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Abstract
The problem of structure from motion (SFM) is

to extract the three-dimensional model of a moving
scene from a sequence of images. Traditional SFM al-
gorithms use just two images but produce inaccurate
reconstructions of the 3D scene because of incorrect
estimation of the motion. Recently, algorithms have
been proposed that use multiple (> 2) frames. This
paper proposes a computationally e�cient framework
for estimating structure from an image sequence tak-
ing into consideration the error in the 2-frame esti-
mates, but without recourse to strong statistical as-
sumptions on the observations. We propose a simple
way to model the observations, which are the depth
estimates obtained from traditional 2-frame SFM al-
gorithms, and present a batch and a recursive solu-
tion to the multiframe estimation process. Our algo-
rithms use bootstrapping and stochastic approxima-
tion methods. We also propose a method to estimate
the number of frames to be used in the recursive so-
lution using the Fisher information criterion. The al-
gorithms were primarily applied to model human face
and a number of experimental results are reported.

Key Words: structure from motion (SFM), multi-
frame SFM, modeling depth observations, bootstrap-
ping, Robbins-Monro stochastic approximation, 3D
face modeling.

1 Introduction

The problem of structure from motion (SFM) is
to extract the three-dimensional model of a moving
scene from a sequence of images. Traditional SFM al-
gorithms [1], [7], [16] recover a 3D scene structure from
two images. However, these algorithms often produce
inaccurate reconstructions of the scene, mainly due
to incorrect estimation of camera motion. Dutta and
Snyder [5] show that even small errors in estimating
the camera motion parameters can cause large errors
in the 3D reconstruction.

Recently techniques have been developed that use
multiple images for scene reconstruction, achieving
greater robustness and accuracy by using additional
information. The techniques for multi-frame struc-
ture from motion (MFSFM) can be classi�ed into two
groups: batch methods in which all the images are
processed simultaneously, and incremental methods,
in which the images are processed sequentially and
the reconstruction estimates are improved iteratively
with every image processed. Thomas and Oliensis
[24] describe an incremental algorithm that estimates
the structure and corrects for the error in estimating
the camera motion. Szeliski [21] developed an algo-
rithm using energy function minimization where the
observed and true depth values were related by a lin-
ear, statistical model.

This paper describes two new algorithms for
MFSFM obtained by fusing the two frame estimates
and reports the experimental results on a large number
of image sequences, mostly used in 3D modeling of hu-
man faces. However, the method is general enough to
be used on other types of image sequences as well as in
other applications with very little modi�cation. The



correspondence problem is not addressed in this pa-
per. We assume that the 2-frame estimates are avail-
able from a suitable 2-frame SFM algorithm 1 and
present a batch (using bootstrapping [6]) and recur-
sive (using stochastic approximation [18]) framework
for fusing these estimates into a single one. The ob-
served depth values obtained from two frame SFM al-
gorithms are modeled as the true value embedded in
noise. We show that it is possible to reconstruct the
depth to arbitrary accuracy without taking recourse
to the strong assumptions of Gaussianity and indepen-
dence of the observations which cannot be validated
for a large number of cases. We also show that it is
possible to estimate the number of frames necessary
for fusion by calculating the Fisher information crite-
rion at every step.

2 Review of MFSFM
As has been mentioned earlier, there are two broad

classes of MFSFM algorithms, batch and recursive
methods. Typical batch methods formulate the prob-
lem of estimating the structure as one of minimizing
an objective function de�ned as a sum of squares of
the di�erences between the actual observed images
and the projections of their estimated 3D locations,
over all tracked positions and images [4], [8], [9], [21],
[22], [23]. However, the objective function is nonlin-
ear and avoiding local minima becomes a very di�-
cult task. Incremental methods update the 3D model
as new images are acquired. Though computation-
ally feasible and practically implementable, incremen-
tal algorithms require a reliable estimate of the error
in the model and can perform very poorly if the er-
ror is not modeled accurately. Thomas and Oliensis
[24] describe a method of estimating the error, which
is modeled as a combination of the error in the esti-
mated camera motion and the error in tracking the
image coordinates, assuming the image noise to be in-
dependent and zero mean.

In our model of the two-frame depth estimates,
which we will henceforth refer to as the observations,
we follow Szeliski's idea [21] that the true values are
embedded in additive noise but show that it is pos-
sible to solve the problem without the assumptions
of Gaussianity or independence of the observations.
Also, our objective function takes into account the fact
that some of the observations may be highly erroneous
and need to be ignored. We also show that it is possi-
ble to estimate the number of images that need to be
considered for a reliable result based on the estima-

1The particular two-frame algorithmchosen here was the one
described in [16] because of its speed of computation, but our
fusion algorithm is not bound by this particular method.
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Figure 1: (a),(b) and (c) represent three two-
frame depth maps chosen randomly from the
Yosemite sequence; (d) represents the fused
depth map from 15 frames. The fused estimate
is much closer to the true value.

tion of the Fisher information criterion. Finally, our
estimates are able to reconstruct the 3D model to an
arbitrary level of accuracy given a su�cient number
of images.

Since our algorithm fuses two-frame reconstruc-
tions, its robustness is limited by the robustness of
these reconstructions [12]. Except for cases where
there is very small camera translation or few tracked
points, [12] argues that fusing two-frame estimates is
a robust and accurate method. To motivate the point
that data fusion produces considerably better results,
we consider an example on the synthetic Yosemite se-
quence. Fig. 1 shows the depth maps for three two-
frame estimates and for the fused estimate from 15
frames. The fused estimates are closer to the true
value.

3 Overview of the Algorithm
In this section, we outline the observation model

and the cost function sought to be minimized in order
to obtain the estimate.

3.1 The Observation Model

Let di represent the depth value obtained by the
two-frame SFM algorithm from the i and (i + 1)-th
frame. Let the n-th position in that vector be denoted
by di(n), representing the depth at the n-th feature
point (for a feature point based algorithm) or the n-th
pixel for a 
ow based algorithm, with a lexicographic
ordering of the image being considered for ease of no-
tation (our implementation corresponds to the latter



case). We will henceforth denote the sequence of vec-
tor observations of the two-frame depth estimates by
fdi, i = 1; :::;Kg, (K + 1) being the total number of
frames. For ease of description, we will use the term
depth at a pixel and depth at a (feature) point inter-
changably.

Our observation model assumes that the two-frame
depth measurements are related to the actual depth
value u by the following linear transformation

di = Hu+ �i; i = 1; :::;K (1)

where �i is a noise process associated with the ob-
servation vector. At this moment we do not assume
any distribution for the noise nor independence of the
noise vector �i across i. The model is very similar to
the one assumed in previous multi-frame SFM fusion
work [9], [21]. However, in both these cases, Gaussian-
ity and statistical independence across time were as-
sumed. H is assumed to be a constant sparse matrix,
implying that the depth at a point relies on only a few
neighbors. A particular simplifying assumption that
can be used is a diagonal structure for H [9]. This ba-
sically implies that the depth at every pixel is treated
independently. For the feature point based method,
we cannot do much better as depth at only a sparse
set of points is available; for the 
ow based method,
the di�erence between choosing a very sparse but non-
diagonal H and a diagonal structure is not much in
the �nal result, because we can model dependencies
at only neighboring pixels and motion estimates are
usually poor over a region [17]. A more complicated
structure on H is not practical because of the increase
in computational burden and the inability to decide
on a suitable structure a priori. Because of this form
of H, we will henceforth consider the depth at each
pixel separately. Thus, we can write, for every n,

di = u+ �i; i = 1; :::;K (2)

(Note that we have dropped the bold script indicat-
ing vector notation.) [21] assumes that u and �i are
Gaussian random variables, with suitable mean and
covariances. Under this assumption, given u = u, the
observation vector d = [d1; :::; dK] is also Gaussian.
For Gaussian random variables, all odd central mo-
ments are identically zero (actually true for any sym-
metric distribution) and all cumulants of order greater
than two are zero [13]. Fig. 2 shows the plot of the
estimates of the central moments and cumulants of
the observation vector. Analysis of the plots reveal
that the properties of Gaussianity of the observations
are not satis�ed. These plots are for a particular se-
quence but similar results are obtained for other se-
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Figure 2: The top six �gures plot the estimates
of the �rst six moments of the observation vec-
tor and the bottom four �gures plot the �rst
four cumulants. The horizontal axis represents
the pixel number. The �rst column represents
the odd central moments/cumulants and the
second column the even ones. It is appar-
ent that the assumption of Gaussianity of the
observation vector is questionable for a large
number of pixels.

quences also. Hence, we feel that the assumption of
Gaussianity is di�cult to justify in many cases.

3.2 The Cost Function

The form of our observation model corresponds to
the classical linear regression model, whereby we try
to minimize the mean square error

MSE(u) =
KX
i=1

(di � u)2 (3)

which yields the solution that the optimal u, denoted
by u� =

PK
i=1(di)=K [15]. However, sample means

are sensitive to in
uential values. An analysis of the
depth values across frames for any pixel shows that
there are some values which can be characterized as
outliers and should not be considered during fusing
the estimates. Fig. 3 shows a plot of the depth values
across 50 frames for four randomly chosen points. It
can be seen that there are isolated outliers in all the
four cases.

It is a well-known fact that the median is less sensi-
tive to outlying data points than the mean. More for-
mally, given n data points x = (x1; :::; xn), the break-
down of an estimator s(x) is said to be m=n where m
is the smallest number such that if we are allowed to
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Figure 3: A plot of the depth values across 50
frames for four randomly chosen points. It can
be seen that there are isolated outliers in all
the four cases.

change m data values in any way, we can force the ab-
solute value of s for the \perturbed" sample towards
plus or minus in�nity. High breakdown is good, with
50% being the largest value that makes sense (a larger
value does not make sense as it is not clear which are
the good points and which are the bad). The mean
of a sample has breakdown 1=n as by changing just
one data value we can force the sample mean to have
any value whatsoever. The sample median has break-
down 50%, re
ecting the fact that it is less sensitive
to individual values. The least squares regression es-
timator inherits the sensitivity of the mean and has
breakdown 1=n, whereas the least median of squares
estimator (LMS) (de�ned as the median of the squares
of the error) has breakdown roughly 50% [6]. For our
problem, we use the LMS criterion.

u� = min
u

�
median(di � u)2

�
(4)

The disadvantage of this method is that we no longer
have a neat formula as we had for the mean-square
error criterion. Sections 4 and 5 describe the method
of solving for this estimate.

4 A Batch Algorithm Using Boot-

strapping
In this section we explain our method of solving the

estimation problem outlined in the previous section
using the bootstrapping technique.

Bootstrapping techniques, introduced by Efron [6],
are non-parametric estimation methods for the sta-
tistical behavior of an estimate �̂ = s(x). The data

points x = (x1; :::; xn) are assumed i.i.d. from an un-
known distribution F . The fundamental idea of boot-
strap is to replace F by F̂ , the empirical distribution
of the data. The basic steps in the algorithm are:

� Construct the empirical distribution F̂ of F from
the given samples.

� Draw independently B boot-
strap samples x�1; :::;x�B from F̂ by means of
random sampling with replacement.

� For each bootstrapped data set, compute the cor-
responding bootstrap estimate �̂�b = s(x�b).

The set of bootstrap data yields a bootstrap distribu-
tion of �̂� from which the statistical behavior of the
estimate �̂ can be inferred. The bootstrap estimated
standard error of �̂ can be computed as

êB(�̂) =

"PB
b=1(�̂

�b � �
�

)2

B � 1

#1=2
(5)

where �
�

= 1

B

PB
b=1 �̂

�b. For further details, refer to
[6].

Bootstrapping techniques have become popular in a
number of areas, including computer vision [10]. The
motivation for using this technique in our application
of fusing the depth estimates is that in the case where
real data is not normally distributed, bootstrap can
improve on the classical normal approximation. Also,
the bootstrap estimate obtained by the above algo-
rithm will tend , as B ! 1, to the plug-in estimate
which is computed using the empirical distribution F̂
instead of the unknown distribution F [6].

The number of bootstrap samples dictates the accu-
racy of the computation. As has been pointed out in
[10] B = 200 and more than 20 measurements suf-
�ces to produce a good estimate. Efron [6] notes
that B = 50 is often good enough and seldom do
we need B > 200. For our problem, bootstrap data
sets, d�b = (d�b1 ; :::; d

�b
K), were created as described be-

fore. The bootstrap replication d̂�b were obtained as
the minimizer of the median squared residual for the
bootstrap data, i.e. minumedian(d�bi � u)2.

5 A Recursive Algorithm Using Sto-

chastic Approximation
In this section, we present another method of

obtaining the multi-frame depth estimates using
Robbins-Monro (RM) stochastic approximation (SA)
technique [11]. The algorithm is recursive (thus more
practicable), does not assume any distribution of the
observed data or their independence, and the obtained



estimate is asymptotically unbiased and normal. Also,
we describe a method of determining the number of
frames necessary for obtaining a reasonable 3D recon-
struction.

5.1 The Robbins-Monro Algorithm

The Robbins-Monro stochastic approximation
(RMSA) algorithm is a stochastic search technique for
�nding the root �� to g(�) = 0 based on noisy mea-
surements of g(�). Speci�cally, let the measurements
be Yk(�) = g(�) + ek(�); k = 1; :::;K, where ek(�) is
assumed to be the noise term and K is the number of
observations. The RMSA algorithm obtains the esti-
mate by the following recursion,

�̂k+1 = �̂k � akYk(�̂k): (6)

where ak is an appropriately chosen sequence. Details
of the algorithm can be found in [11], [18]. We will
outline the method for obtaining the solution for our
speci�c problem. Suppose that FX(x) is the unknown
distribution of a sequence of observation X0; X1; :::
and we are interested in �nding the root of the equa-
tion g(�) = FX(�) � 0:5 = 0, i.e. the median of the
distribution. For this problem, the RM recursion is as
follows [18]:

�̂k+1 = �̂k � ak(sk(�̂k) � 0:5) (7)

where

sk(�̂k) =

�
1 if Xk � �̂k
0 otherwise

(8)

The choice of the gain sequence ak is determined by
the convergence properties of the algorithm. We will
not discuss the details here which can be found in [2],
[18]. The commonly used gain sequence which has
been found to be e�ective is ak = 0:1=(k+ 1):501 and
this was used in our experiments also.

In our implementation, a search set U of u was pre-
determined and the median was computed for each
element of U . The recursion was stopped after a suit-
able number of frames (a method for determining the
number of frames will be described in the next sec-
tion) and the minimum over U , of the median of the
square of the errors was computed, thus yielding u�.

Stochastic approximation has a rich convergence
theory [18]. It has been shown that the estimate �̂k ob-
tained by the RMSA procedure described above con-
verges to the actual root (in this case the median) al-
most surely, under suitable conditions. This property
of the estimate allow us to claim that given a su�cient
number of frames, we can reconstruct the 3D model
of the scene up to an arbitrary accuracy.

5.2 Estimating the Fisher Information

In any estimation problem it is necessary to deter-
mine the information provided by the measurements.
One particular way of doing this is to look at the in-
crease in the Fisher information [3]. Given the obser-
vations denoted by Y, the Fisher information matrix
is

J(�) = E�[(5� ln(f�(Y)))(5� ln(f�(Y)))T ] (9)

where � is the parameter to be estimated given the
observations, E� represents expectation with respect
to � and 5� represents the gradient with respect to �.

Spall [19] describes a simple method for estimat-
ing the Fisher information using simultaneous per-
turbation for the gradient approximation and aver-
aging for the expectation operation. We adopt this
method with some modi�cations, as Spall uses the
de�nition of the Fisher information involving the Hes-
sians rather than the gradients. For the observation
model Y = � +X;X � fX (x), where X is a random
variable with a density fX , (smaller case letters will
denote realizations of the random variables denoted
by the corresponding uppercase letters.), we can write

d

d�
log fY (y) =

d

d�
log fX (y � �)

=
d

dt
log fX (t)

dt

d�
; t = y � �

= �
1

fX (t)

dfX(t)

dt
:

To compute the gradient, we use the simultaneous per-
turbation form of gradient approximation [18]. Given
an observation y(�), the estimate of the gradient with
respect to �, ĝ(�), is:

ĝ(�) =
y(� +�)� y(� ��)

2

2
64

��1

1

...
��1
p

3
75 (10)

where p is the dimension of �, � = (�1; :::;�p) and
the components of � are independent Bernoulli ran-
dom variables (for details of this choice , refer to [18]).
The steps in computing the Fisher information are:
Step 1 Given �̂k, generate a set of k pseudo measure-
ments according to the empirical distribution of the
observations. Denote these by xpseudo(k). Calculate
the gradient according to (10). It may be necessary to
average several gradient estimates with independent
values of �. Compute the term within the expecta-
tion operator in the de�nition of Fisher information
(9).
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Figure 4: The �gure shows the variation of the
Fisher information (FI) over increasing frames.
The �rst few frames are neglected as we do
not have enough information to compute the
FI yet. The plots are for a random choice of
four points, but the trends are very similar for
the other points as well as for other image se-
quences.

Step 2 Repeat Step 1 a large number of times, say N .
Average the estimates obtained. This is the estimate
of the Fisher information, F̂k(�̂k).

To understand how we use the Fisher information
to compute the number of frames over which to run
the recursion, let us consider an example. Fig. 4 plots
the variation of the Fisher information (FI) with in-
creasing frames. The �rst few frames are neglected as
we do not have enough information to compute the FI
yet. The plots are for a random choice of four points,
but the trends are very similar for the other points as
well as for other image sequences. From these plots,
we see that if we can set appropriate thresholds, we
can determine when to stop the computation of the
estimates (implying that the observations are not giv-
ing too much additional information). In our imple-
mentation, we followed a naive procedure of checking
the di�erences between subsequent frames and if the
di�erence is small for a few consecutive frames, we
stop the estimation technique. However, there may
be much better ways to exploit this information. As
the computation is recursive, it �ts in very well with
the recursive RMSA framework.
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Figure 5: (a): The estimates produced by the
Kalman �lter in succesive iterations; (b): The
distribution of the bootstrap estimates; (c):
The estimates produced by the RMSA algo-
rithm in successive iterations.

6 Results and Analysis

In this section, we analyze the results of our algo-
rithm. Most of our results are on human face image
sequences. We apply the algorithms to create 3D face
models. We also present a simulation result to high-
light the advantage of using our algorithms compared
to Kalman �ltering when the noise is non-Gaussian.

6.1 Simulation Results

The purpose of our simulation is to prove that in
the presence of non-Gaussian noise, our algorithms us-
ing bootstrapping and RMSA perform better than the
traditional Kalman �lter. This is to be expected as the
Kalman �lter is the optimal estimator in the presence
of Gaussian noise only.

We consider a pixel whose true depth value is 5.
The observations are corrupted by noise having a uni-
form distribution between [0; 1]. We consider 50 such
observations. Fig. 5(a) plots the estimates produced
by the Kalman �lter at every step in the recursion.
The estimates saturate at a value of 5:8. The dis-
tribution of the bootstrap estimates, plotted in 5(b),
maximizes near 5:3. We used 50 bootstrap data sets.
For the Robbins-Monro stochastic approximation, we
plot the estimates at every stage of the recursion and
the value obtained after 50 iterations is 5:2. Thus we
see that for non-Gaussian noise our algorithms per-
form better than the Kalman �lter. Similar results
were obtained for other noise distributions also.
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Figure 6: (a): The �rst image in the sequence
from which depth values are computed; (b):
The level curves of the depth map; (c): The
depth map using the bootstrapping method;
(d): The depth map using the Robbins-Monro
stochastic approximation method

6.2 Results on Real Data

The �rst experiment with real data was conducted
on an image sequence of Prof. Yiannis Aloimonos of
the Computer Science Dept. A total of 30 frames
was considered for this problem. The correspondence
problem was not addressed in this work. The �rst plot
in the Fig. 6 is of the �rst frame in the sequence. For
the batch method, we used a total of 25 frames to ob-
tain the multi-frame estimate. The depth values were
constructed using both the methods described above.
For the batch algorithm, a total of 50 bootstrap trials
was considered. Fig. 6 shows the results obtained by
this method. For the Robbins-Monro algorithm, using
the Fisher information criterion described above, the
number of frames varied between 15-25. The depth
maps in both the cases seem to be satisfactory. Fig.
6(b) plots the level curves of the depth and the depth
discontinuities can be judged from this plot. The re-
sult on the face shows that the discontinuities corre-
spond to the expected ones for 3D face model.

Our next set of experiments were also aimed at
3D modeling of faces from an image sequence where
the human subjects were asked to move their heads
slightly. Fig. 7 plots the results obtained with the
RMSA method. We emphasize more on the recursive
strategy because of its practicability to process data
as it is generated and also because of the theoretical
reason that the assumptions on the data set are very
mild and thus model the true situation better. The

Figure 7: Results of 3D modeling of human
faces. The �rst and second columns show the
�rst and last frames of the image sequence
used to compute the depth map. The third
and fourth columns depict the 3D models from
camera positions not part of the original se-
quence.

�rst and second columns show the �rst and last frames
of the image sequence used to compute the depth map.
The third and fourth columns show the 3D model for
camera positions not part of the original sequence. 2

7 Conclusion and Future Work

In this paper we have presented a batch and a re-
cursive algorithm for fusing the two-frame depth es-
timates over multiple frames without taking recourse
to the assumptions of Gaussianity and statistical in-
dependence. This we consider to be the main contri-
bution of the paper following previous work in [21],
[9]. We have also shown how the number of frames to
be used can be computed from the Fisher information
criterion. The work was applied to the modeling of
human faces and the results have been presented.
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