with a frame
grabber card that supports a capture rate of at least
25 frames per second.

For capturing video, we use the video/linuz API.
The API gives us a comprehensive selection of func-
tions in the form of ioctls to accomplish video capture.
The API has evolved and has now become a standard

do forever {
start segmentation and collision detection threads
if collision detected then {
raise interrupt (evasive action of robot)
sleep for while
restart segmentation and collision detection
}
if segment detected then {
suspend segmentation and collision detection
threads
initialize tracker with output of segmentation
start tracker
if lost track then
restart segmentation and collision detection

Figure 6: Pseudo-code for overall control

Found valid

%

basis computation
successful

Share optic flow
Results

Collision Detection))
Take Evasive Action

Detected
Impending
Collision

Figure 7: Control Flow Diagram for the Application.

and device drivers are available for almost all Frame
Capture Cards and several of the newer USB cameras.
This gives us the added ability to work with any hard-
ware (provided it supports the video4linuxz APT). Thus,
the testbed to a large extent is hardware independent.

Our Video Capture Card is a BrookTree BT848
card with no on-board memory. The card maps a
segment of main memory where it dumps the cap-
tured frames. It supports capture of two frames and
transmits these frames via Direct Memory Access by
downloading the DMA microprogram from the device
driver and executing it.
3.2 Threading and Pipelining

The first thing to note here is that the video capture
card uses DMA in order to transfer the captured frame
to the computer’s memory. This means that during
the execution of a capture the CPU is actually idle.
We can use this CPU time to work on a previously
captured frame. Thus, we can run two threads here -
one for capture, and another computation thread that
uses the CPU time while the DMA goes on for the
capture.

Two problems arise while using threads -

1. Memory sharing - How can two threads work
using the same memory for frame buffer? The
answer lies in the fact that the threads do not use
the same memory for frame buffers! Our video
capture card (and most of them) provide support
for capturing two frames.

Even then, the problem is of making the threads
share the buffers in a mutually exclusive way.
This is a simple producer consumer problem, with
two buffers and the capture thread acting as the
producer and the computation thread acting as
the consumer. The synchronisation problem is
solved in a standard way using semaphores.

2. Scheduling and Preserving the pipeline -
There is an inherent pipelining in the way ap-
plications of this class work; the capture thread
first fills up a frame, and then the computation
thread uses this frame for whatever its purpose is.
Hence, there is a need to ensure that this order is
preserved at all times.

So, the scheme of things can be expressed as below

e The capture proceeds into one frame buffer.

e The computation procedure works with the other
frame in the meantime.

do forever {

if (odd. frame) then {
wait(capture_semaphore_odd);
compute_function using odd buffer;
signal(compute_semaphore_odd);

}

else {
wait(capture_semaphore_even);
compute_function using even buffer;
signal(compute_semaphore_even);

}
}

(a) Computation thread

do forever {
if (odd_frame) then {
wait(compute_semaphore_odd);
capture_function using odd buffer;
signal(capture_semaphore_odd);

else {
wait(compute_semaphore_odd);
compute_function using even buffer;
signal(capture_semaphore_odd);

}
}

(b) Capture thread

signal(compute_semaphore_odd);
signal(compute_semaphore_even);

(c) Initialiaztion

Figure 8: Pseudo-code for synchronization

e The two threads swap buffers when they are both
done.

The pseudo-code in Figure 8 gives the synchroniza-
tion of the two threads.

The scheme has been constructed to ensures two
things -

e The two threads do not clash in the memory
space.

e The pipelining is preserved, i.e.
thread precedes the compute thread.

the capture

In Figure 9, we give a typical timing diagram of the
various threads in the implementation.

1.3ms 3.7ms
Corner Detection

Optical Flow Computation

31 ms

Affine Structure Matchi ngi Tracking Thread

Collision Detection Computation (0.4 ms)

Collision Detection

—
- -

Display
! ,—,L Segmentation Computation (0.3 ms) Segmenter Thread

Capture Thread

Figure 9: Profile diagram for our application.

3.3 Need for Real Time Kernel

Real time reactive vision applications typically have
various timing constraints. For example, in a collision
detection application, one time constraint would be to
process the frames in real-time (25 frames/sec), and
another would be to react quickly when a collision is
detected. Thus, it is very important to incorporate
support for specifying and attempting to meet various
timing constraints.

To be truly reliable, such time-constrained compu-
tation cannot be done on a general purpose operating
system (like Linux) with no real-time scheduling or
time guarantees whatsoever. Also, in case a deadline
is missed (which again cannot be checked for in a gen-
eral purpose OS), we need to handle issues related to
graceful recovery, such as using partially computed re-
sults or quickly substituting old results. To deal with
such issues, we need a low-overhead real-time kernel
which can do real-time scheduling, check deadlines and
take measures for graceful recovery in case deadlines
are missed.

Consider the following scenario. Supposing we have
a MPEG decoder application that takes in frames and
decodes them. This application is basically a periodic
application - it takes frames say every 40 ms and has
to decode a frame before it receives the next frame.
Its deadline then is 40 ms. What happens if suppose
the application misses its deadline 7 We want to have
some mechanism of graceful recovery whereby the ap-

plication simply takes the previous decoded frame and
passes this as the result.

4 RTKER - A Real Time Kernel

We have implemented a small real-time uniproces-
sor operating system kernel. This kernel runs a num-
ber of light weight processes or threads, each of which
can spawn other threads. These threads can specify
their timing constraints using a task description which
has the following attributes:

e Type of task : periodic or not
e Periodicity : time period (if a task is periodic)

e Ready Time : time before which task cannot

run.

e Deadline : time before which task has to be

completed

e Recovery Task : the task to run if this task

misses its deadline.

e Execution time : how long the task will take to
complete (we can use either worst case or average
case execution times, depending on the applica-
tion). This is not always required.

Note that a general pupose operating system does
not allow us to specify various constraints that we are
handling, such as periodicity, ready times, deadlines,

and recovery tasks. The recovery task can be used to
do some sort of graceful recovery when a deadline is
missed.

The kernel provides semaphores, which can be used
both for synchronisation between threads, and com-
munication between them.

We have ported our kernel to two platforms - Intel
X86 (386-+), and Philips TriMedia. Our kernel has
essentially been implemented as a layer of threading
and synchronisation over a standard C library. Thus
we make use of a ”C interface” to the chip.

4.1 Real Time Scheduling

The timing constraints are met using various
scheduling policies, which schedule threads depending
on the timing constraints specified for them, in a way
so as to attempt to meet these constraints.

We have designed our kernel such that the schedul-
ing algorithms are ”pluggable”, i.e., the kernel it-
self is independent of the scheduling policy used. This
permits us to experiment with various scheduling poli-
cies, which provide different types of timing guaran-
tees. For example, some policy may attempt to mini-
mize number of tasks which miss their deadlines, an-
other could try to minimize lateness (time by which a
deadline is missed, more precisely, completion time -
deadline).

Among the policies that we have tried out is the
earliest deadline first policy (EDF) [5, 6], which has the
desirable property of being optimal. A policy is said
to be optimal if it is able to find a schedule meeting
all deadlines if one exists.

Another policy called least laxity(deadline - com-
pletion time) first (LLF) [5, 6], provides a different
type of guarantee - it minimizes maximum lateness.
However it suffers from the drawback of requiring an
estimate of completion time of all threads, and poor
estimates may lead to skewed scheduling. Compared
to LLF, EDF is preferred because it does not need
completion time estimates.

4.2 Use of real-time kernel for vision ap-
plications

All our vision applications need a frame-grabber
device which grabs video frames from a camera and
makes them available to the application. On the Intel
platform, we have ported the Linux device driver for
the BT848 framegrabber card to our kernel.

While the frame capture is taking place within the
device, computation (on previous frames) can take
place at the processor in parallel during this time.
When the frame capture is complete, it is passed back
to the processor via DMA.

On the TriMedia platform, we do not need a sepa-
rate framegrabber card as the TriMedia chip itself has
video in/out units which can be connected to a cam-
era and used for grabbing frames. Again, grabbing
happens in parallel with computation.

We have ported the vision applications to our ker-
nel.

4.3 Application Development Flow

We now have two platforms for deploying a vi-
sion application - Linux and our own real-time kernel
(RTKER). The development flow is as follows :

e Implement the application on Linux on X86, us-
ing the pthreads and video4linux API. We main-
tain a clean separation between frame grabbing
and processing.

e Port this implementation to RTKER. The
threads and semaphores API of RTKER on X86
or Trimedia is very similar to pthreads, and thus
the application can be easily ported.

The frame grabbing API of RTKER differs from
Linux, but since we maintain a clean separation be-
tween grabbing and processing code, porting is easy.
We have used this methodology to successfully port
the above mentioned vision applications. Linux, be-
ing easy to develop and debug on, is ideal as a first
implementation platform. Once the application is ro-
bust, we port it to RTKER, in order to impose timing
guarantees. The porting needs minimal changes to
threading and grabbing code, and no changes to the
processing code.

5 Results
5.1 Profiling for collision detection on
TriMedia

For the RealTime Kernel

Frame Size | time(ms)
300x200 25.6
128x128 9.6
200x200 19.0
384x244 36.0

5.2 Profiling on Intel
All frame sizes are 128 x 96 except tracker which
is 384 x 288

Application Time Time
(RTKER/ms) | (Linux/ms)

collision detection | 1.8 1.9

segmentation 1.8 1.9

tracker 29 33

6

Conclusion

We have presented a methodology for implement-
ing real-time vision algorithms on PCs and other low-
end platforms. A significant contribution has been
the development of a real-time kerner with pluggable
scheduling policies and real-time guarantees. The ker-
nel has been ported to both X86 and Philips Trimedia
platforms. The methodology has been validated by
porting three vision applications on both thee plat-
forms.

References

[1]

[2]

Alok Mittal, Aditya Valilaya. Real Time Vision
System for Collision Detection, Journal of Com-
puter Science and Informatics, Special Issue on
Robotics and Automation, 25(1), pp. 174-208,
March 1995.

Gurmeet Singh Manku, Pankaj Jain, Amit Ag-
garwal, Lalit Kumar and Subhashis Banerjee. Ob-
ject Tracking using Affine Structure for Point
Correspondences, IEEE CVPR’97, June 19-21,
San Juan, Puerto Rico.

Michal Irani, Benny Rousso. Computing Occlud-
ing and Transparent Motions. Int. J. Computer
Vision, Vol 12 No. 1, January 1994, pp. 5-16.

Moshe Ben-Ezra, Shmuel Peleg, Benny Rousso.
Motion Segmentation Using Convergence Prop-
erties. ARPA Image Understanding Workshop,
November 1994, pp. 1233-1235.

Clifford W. Mercer. An Introduction to Real
Time Operating Systems: Scheduling Theory.
Technical Report.
(http://www.cs.cmu.edu/afs/cs/project /rtmach/
public/papers/surl.review.ps)

J.A. Stankovic et al. Implications of Classical
Scheduling Results for Real Time Systems. IEEE
Computer, Vol. 28, No. 6, pp. 16-25, 1995.

B.K.P.Horn. Robot Vision. McGraw Hill, NY,
1986.

