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Abstract

Depth from defocus (DFD) involves estimating the rel-
ative blur between a pair of defocused images of a scene
captured with di�erent lens settings. When a priori in-
formation about the scene is available, it is possible to
estimate the depth even from a single image. However,
experimental studies indicate that the depth estimate
improves with multiple observations. In this paper, we
provide a mathematical underpinning to this evidence
by deriving and comparing the theoretical bounds for
the error in the estimate of blur corresponding to the
case of a single image, and a pair of defocused images,
respectively. A new theorem is proposed which proves
that the Cram�er-Rao bound on the variance of the er-
ror in the estimate of blur, decreases with an increase
in the number of observations. The di�erence in the
bounds turns out to be a function of the relative blur-
ring between the observations. Results on synthetic as
well as real data are given to validate the claim.

1 Introduction
Of the several methods used for depth recovery:

depth from stereo, structure from motion, shape from
shading, structure from focus, and depth from defo-
cus (DFD), only the last two approaches involve the
principle of real aperture imaging, while all the oth-
er techniques assume an ideal pin-hole model of the
camera. The blurring of image regions due to a �nite
depth of �eld is usually considered a liability. The
degree of defocus, however, is a function of the lens
settings and the depth of the scene. Hence, it is possi-
ble to recover depth from two defocused versions of a
scene obtained with di�erent sets of camera parame-
ters. Precise knowledge of the camera parameters and
accurate estimates of blur are necessary to obtain a
good depth map of the scene. The accuracy of the
DFD method is roughly comparable to that of meth-
ods based on stereo disparity or motion parallax. The
depth map recovery process is parallel, and requires
no search unlike depth from focus [1].

Although in its fullest generality, the blurring pro-
cess in DFD is space-variant, simplifying assumptions,
such as local space-invariance, are often made in the
literature for reasons of mathematical tractability. In
this paper also, the depth will be assumed to be lo-
cally constant. As early as 1982, Pentland [2] showed
that if some a priori knowledge about the scene char-
acteristics can be assumed, the depth can be recovered
from even a single defocused image of the scene. In
particular, he assumed a Gaussian kernel for the point
spread function and showed how the relation between
the Laplacian of the observed image and the spread of
the Gaussian could be used for computing the depth.
At about the same time, Grossman's work [3], which
was mostly experimental, demonstrated that useful
depth information can be obtained from blurred step
and ramp edges. In yet another method [4], the depth
was recovered from blurred edges for the more general
case of rotationally symmetric point spread functions.
Lai et al. have proposed a depth estimation algorithm
[5] in which the raw image data in the vicinity of an
edge is used to estimate the depth from a single im-
age. In all the above approaches, which are based on
the processing of a single image, depth estimation is
restricted only to feature points such as edges.

Most of the works on DFD are, however, based on
comparing two defocused versions of a scene captured
with di�erent camera parameters [6] - [12]. The only
requirement for this approach is that the scene must
have suÆcient spectral content. The relative blur be-
tween the defocused images is measured to determine
the depth of the scene. It may also be mentioned
here that, in one of the earliest approaches to DFD,
Pentland [6] had derived depth estimates by assum-
ing one of the two images to be focused. Recently,
attempts have been made to use an appropriate mod-
el for the focused image of the scene and then solve
for the depth. For example, Surya and Subbarao [13]
propose a spatial domain approach that approximates
the original image by a cubic polynomial over local



regions. Rajagopalan and Chaudhuri [14] model the
original focused image by an autoregressive (AR) pro-
cess and the computation of depth from two defocused
images is formulated as a maximum-likelihood (ML)
estimation problem.

Although it is possible to recover the depth from
even a single image, researchers in DFD have observed
that an improved estimate of depth can be obtained
by using multiple observations [6, 7, 14, 15]. In this
paper, we provide a theoretical justi�cation for the
improvement in the accuracy of the estimate of depth
with multiple defocused images. We give an elegan-
t proof in support of this evidence in terms of the
Cram�er-Rao lower bound (CRLB), under fairly gener-
al conditions. The original focused image is modeled
as an AR process, and the CRLBs for the variance of
the error in the ML estimate of blur derived from a
single blurred image and from two blurred images, are
compared. A new theorem is proposed that not only
establishes that the CRLB of the variance of the er-
ror in the DFD estimate of blur is indeed lower when
two defocused images are used instead of one, but al-
so gives the exact relationship between the two error
bounds. Apart from the theoretical novelty, the prac-
tical signi�cance of the theorem for the DFD problem,
in terms of the choice of the camera parameters, is also
con�rmed by experiments.

2 Real Aperture Imaging

The point spread function (PSF) of the camera de-
scribes the image intensity caused by a single point
light source. Geometric optics approximates the PS-
F in the spatial domain by simple ray tracing. An
object point is imaged to a circular disk, referred to
as the circle of confusion, on the image plane by the
ray tracing model [8]. However, in practice, the im-
age of a point object is not a crisp circular patch of
constant brightness, as suggested by geometric optic-
s. Instead, due to di�raction and lens aberrations,
it will be roughly a circular blob with the brightness
falling o� gradually at its border [7]. For a di�raction-
limited lens system, the point spread function (PSF)
of the camera system may be approximately modeled
[6, 16, 17] as a circularly symmetric 2-D Gaussian

function h(i; j) = 1
2��2 exp �(i2+j2)

2�2 ; where the blur
parameter � is given by � rb and is related to the
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where r0 is the lens aperture, v0 is the distance be-
tween the lens and the image plane, Fl is the focal

length, andD is the depth. A positive value of the blur
parameter indicates that the vertex of the blur cone
is in front of the image plane, while a negative value
indicates that the vertex is behind the image plane.
Here � is a constant that depends on the particulars
of the optics and the sampling resolution, and must
be determined initially by an appropriate calibration
procedure. Equation (1) suggests that an estimate of
the blur parameter in conjunction with the values of
the lens settings can be used to calculate the depth.

If the scene is thought of as a collection of point
sources of light, then the intensity at a particular lo-
cation in the image is the result of contributions from
many overlapping defocused point sources. Since the
blur parameter is a function of the depth of the scene,
the PSF is also a function of depth. Hence, the blur-
ring process is linear but space-variant in DFD. How-
ever, from a practical and computational standpoint,
most methods assume local space-invariance in calcu-
lating the depth; the depth is assumed to be constant
over any local region in the image. The observed im-
age g(i; j) can then be modeled as the output of a
linear space-invariant system, which is characterized
by its PSF h(i; j). Here h(i; j) refers to the PSF cor-
responding to the local region under consideration.

The noisy and blurred image g(i; j) can then be
expressed as

g(i; j) =
X

m;n"Sh

h(m;n)f(i�m; j � n) +w(i; j) ; (2)

where Sh is the support of the PSF. The observation or
sensor noise w(i; j) is assumed to be an additive, zero-
mean, white Gaussian process. It is more convenient
to express the above relation in the frequency domain
as

G = �HF +W ; (3)

where G and W are the DFTs of the sequences g(i; j)
and w(i; j), respectively. Matrix �H is diagonal with
entries that correspond to the DFT H(k; l) of the se-
quence h(i; j).

3 Depth from a Single Image
It must be noted that the image data are the result

of the characteristics of both the scene and the lens
system. To disentangle these factors, one possibility
is to look for places in the image with known char-
acteristics. For example, at edges, the rate of change
in intensity in the image is due primarily to the point
spread function. Since it is possible to recognize sharp
discontinuities with some degree of con�dence, the im-
age data surrounding them can be used to determine



the blur, and hence the depth [6]. A limitation of this
method, however, is that its application is restricted
to special points such as step discontinuities. Instead,
a priori knowledge about the scene may be incorpo-
rated by assuming a suitable model for the focused
image as in [13, 14]. We use an AR model for this
purpose. The focused image corresponding to a given
scene can then be treated as a realization of this AR
process. Computation of depth is posed as an ML es-
timation problem. The reasons for choosing the AR
model are three-fold: (i) This model is fairly general
and has been quite successfully used by researchers in
the image processing community. (ii) For a reliable es-
timate of the depth, the DFD technique requires that
the image have suÆcient texture, and the AR model
is well-suited for modeling texture patterns. (iii) The
relationship among the dependent variables in the AR
model is linear. This helps to preserve Gaussianity in
the mathematical analysis.

Since the focused image f(i; j) is modeled by a 2-D
AR process,

f(i; j) =
X

m;n"Sa

a(m;n)f(i�m; j�n) + v(i; j) ; (4)

where the a(i; j)'s are the image model coeÆcients,
and Sa is the support for the causal image model. The
noise process v(i; j) is assumed to be zero-mean, white
Gaussian, and independent of f(i; j). Corresponding-
ly, in the frequency domain we get

F = (I � �A)
�1V ; (5)

where F and V are the DFTs of the rasterized se-
quences f(i; j) and v(i; j), respectively. It is also as-
sumed that the observation noise process w(i; j) (in
equation(2)) is independent of f(i; j) and v(i; j). Ma-
trix �A is diagonal with entries that correspond to the
DFT A(k; l) of the sequence a(i; j).

Because all the transformations are linear, it is clear
from equation (3) that G is also Gaussian. Let E de-
note the expectation, and H the Hermitian operator.
For a sequence of length N , we have

p(G) =
1

(2�)
N
2 (detP )

1

2

exp

�
�
1

2
GH(P )�1G

�
; (6)

where p(G) is the probability density function (pdf)
of G. The bar over G represents the process while G
is a realization. It can be shown that

P = E
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G G

H
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FF

H
i
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H
i
;

= �H(I � �A)
�1E

h
V V

H
i
(I � �A)

�H�HH + �2w I

= �2v �H(I � �A)
�1(I � �A)

�H�HH + �2w I :

Hence, P is a diagonal matrix and

P (k; k) =
H(k)H�(k)

j1�A(k)j
2 �

2
v + �2w ; k = 0; 1; : : : ; N � 1;

where `�' represents complex conjugate. Let s
4
= �2

where � is the blur parameter. Since the blur is mod-
eled by a Gaussian function, we have

P (k; k) =
exp

�
�
�
2�k
N

�2
s
�

j1�A(k)j
2 �2v + �2w : (7)

The unknown parameters to be estimated are given by
� = fa(m); s; �2w; �

2
vg. From equation (6), the maxi-

mum likelihood estimate of � may be equivalently ex-
pressed as

min
�

F1(�)

where F1(�) = log (detP ) +GH(P )�1G :

Because the matrix P is diagonal, the likelihood func-
tion is given by

F1(�) =

N�1X
k=0

log (P (k; k)) +
jG(k)j

2

P (k; k)
: (8)

The unknown parameter vector � is found by mini-
mizing F1(�) using a gradient descent technique. The
estimate of s can then be used to calculate the depth
from equation (1). It may be noted here that the
above relationships are derived for 1-D signals for no-
tational simplicity only. Extension to the 2-D case is
straightforward.

3.1 Error Analysis for a Single Defocused
Image

The Cram�er-Rao bound (CRLB) provides a fun-
damental lower limit on the variance of the error at-
tainable with an unbiased estimator for an unknown
parameter. It expresses the minimum error variance
of any estimator x̂(z) of x in terms of the conditional
density p(zjx) of the data [18]. Since the latter is usu-
ally not diÆcult to obtain in practical applications,
the bound gives a convenient standard against which
to judge the performance of any other estimator that
one may wish to use.

We now derive the Cram�er-Rao bound of the vari-
ance of error in s when a single defocused image is
given. The CRLB of Var(~s) is given by

E
�
~s2
�
�

1

�E
h
@2 log p(G)

@s2

i ;



where ~s = s � ŝ and ŝ is an estimate of s. We have
from equation (6)

log p(G) = �
N

2
log 2��

1

2
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�
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jG(k)j2
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�

Since E [G(k)G�(k)] = P (k; k), it can be shown that
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Therefore,
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k=0

"
1

(P (k; k))2

�
@P (k; k)

@s

�2
#
: (9)

The partial derivative of P (k; k) with respect to s can
be derived from equation (7).

4 Depth from Two Defocused Images
Yet another methodology for estimating the depth

is to observe what happens to the image when some as-
pects of the lens system (such as aperture, focal length
or lens-to-image plane distance) are changed. The dif-
ference in blurring between two defocused images cap-
tured with di�erent lens settings is a source of depth
information. For two di�erent lens settings, we have
from equation (1)

�m = �rmvm

�
1

Flm
�

1

vm
�

1

D

�
; m = 1; 2: (10)

Here �m corresponds to the blur parameter in the mth

observation. By eliminating D from the above equa-
tions, one can obtain a relationship between �1 and
�2 in terms of the lens settings [7].

Given two di�erently blurred and noisy images of
the scene, we have in the frequency domain

Gi = �Hi
F +W i ; i = 1; 2 :

In many of the techniques for DFD, the contribution
of the scene to the two images is factored out. How-
ever, this assumes a noise-free situation, which is sel-
dom true in practice. To account for the presence of
observation/sensor noise, an ML-based method was

proposed in [14] for estimating depth. In this section,
we give a brief description of this method to enable
performance comparison with the ML-based method
for the single-image case.

Let the matrix P i;j = E
h
Gi Gj

H
i
. Let �2 = ��1

where � depends on the lens settings and can be deter-

mined. We de�ne s
4
= �21 , where �1 corresponds to the

blur in the �rst defocused image. Using well-known
matrix properties, the ML problem of estimating �,
given two defocused images of the scene, can be posed
as [14]

min
�

F2(�)

where F2(�) =

N�1X
k=0

�
logP 1;1(k; k)� logC2(k; k) +

��G1(k)
��2A2(k; k) + 2RefG1�(k)B2(k; k)G

2(k)g+��G2(k)
��2 C2(k; k)

i
: (11)

Note that the unknown parameter vector � remains
the same as in the case of the single image because
the relation between the blur parameters is known.

In the above expression, the quantities A2(k; k),
B2(k; k), and C2(k; k) are given by

A2(k; k) =
1

P 1;1(k; k)
+
jP 1;2(k; k)j2C2(k; k)

(P 1;1(k; k))2
;

B2(k; k) = �
P 1;2(k; k)C2(k; k)

P 1;1(k; k)
;

C2(k; k) =
P 1;1(k; k)

P 1;1(k; k)P 2;2(k; k)� jP 1;2(k; k)j2
:(12)

Since the PSF of the camera system is modeled by
a Gaussian function, we have

P 1;1(k; k) =
exp

�
�
�
2�k
N

�2
s
�

j1�A(k)j
2 �2v + �2w ;

P 1;2(k; k) = P 2;1(k; k) =
exp

�
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�
2�k
N

�2 �1+�2

2

�
s
�

j1�A(k)j2
�2v ;

P 2;2(k; k) =
exp

�
�
�
2�k
N

�2
�2s

�
j1�A(k)j

2 �2v + �2w (13)

The unknown parameters can be estimated by mini-
mizing F2(�) using a gradient descent algorithm. The
estimated value of s and the lens settings can then be
used to infer the depth from equation (10).



4.1 Error Analysis for Two Images

In this section, we discuss briey the Cram�er-Rao
lower bound on the variance of the error in s when
two di�erently blurred images of the scene are given.
Details of the derivation may be found in [19]. The
CRLB of Var(~s) is given by

E
�
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�
�

1

�E
h
@2 log p(G2)

@s2

i ;

where log p(G2) = �N log 2� �
1

2
F2(�) ;

and F2(�) is given by equation (11).
After some mathematical exercise [19], one can

show that
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(14)

5 Comparison of the Cram�er-Rao

Lower Bounds
We now address the following important issue: how

does the CRLB of the variance of the error in the
estimate of the blur parameter s of a single defocused
image compare with that of the corresponding CRLB
when two defocused images are used?

Theorem 1 If CRLB1 and CRLB2 denote the
Cram�er-Rao bound on the variance of the error in
the estimate of the blur given a single defocused im-
age and two defocused images of a scene, respectively,
then CRLB2 � CRLB1.

Proof: Using the expression for C2(k; k) from equation
(12), and combining the terms containing the second-
order partial derivative of C2(k; k) in equation (14),
the CRLB for the two-image case can be rewritten as
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From the relations in equation (12), the second-order
partial derivatives of A2(k; k), B2(k; k), and C2(k; k)
can be derived. After some mathematical exercise, it
can be shown that
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Substituting the above expression

for P 1;1(k; k)
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equation (15) and cancelling common terms, we get
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Hence, the variance of the error in the estimate of
the blur parameter, given two defocused images of a
scene, is lower bounded by
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where
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As derived earlier, for the single-image case, we have
from equation (9)

E
�
~s2
�
�

2PN�1
k=0

�
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(P (k;k))2

�
@P (k;k)

@s

�2� ; (18)

where P = P 1;1.
In the expression for A00, P 1;1(k; k) is positive-

valued (see 13). Also, C2(k; k) (which is given by

(12)) is positive-valued because P2 =

�
P 1;1 P 1;2

P 2;1 P 2;2

�
is a covariance matrix. Since all the other terms in
A00 are squared quantities, it is easily veri�ed that A00

is positive-valued. By comparing equations (16) and
(18), and using the fact that A00 is positive, it is clear
that

CRLB2 � CRLB1

as asserted in the theorem.
From Theorem 1, it is now clear that one can, in-

deed, get improved estimates of depth from multiple
defocused images of a scene. Because P 1;2(k; k) and
P 2;2(k; k) (as given by equation (13)) are functions of
�, so is A00. Hence, the di�erence in the error bounds
CRLB1 and CRLB2 is a function of the degree of the
relative blur between the two defocused images.

Corrolary 1 If CRLBM denotes the Cram�er-Rao
bound of the variance of the error in the estimate of the
blur given M number of defocused images of a scene,
then

CRLBM � CRLBM�1 for M � 2:

6 Experimental Results
In this section, we consider some examples and

compare the Cram�er-Rao lower bounds in the single-
image and the two-image cases. Synthetic as well as
real examples are used for experimentation. The im-
portance of the result of Theorem 1 and its practical
signi�cance are further exempli�ed by actually com-
puting and comparing the ML estimates of the blur
for the single-image and the two-image cases.

We �rst consider the example of a synthetic image.
A set of known AR parameters were chosen for the
focused image process. The image size was taken to
be 64 � 64 pixels and a second-order AR model was
assumed. The value of the blurring parameter �1 was
chosen as 2.5. The SNR for the noisy defocused im-
age was 20 dB. Using the above values for the various
parameters, the CRLB of Var(~s) was calculated for
the case of the single defocused image using equation
(18). The value was found to be 0:228; it is shown

dotted in Fig. 1. The CRLB corresponding to the
case of two defocused images was next calculated for
a range of values of � using equation (16); these values
are plotted as a solid curve in Fig. 1. A comparison
of the CRLBs corresponding to the single-image case
and the two-image case clearly reveals that the CRLB
for the two-image case is lower for all values of �. This
observation is perfectly in accordance with the claim
made in Theorem 1.
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Figure 1: An illustration of the CRLB of Var(~s)
for the single and the two-image case. The
dotted and the continuous lines correspond to
CRLB1 and CRLB2, respectively.

Furthermore, it is interesting to note in Fig. 1 that
when the two defocused images are not very di�eren-
t (i.e., � � 1) or when the second defocused image
is severely blurred (i.e., � >> 1), the value of the
CRLB for the two-image case is very close to that for
the single-image case. It must be mentioned here that
Ghiglia [20] had made a similar observation in the con-
text of image restoration from multiple images. His
experimental studies indicated that there was little to
gain from multiple images that looked very similar to
one another. The more di�erent the images were, the
better the restoration result was. It is very interesting
to note that our quantitative analysis of the compari-
son of the CRLBs suggests a similar behavior for the
depth from defocus problem. For the two-image case,
it may also be noted that the CRLB is quite small
for � close to zero. This is to be expected as it corre-
sponds to the case when one of the two observations is
focused. It is well-known that a high spectral content
in the scene results in a good estimate of the depth.

Our next experiment illustrates the practical sig-
ni�cance of the CRLB analysis. For this purpose, a
focused image of the scene was synthetically generated
with the same AR parameters that were used in the
�rst experiment. The focused image thus obtained is
shown in Fig. 2(a). A noisy defocused image was then
generated by blurring this image with �1 = 2:5. The
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Figure 2: (a) A synthetically generated focused
AR image. (b,c,d) Defocused and noisy ver-
sions of the original image for di�erent values
of �. (e) Magnitude of the error in the ML
estimate of �1. The dotted and the continu-
ous lines correspond to the single and the two-
image case, respectively.

SNR was again chosen to be 20 dB, as in the previous
experiment. The corresponding defocused observation
is shown in Fig. 2(b). The ML estimate of �1 was ob-
tained from the noisy defocused image by minimizing
the likelihood function (equation (8)) corresponding
to the single-image case. The magnitude of the er-
ror in the estimate of �1 was found to be 0:62 and is
shown dotted in Fig. 2(e). The estimate is not very
satisfactory because the blurring is severe. The blur
parameter �1 was next estimated using a second de-
focused image of the scene. The second observation
was generated for di�erent values of �; some of these
blurred and noisy images are shown in Fig. 2(c,d).
The ML estimate of �1 was next computed by min-
imizing the likelihood function corresponding to the
two-image case (equation(11)). The magnitude of the

error in the estimate of the blur parameter is plotted
in Fig. 2(e) for di�erent values of �. It is very interest-
ing to note that the plot in Fig. 2(e) corresponds well
to what was predicted by the theoretical CRLB curve
(Fig. 2) in the �rst experiment. Moreover, the CRLB
plot reveals the very interesting fact that when cap-
turing images in an experimental setup, one may want
to use that value of � which yields a suÆciently large
di�erence between the two CRLBs. Defocused images
thus captured can result in a very good estimate of
depth because the corresponding value of CRLB2 is
quite low for such an �. Thus, apart from the theo-
retical aspect, the practical importance of the CRLB
analysis for the DFD problem is amply evident from
this example.
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Figure 3: (a,b,c,d) Defocused images corre-
sponding to a real experimental setup for d-
i�erent focusing ranges of the camera. (e) Plot
of the percentage error in the ML estimate of
the depth for the nearest end of the textured
planar object. The dotted and the continu-
ous lines correspond to the single and the two-
image case, respectively.

Experiments were also conducted on real images.
A Pulnix CCD camera was used for this purpose. The
lens aperture was kept constant at an f -number of 4
and the focal length was 2:5 cm. A planar textured



object was placed in front of the camera. The resulting
variation in depth was linear, as shown in Fig. 3. Note
that for a good estimate of the depth, there must be
suÆcient texture (spectral content) in the scene. The
nearest point of the object was about 80 cm from the
camera while the farthest point was at 100 cm. The
camera was coarsely calibrated with a di�erent object
at a known depth. A defocused image of the scene
was captured with respect to a focusing range of 140
cm (Fig. 3(a)). Since, the variation in the depth of
the scene was gradual, the blur was assumed to be
locally space-invariant. The depth corresponding to
the nearest end of the object was estimated using a
local window. The percentage error in the ML esti-
mate of the depth was found to be 13:4 and this is
shown dotted in Fig. 3(e). A second defocused image
was next captured for di�erent values of the focus-
ing range, which varied from 80 cm to 3 m. Some of
the defocused images of the object are shown in Fig.
3(b,c,d). The ML estimate of the depth for the near-
est point of the object was again computed, but now
with two defocused images by again minimizing the
corresponding likelihood function. The magnitude of
the error in the estimate of the depth is plotted in Fig.
3(e) for di�erent values of �. Again, it is interesting
to note that the nature of the plot in Fig. 3(e) is as
expected from the result of Theorem 1. A second ob-
servation gives a better estimate of depth as long as
the relative blurring between the �rst and the second
observation is reasonably large.

7 Conclusions

We have discussed maximum-likelihood estimation
of depth from a single image and two defocused images
of a scene. The error bounds on the estimates of depth
corresponding to these two cases were compared and
it was proved, under fairly general conditions, that
the Cram�er-Rao bound on the variance of the error
in the estimate of blur becomes smaller as additional
observations are used. The actual di�erence in the
error bounds was computed and it turned out to be a
function of the relative blur of the defocused images.
The experimental results were found to conform quite
well with theoretical expectations.
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