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Abstract

    A new pattern recognition methodology for
classification of multidimensional, temporal samples is
proposed. While a number of features (dimensions) of the
image are required for better description of the image,
they pose a threat in terms of unwieldy mass of data,
particularly in the case of temporal observations. In this
paper we have proposed a method to achieve
dimensionality reduction of multi spectral temporal
image using regression.  In temporal images, each
feature of a sample is not just a single numerical value,
but a vector of real values. The method proposed finds
the pattern of change in the feature values over time by
fitting regression curves. A clustering methodology
based on a new distance measure between fitted
regression curves, is also proposed. The method
suggested appears very versatile as it is readily
applicable to any temporal image, be it gray scale, color
or multi spectral. The algorithm is tested successfully on
2 different data sets.
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 1. Introduction

     Temporal imaging/observations uses time as an aid in
image classification. An efficient method for
dimensionality reduction of multi spectral temporal
image is suggested here. Measurements made in pattern
recognition applications are inherently multi dimensional
in nature. Larger the number of features, more severe are
the problems of storage and analysis time requirements
[2]. Hence much importance has been attributed to the
process of dimensionality reduction or feature reduction.
Aim of dimensionality reduction is to describe the
samples by means of a minimum number of features that
are necessary for discrimination of objects in the image.
A variety of methods for dimensionality reduction are
proposed in literature [2,3,6]. Most of these belong to

either subsetting methods [1], feature space
transformation methods [3,6], or principal component
analysis [2]. A survey of many dimensionality reduction
procedures can be found in [8]. Unlike one time image
where a feature of a sample is just a numerical value, in
temporal images every feature of a sample is a vector of
real values because the same image is observed at
different time steps. Some of the methods to study
temporal images use thresh holds on feature values for
pattern classification [4], obtain classification maps of
successive time steps and use them all for a classification
of total data set [5].
     We have made an attempt to summarize these huge
sets of each feature values of a sample in shorter sets of
new “units” namely regression curves. This results in
data assimilation of temporal values of feature values of
a sample.
     Section 2 outlines the method developed. Details of
finding regression lines are described in section 3. In
section 4 we have discussed the computation of
‘distance’ between transformed samples which is the
foundation of clustering the samples. Section 5 describes
the clustering methodology. Section 6 outlines the
experiments and the results obtained. In sections 7 and 8
are conclusions and further improvements possible to the
method are suggested.

2. Overview of the method

    One of the effective means of classifying temporal
data is multi temporal profile approach [1]. The use of
change detection for classification is the purpose of
temporal imaging. Samples which are seemingly alike
initially may tend to vary to a large extent at a later time.
Two samples can be called “similar” only if they are
similar over time. Hence we have developed a method to
study the behavior of samples over time and use this to
do pattern classification. Our method detects the changes
in feature values of the samples over time and uses these
changes for classification. The change in each of the
feature values of a sample is described by a regression
curve. We have used “least squared” error regression
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curve for multi temporal data. The s sample items, each
having f features, over t time steps (size of the data is
s*(f.t)) can be reduced to s*f regression curves. In other
words (f.t) features of the sample items can be reduced to
f regression curves. The transformation results in the
assimilation of (f.t) features to f featured regression
curves. A good regression curve provides an apt
description of the samples. But it is difficult to determine
the nature of regression curves. Even if we do, the j th
feature values of different samples could yield different
types of regression curves. For instance the t values of j
th feature of samples i and k may become quadratic and a
cubic curve. This amounts to keeping track of regression
curves and also the type of regression curves. This
results in too much of book keeping, making the problem
of classification too tedious. Probably this may even
contradict the possibilities of the very theme of the
research, that is, dimensionality reduction.
     Such as an arbitrary curve can be approximated by
piecewise linear segments [9,10], a regression curve is
represented by piecewise linear regression line segments.
The time axis of the i th sample, j th feature has been
sliced and regression lines identified in each slice. The
number and length of the slices are kept uniform for all
features and samples, to ease the problem of measuring
distance between samples. In short s*(f.t) data items
have been reduced to s*(f .c) regression lines, where c is
the number of slices of time axis. A new distance
measure has been proposed to measure the distance
between the set of regression lines.

3. Method in detail

     Let the data items be represented by  d[i,j,k] where i
the sample, j is the feature, k is the time step and 1 ≤  i ≤
s, 1≤  j ≤  f, 1 ≤  k  ≤  t. i th sample, j th feature values
{d[i,j,1], d[i,j,2], ...d[i,j,t]}is divided (cut) into c slices
each slice having t/c data items. Regression lines are
identified for data sets {d[i,j,1], d[i,j,2], ... d[i,j,t/c]},
{d[i,j,t/c+1], d[i,j,t/c+2], ... d[i,j,2t/c]}, ... {d[i,j,(c-1)t/c],
... d[i,j,t]}.Thus d[i,j,k] are transformed into c regression
lines of the form ‘d’ = a + b’t’. where ‘d’ is the
dependent variable of feature values and ‘t’ is the
independent variable of time. The above process of
splitting t time steps into c slices and finding regression
lines in all slices is repeated for all features and samples.
The algorithm can be best understood with the example,
where for a sample the number of features are 2, time
steps are 6 and number of time slices is 2, illustrated in
the figures 1and 2 in the next page.

Algorithm 1: For representation of data using regression
lines.

Input: d[i,j,k]: 1 ≤  i ≤  s, 1 ≤  j ≤  f, 1≤   k ≤  t, and c the
number of slices of time axis.
Output: The coefficients of regression lines, a[i,j,p] (y
intercept), b[i,j,p] (slope) for
1≤  i ≤  s, 1≤  j ≤  f, 1 ≤  p ≤  c.

1. For all samples i = 1 to s
2. For all features j = 1 to f
3. For all slices p = 1 to c
4. Find regression lines for the data set T = {(p-1)t/c
       +1, (p-1)t/c +2, ... pt/c},     D = {d[i,j,(p-1)t/c +1],
       d[i,j,(p-1)t/c +2], ... d[i,j,pt/c]} to be ‘d’ = a[i,j,p]
      + b[i,j,p] * ‘t’

    5.    Return (a[i,j,p], b[i,j,p] )
    End 3
    End 2
    End 1

4. Computation of distance measure

     Two samples m,n are similar when d[m,j,k] and
d[n,j,k] are close for all features and time step. That is
d[m,j,k] and d[n,j,k] are approximately equal for 1 ≤ j ≤
f, 1 ≤  k ≤t. The distance between m and n has been
illustrated with an example in figures 3 and 4 in the next
page.
    Let L[sam,fea,sl], R[sam,fea,sl] be points of
intersections of the regression line of sample ‘sam’ for
feature ‘fea’ in the time slice ‘sl’ with the ordinates at
left (beginning) and right (end) of the slice ‘sl’.That is
L[sam,fea,sl] R[sam,fea,sl] is the regression line of
sample ‘sam’ for the feature ‘fea’ in the time slice ‘sl’. It
is clear that m, n are similar whenever L ‘s of samples
m,n and R ‘s of samples m,n are close on the respective
ordinates. That is whenever the distance between L ‘s
and the distance between R’s of the samples, on the
respective ordinates are small. Our distance measure is a
simple dissimilarity measure that is taken to be the
maximum of the following distances {L[m,1,1] L[n,1,1],
R[m,1,1] R[n,1,1],  L[m,1,2] L[n,1,2], R[m,1,2] R[n,1,2],
... ,L[m,1,c] L[n,1,c],R[m,1,c] R[n,1,c],  ... L[m,f,1]
L[n,f,1], R[m,f,1] R[n,f,1], L [m,f,2] L[n,f,2], R[m,f,2]
R[n,f,2], ... , L[m,f,c] L[n,f,c], R[m,f,c] R[n,f,c]}. That is
distance between samples m,n can be denoted by
dis[m,n] = Max  { L[m,j,p] L[n,j,p], R[m,j,p] R[n,j,p]
where 1≤  j ≤ f, 1 ≤ p ≤ c}. A smaller value of the above
distance implies there is not much of a deviation of the
respective sets of regression lines and hence the samples
themselves are less deviated through out and can be
called similar. A bigger value of the above distance
implies there is a feature and a time slice p where the
regression lines are so different because those feature
values are not close and thus they are dissimilar.



The  sample with 2 features and 6 time steps.
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Algorithm 1 may find following lines.  
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                                                                            Fig. 4
Dis(m,n)=max{L[m,1,1]L[n,1,1],R[m,1,1]R[n,1,1],L[m,1,2]L[n,1,2],R[m,1,2]R[n,1,2],
L[m,2,1]L[n,2,1],R[m,2,1]R[n,2,1],L[m,2,2]L[n,2,2],R[m,2,2]R{n,2,2]}.
L[m,fea=1,slice=1] / R[m,fea=1,slice=1] are the points of intersection of the regression line of m th sample for fea 1 and
slice 1, with the ordinate at t=1 / 3 (left / right or beginning / end of the time slice).



5. Clustering

We have done a partitional clustering which is a
combination of  the methods by Forgy.E.W [3] and
MacQueen.J.B [3]. The selection of initial seed points or
initial cluster centres is done as suggested by Ball.G.H
and Hall. D.J [3] in the following steps.

Algorithm 2: For finding seed points (seed lines) of the
data set.
Input: Data in the form of regression lines.
Output: All seed points (centroids) of clusters (the
number of clusters determined by the algorithm)

1. Take the overall mean of the data as first seed
point.

2. Select subsequent seed points by examining the
data units in their input sequence. Accept any
data unit which is at least at some specified
distance, DIS, from all previously selected seed
points.

3. Perform 2 until no more seed points can be
found.

    For our data set, which is a set of regression lines, the
initial seed point is to be selected as the line joining
average of L[i,j,p], and the average of R[i,j,p] where 1 ≤ i
≤ s, 1 ≤ j ≤ f,  1 ≤ p ≤ c. Mean is a set of lines joining the
averages of L values and R values. In the simple example
of figure 5 in the next page, where s=2, f=2, t=6, l=2, we
have illustrated the computation of the centre lines.
Suppose that the centre is denoted by the vector C[i,j]
where i is the centre or the seed point number and j is the
component number. For performing step 2 of Algorithm
2 we need distance between a centre and a sample
(which is represented by a set of regression lines). In the
figure 5 in the next page distance between centre C and
sample 1 is defined as Max {L[1,1,1]C[1,1],
R[1,1,1]C[1,2], L[1,1,2]C[1,3], R[1,1,2]C[1,4],
L[1,2,1]C[1,5], R[1,2,1]C[1,6], L[1,2,2]C[1,7],
R[1,2,2]C[1,8]}. In general distance between centre m
and sample n can be stated as   Max {L[n,j,p] C[m,(j-1)c
+ 2p-1], R[n,j,k]C[m,(j-1)c + 2p] where 1≤  j ≤ f, 1≤  p ≤
c}. After selection of initial seed points, initial partition
is generated using Forgy’s method. C be the centroid
currently.LR  be the regression lines of the samples for
various time slices. New centroid NC  for a particular
time slice is the line joining, average of L’s and C of that
slice and the average of R’s and C of that slice.
Algorithm 3: To find initial partition.
Input: Data in the form of regression lines, all seed points
of clusters.
Output: Initial cluster of data sets.

1. Allocate each data unit to the cluster with the
nearest seed point. The seed points remain fixed
in this process.

2. Compute new seed points as centroids of
clusters.

Step 2 of Algorithm 3 needs centroids of clusters which
we computed as the vector whose components are
average of all L and R values on all ordinates.
For obtaining refinement of the initial partition and final
cluster MacQueen’s k-means method is used.

Algorithm 4: To find final clusters.
Input: Initial cluster.
Output: Final cluster.

1. Start with initial partition described in the
Algorithm 3 and the new centroids as seed
points.

2. Determine the cluster of each data unit to be
that with the nearest seed point. Re compute
new seed points whenever data is added to or
deleted from a cluster.

3. Perform 2 until no data changes it’s cluster
membership.

We have selected Forgy’s method for initial partition,
since a coarse partition will suffice to start with. The
number of refinements is reduced comparatively with
MacQueen’s method of re computing the seed points
whenever there is a change in cluster assignment.

6. Experiments

6.1. Temperature Data

Average of daily minimum and maximum temperatures
of each month of  37 cities all over the globe is
considered to be data with 2 features (minimum,
maximum) and having 12 time steps. A small portion of
the data is given in table 1 of the next  page.
      Experiments were performed with different numbers
of time slices (2,3,4) and with various values of DIS
(distance between seed points). In general all resulted in
a satisfactory classification. In particular classification
with 3 slices and DIS =10 (one tenth of maximum
distance between samples) was very encouraging and
placed cities which are hot and humid like Madras,
Calcutta, Bombay, Kuala Lumpur, Hongkong,
Singapore, Colombo etc in one cluster. Places which are
very cold like Moscow, Munich, Stockholm, Toronto etc
in a cluster. Cities where minimum temperatures are low
and maximum is on the high side, like Frankfurt, Zurich
are grouped together. Cities which have moderate



           Feature 1                               Feature 2
                               ^                                                              ^

      *    ^             ^                                ^      ^
                       *          * *        ^        *

             ^         *     *       ^                            *     ^       ^
     ^   *      *             *       *

t           t

     sample m                                            sample n                                   centre
                                                                              Fig. 5

 Average Temperature data of Experiment 1(in Celsius)

CITY Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Amsterdam
Min
Max

-4
4

-5
3

2
12

5
15

7
17

10
20

10
20

12
23

10
20

5
15

1
10

-1
4

… … … … … … … … … … … …
Zurich
Min
Max

-11
9

-8
15

-7
18

-1
21

2
27

6
30

10
31

8
25

5
23

3
22

0
19

-11
15

                                                                       Table 1

A portion of the table of values of Experiment 2 are given below.

                           Date
                        Feature
Vegetation

   Jun 11
1     -    6

Jun 29
1    -    6

Jul 16
1    -    6

Aug 30
1     -    6

Corn 3.7  --  19.8 2.1  --  6.4 2.2  --  5.1 2.2  --  4.3
Soybean 3.3  --   16.9 2.2  --   6.4 2.5  --  10.2 2.2  --  7.0

                                                                          Table 2

temperatures in summer (not too high) and in winter (not
too cold) belong to a cluster. The number of clusters is 6
in number. The general laws like increase in reliability of
classes with a increase in number of time slices, and
increase in number of classes with decrease in DIS, were
observed.

6.2. Corn Soybean Data

     This is also a temporal data collected to discriminate
corn and soybean fields. The data was collected on
unequal intervals of time. The time interval was suitably
scaled. Incidentally our method of representation of data
with regression lines also provide for interpolation or

prediction of missing data. The data has 6 features and 4
time steps and a portion of this is given in table 2 of this
page. The classes are previously known to be corn or
soybean field. A single regression line for a feature (6
regression lines for a sample) resulted in a very good
classification. The misclassification is 12% (4 out of 30
soybean fields is identified as corn field)

7. Conclusion

     The problem of reducing the dimension of multi
spectral temporal data has been addressed in a novel
way. In the proposed method temporal values of each
feature is represented as regression line/s. Thus feature



values of samples are no more just ordinal values
(difficult to store and understand) but transformed to new
“units” namely “regression lines” (temporal data
assimilated in the form of lines). Experiments with real
data have demonstrated the ability of this method to
produce natural classifications, which is the ultimate goal
of multi spectral image processing. Potential
applications of this method include areas such as remote
sensing, medicine, agriculture, computer vision where
multi temporal observations are encountered.

8. Further improvements

     Instead of dividing the time step into fixed number of
slices, a method to find the number of regression lines
needed for a set of values could be devised. In other
words a method that detects the pieces of approximately
linear segments could be developed/used to transform
feature values into regression lines. If this is done a
natural classification is created among the samples as
soon as regression lines are identified. The number of
regression lines as well as the lengths of these lines
should be the same for all features if 2 samples are to be
called as “similar”. This creates a classification initially
and could be fine tuned later.
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