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Abstract

The process of reconstruction of a line in 3-D space

using stereoscopic projections obtains the set of pa-

rameters representing the line. This method is widely

used in many applications of 3-D object recognition

and machine inspection. However in certain applica-

tions which require a large degree of accuracy, a perfor-

mance analysis of the process of reconstruction in the

presence of noise in the image planes is necessary. In

this paper a set of inverse perspective equations for re-

construction of a line in 3-D space are derived based on

coplanarity equations. Simulation studies were con-

ducted to observe the e�ect of noise on errors in the

process of reconstruction. Performance analysis illus-

trating the e�ect of noise and parameters of imag-

ing setup on errors in reconstruction are presented.

Smaller resolution of the image and certain geometric

conditions of the line and imaging setup produce poor

performance in reconstruction. Results of this study

are useful for the design of an optimal stereo-based

imaging system for best reconstruction with minimum

error.
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1 Introduction

Stereo vision is an e�ective method to estimate
depth and structural parameters of 3-D objects from a
pair of 2-D images [15] and [18]. Points, lines, conics,
general curves and surfaces are the set of primitives
which are used to model and represent 3-D objects.
Hence reconstruction of these features has received
great attention by many researchers in the �eld of vi-
sion [1], [3], [4], [8], [10], [12], [13], [14], [16], [17], [18],
[19] and [20]. In the case of a line, the most widely
used method is to reconstruct a pair of planes in 3-D

from the pair of projections, which pass through the
respective centre of projections of the cameras [2]. In-
tersection of these two planes gives the parameters of
the line. Xie and Thonnat in [19] reconstruct a line
by obtaining the two end points of the line from their
corresponding pair of projections. Both these concepts
are based on triangulation.

Image digitization and presence of noise in the
imaging set up a�ect the accuracy of the process of re-
construction. This is crucial when accurate estimates
are necessary for a particular application. Errors in
reconstruction depend on the parameters of the line
as well as on the geometry of the imaging setup. To
provide an optimal design of the imaging setup (sen-
sor and geometry) for best reconstruction as well as to
evaluate the robustness of the system, it is necessary
to analyze the performance of the system in the pres-
ence of noise. This is possible with the help of error
analysis using simulation studies only, as it is impos-
sible to generate a large set of real world data for all
possible scenaries of the imaging setup and properties
(parameters) of the line to be reconstructed.

Blostein and Haung [3] present an error analysis
method in the case of stereo for obtaining 3D point
positions. They derive closed form expressions for
the probability distribution of error in position along
each coordinate direction namely, horizontal, vertical
and range. Based on this methodology the probability
that range error dominates over errors in the point's
horizontal or vertical position has been determined.
Rodriguez and Aggarwal [14] have derived a probabil-
ity density function of the range estimation error and
the expected value of the range error magnitude in
terms of the various design parameters of the stereo
imaging setup. They have given a stochastic analysis
of the quantization error in the stereo imaging setup.
Simulation experiments were conducted for a stereo



imaging system to validate the model. Hartley [8] has
given a fast algorithm for projective reconstruction of
a scene consisting of a set of lines from three or more
images with uncalibrated cameras. The algorithm is
rapid and quite reliable, provided the degree of error
in the image-to-image correspondence is not excessive.
He has also demonstrated that for images with higher
resolution where the relative errors may be expected
to be smaller, the algorithm shows enhanced perfor-
mance.

The work presented in this paper deals with the per-
formance analysis of the process of reconstruction of a
line in 3-D space from two arbitrary perspective views.
Coplanarity equations are derived for the projection of
a line in 3-D space on the 2-D image plane. A set of
inverse perspective equations representing the analyt-
ical relationship between the parameters of a line in
3-D space and the parameters of the corresponding
pair of projections on the 2-D image planes have been
derived based on coplanarity equations. Parameters of
a line in a 2-D image plane are obtained using linear
least square regression of the pixel coordinates of the
line. This method of reconstruction is di�erent from
the typical methods of obtaining the 3-D line using
the intersection of two planes [2] and obtaining the
pair of end points of a line [19]. Typical applications
of this methodology are accurate reconstruction of the
trajectory of a ball in the �eld of sports (Cricket, Ten-
nis etc.), estimation of the ight path of missiles or
meteorides in space, non-contact method of measure-
ment of the length of thin rods, cables and objects
with linear edges or segments.

Performance analysis of the method of reconstruc-
tion is based on simulation studies. Noise with Gaus-
sian distribution is added to the pixel coordinates of
the projections of the line on the pair of image planes.
This simulates the e�ect of noise in the sensor and
signal acquisition system as well as errors in the pre-
processing tools used to detect line segments from gray
level images. Error between the original and the re-
constructed line in 3-D space is estimated and used
as a criteria to analyze the performance of the sys-
tem. These results provide an optimal range of val-
ues of the parameters to be used for the design of a
stereo-based imaging system for best reconstruction.
Certain conditions of the viewing geometry where the
reconstruction process has a poor performance are also
obtained from these studies.

In the following section, the basic set of equations
to formulate the problem are provided and the prob-
lem of reconstruction is introduced. In section 3, the
methodology for the process of reconstruction of a line

is discussed in detail. Section 4 gives a performance
analysis of the process of reconstruction in the pres-
ence of noise in the image planes. Section 5 concludes
with discussions and contributions.

2 Basic Model of Imaging Setup
The collinearity equations represent the mathe-

matical process of image formation, linking the co-
ordinates of a point on an object in 3-D space to the
corresponding co-ordinates of its projection in the 2-
D image plane. The collinearity equations are derived
using the criteria that all the three points, namely, the
center of perspective projection, the image point and
the object point lie on the same straight line. The
detailed imaging set-up using two cameras is shown in
Figure 1, where f1 and f2 are the focal lengths of the
�rst and the second cameras respectively. The relation
between the coordinates of the point W (xw; yw; zw)
and that of the image point P1(X1; Y1; f1) is given by
the perspective equation [9]:

X1 = f1
xw
zw

; Y1 = f1
yw
zw

(1)

The 3-D co-ordinates of point W (xw ; yw; zw) with re-
spect to second camera C2, is given by2
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where the rotation matrix in equation (2) is given

in [6], � is a scale factor between the two reference
frames and without loss of generality this is considered
to be 1, in this work. Using equation (2), the relation
between the object space pointW (xw; yw; zw) and the
image point P2(X2; Y2; f2) is given by the perspective
equations [9]:

X2 = f2 [(xw � xd) cos�1 + (yw � yd) cos�1

+ (zw � zd) cos 1][(xw � xd) cos�3 (3)

+ (yw � yd) cos�3 + (zw � zd) cos 3]
�1

Y2 = f2 [(xw � xd) cos�2 + (yw � yd) cos�2

+ (zw � zd) cos 2][(xw � xd) cos�3 (4)

+ (yw � yd) cos�3 + (zw � zd) cos 3]
�1

Equations (1), (3) and (4) are the collinearity equa-
tions for a pair of arbitrary perspective views [9]. The
process of reconstruction of a line in 3-D space in-
volves the formulation of a set of inverse perspective
equations using these collinearity equations. This will
give the direction cosines, namely l;m; n, of the line
in 3-D space as well as the coordinates (xw; yw; zw) of
a point W on the line. This method is discussed in
detail in section 3.



3 Process of reconstruction

Two separate 2-D digital images of a line in 3-D
space are obtained using a pair of cameras as illus-
trated in �gure 2. The process of matching a pair of
corresponding projected line segments in these two im-
ages is not dealt with in this paper, as we are primarily
concerned with the mathematical formulation of the
inverse perspective equations for reconstruction of a
line in 3-D space as well as its performance analysis.
The correspondence between the pair of projections of
a line is thus assumed to be established in this work.
In the following section, a new methodology of recon-
struction of a line in 3-D space, from two arbitrary
perspective images is given.

3.1 Estimation of line parameters

Let, l;m; n be the direction cosines of a line seg-
ment S in 3-D space passing through the point
W (xw; yw; zw). Figure 2 shows the projections of this
line on the pair of image planes I1 and I2. Let s1 and
s2 be the corresponding line segments on the pair of
image planes. � and � are the parameters which rep-
resent a line segment in 2-D space, in normal form,
as

x cos� + y sin� = � (5)

The parameters of the line (l;m; n; xw; yw; zw) in 3-D
space and the respective inclination parameters (�1

and �2) of the corresponding line segments s1 and s2
are related by the following coplanarity equations

1

tan�1

= �zwm� ywn

zwl � xwn
; (6)

1

tan�2

= �Nyzl +Nzxm+Nxyn

Dyzl +Dzxm+Dxyn
; (7)

where Nxy; Nyz; Nzx; Dxy; Dyz; Dzx are functions of
elements of rotational and translation matrix in equa-
tion (2). The process of reconstruction of a line pre-
sented in this paper is based on inverse perspective
equations which are derived from the collinearity equa-
tions (1) - (4) and coplanarity equations (6) and (7).
This process is described below.

The pixel co-ordinates of a line segment si, on im-
age plane i (i = 1; 2), are used to obtain the pa-
rameters (�i,�i) of the line using linear least square
regression. Linear least square regression is used to
minimize the e�ect of discretisation and noise on the
2-D digital image plane. Once �1 and �2 are ob-
tained from the corresponding pair of projections of a
line using least square regression, the next process is to
obtain the parameters of the line (xw ; yw; zw; l;m; n)
in 3-D space. The steps to obtain the 3-D coordinates

(xw; yw; zw) only of a point W , on the line S, is given
below:

(i) Obtain the equation of the plane O0PQ (see
�gure 3) passing through the point O0 and
line s2 on the image plane I2 as, A2x+B2y+
C2z + 1 = 0.

(ii) Select a point P1(X1; Y1; f1) as the centroid
of the line s1, on image plane I1.

(iii) Obtain the equation of the 3D line OP1.

(iv) Intersection of line OP1 and the plane
O0PQ gives the coordinates of a point
W (xw; yw; zw) on line S, as:

(xw ; yw; zw) =
�1

A2X1 +B2Y1 + C2f1
(X1; Y1; f1) (8)

Using the constraint l2+m2+n2 = 1 and equations
(6) - (8), we get the solution of the inverse perspective
projection of a line as:

(l;m; n) =

 
Kln; Kmn;

1p
1 +K2

l +K2
m

!
(9)

where�
Kl

Km

�
=

1

Dr

�
DzxC2 +NzxS2 zwS1

�(DyzC2 +NyzS2) �zwC1

�
�

xwC1 + ywS1
DxyC2 +NxyS2

�
(10)

where

Dr = zwf(DzxC2 +NzxS2)C1 � (DyzC2 +NyzS2)S1g

S1 = sin�1; S2 = sin�2; C1 = cos�1; C2 = cos�2

The parameters (l;m; n; xw; yw; zw) of the recon-
structed line in 3-D space are obtained using the
inverse perspective equations (8) - (10). The pa-
rameters of the imaging setup required as input are
f1; f2; xd; yd; zd and ( �i; �i; i), i = 1; 2; 3.

3.2 Special cases of inverse perspective
equations:

The inverse perspective equations for the recon-
struction of a line in 3-D space use a pair of equations
(10). This pair of equations use parameters �1 and �2

of the 2-D line segments s1 and s2 on the pair of im-
age planes respectively. Equations (9) - (10) can not
be used for reconstruction, when either or both the
terms Kl and Km, used in equation (9) become inde-
terminant. Similarly, when the 3-D line S projects to



only a single point in one or both the image planes,
the equations for reconstruction suggested in the pre-
vious section can not be used. This section provides
solutions for such special cases of inverse perspective
equations.

Case I :
In equation (10), if

zwf(DzxC2 +NzxS2)C1 � (DyzC2 +NyzS2)S1g = 0;

then the solution for reconstruction is:

(l;m; n) = (� sin�1; cos�1; 0)

Case II :
If line S projects to a single point P1(X1; Y1) in

the �rst image plane only, then the solution for recon-
struction can be given as:

(l;m; n) =
1

(X2

1
+ Y 2

1
+ f2

1
)
(X1; Y1; f1)

Case III :
If line S projects to a single point P2(X2; Y2) in the

second image plane only, then the solution for recon-
struction is given by:2
4 l
m
n

3
5 =

2
4 cos�1 cos�2 cos�3

cos�1 cos�2 cos�3
cos 1 cos 2 cos 3

3
5
2
4 l0

m0

n0

3
5

where

(l0;m0; n0) =
1

(X2

2
+ Y 2

2
+ f2

2
)
(X2; Y2; f2)

4 Error Analysis of the reconstruction

process
Error analysis for the methodology of reconstruc-

tion is essential to estimate the performance of the
system. Noise with Gaussian distribution is added to
the pixel coordinate values of the projection of a line
on the image plane. This perturbs the location of
pixels forming the projection of the line on the image
plane, simulating the e�ect of noise. The level of noise
is characterized by the variance, �, of the Gaussian
distribution, which is considered to be in the range
[0-10]. Bresenham's algorithm [5] was used to obtain
the discrete set of points as projections of the line on
the pair of image planes. We use the following pair of
criteria for estimating the error in reconstruction:

(i) Error in orientation (angle between the original
and the reconstructed lines):

�e = cos�1(l1l2 +m1m2 + n1n2)

(ii) Error in position (Shortest Distance between
the two lines):

De = (xw1�xw2) l00+(yw1�yw2) m00+(zw1�zw2) n00

where
(l00;m00; n00) =

(m1n2 �m2n1; n1l2 � n2l1; l1m2 � l2m1)p
(m1n2 �m2n1)2 + (n1l2 � n2l1)2 + (l1m2 �m1l2)2

where (l1;m1; n1) and (l2;m2; n2) are direction cosines
of the original and the reconstructed lines passing
through points (xw1; yw1; zw1) and (xw2; yw2; zw2) re-
spectively.

Using simulation studies, these errors are estimated
for di�erent combinations of the geometry of the imag-
ing setup, parameters of the line and levels of noise
added to the image feature (line). Results of per-
formance studies, shown in �gures 4-9, are obtained
by taking the mean of 100 di�erent observations of
simulated experiments conducted using the parame-
ters as speci�ed in each corresponding �gure. Each
of the 3-D plots in �gures 4-9, illustrate that errors
vary non-linearly with respect to the level of noise
in the image planes, and parameters of the imaging
setup and the line being reconstructed. In order to
provide a proper visualization of such non-linear mul-
tivariate error functions, only one of the parameters of
the imaging setup or line is altered, keeping all others
constant.

Figures 4, 5 and 6 illustrate the e�ect of the direc-
tion cosines of the line on the error in reconstruction.
For the graphs in �gures 4, 5 and 6, the values for the
various parameters of the imaging setup are chosen to
be : xw = yw = 10:0; zw = 200:0, xd = 10:0; yd =
20:0; zd = 30:0, f1 = f2 = 1:0; N = 320 (N is the
resolution of the digital image), �1 = �2 =

2 �
3

and
3 = �

6
(given �1; �2; and 3, the other six Eule-

rian angles [6] are found using the constraint of the
orthogonal matrix used in equation (2)). Only one
component of the direction cosines of the line is al-
tered, keeping the other two identical. It is observed
from �gures 4, 5 and 6 that the errors in reconstruc-
tion are large when the values of the direction cosines
are near the extreme limits of the range [0-1]. Errors
in orientation of the line, �e, was found to be large
compared to that of the position, De. In �gure 7, the
value of N (image resolution) is varied from 30 to 350
and the direction cosines are l = m = n = 1p

3
. Fig-

ure 7 shows that errors are appreciably high when the
resolution of the image is low (i.e., N ' 32). Errors
are negligible when the image resolution is more than
200.



For the plots in �gures 8 and 9, the value of zw is
varied from 100 to 500 and l = m = n = 1p

3
. In �gures

8 and 9, the parameters of the viewing geometry, �i; �i
and i, i = 1; 2; 3, are changed simultaneously in such
a manner that the 3-D line lies within the common
�eld of view of both the cameras. Figure 8 shows
that error in orientation is very high when the value of
depth zw is greater than 250 and negligible when less
than 200. Figure 9 shows that the error in position,
De is negligible when the depth zw is less than 350.

All 3-D graphs in �gures 4-9, show that for noise
levels in the range 0 � � � 10, the errors �e and De

are mostly within acceptable limits (0o � �e � 10o

and 0 � De � 2 respectively), except for certain
speci�c conditions of the viewing geometry and orien-
tation and position of the line. The errors are negli-
gible for small levels of noise in the range 0 � � � 2,
which is realistic. Negligible error in the process of
reconstruction of a line in the noise free case (� = 0),
is the result of digitization (sampling) of spatial coor-
dinate values in the digital image plane. This is more
if the image has low resolution as illustrated in �g-
ure 7. As the line tends to be parallel to one of the
principle coordinate axis (l;m; n ' 0 or 1), the er-
rors in reconstruction are large. With increase in the
level of noise in the image planes the error in orienta-
tion, �e, increases rapidly than error in position, De,
of the line. Hence based on our studies, for best re-
sults we recommend the following range of values of
the parameters of the imaging setup and line to be
reconstructed, 0:2 � l � 0:9, 0:2 � m � 0:7,
0:2 � n � 0:8, zw < 250 and N > 200. Other
parameters of the line and viewing geometry do not
a�ect the accuracy of the reconstruction process to a
great extent. The dimensions of all distances used in
the simulation studies are normalized with respect to
the focal length of the cameras which is considered to
be unity.

5 Conclusion
In this paper, a new method of reconstruction of a

line in 3-D space from two arbitrary perspective views
has been discussed. Inverse perspective equations to
obtain the parameters of a line in 3-D space from two
arbitrary perspective projections have been derived in
this paper, based on coplanarity equations. The pro-
cess of reconstruction may be used for any automatic
inspection or quantitative measurements of 3-D ob-
jects with regular geometrical features, for real world
vision systems.

A rigourous performance analysis has been pro-
vided, using simulation studies, to illustrate the e�ect
of noise and parameters of the line and the imaging

setup on errors in reconstruction. Results of simu-
lation studies presented in this paper are useful for
the design of an imaging system for accurate recon-
struction of lines or edges of 3-D objects, as well as to
evaluate the performance of such a system. Smaller
resolution of the image, larger depth and certain ori-
entations of the line in 3D have been found to produce
a poor performance in the process of reconstruction.
It is observed that for larger levels of noise present
in the image planes, the errors in the orientational
parameters of the reconstructed line are much larger
than that in the positional parameters.
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Figure 1: Imaging system with two arbitrary perspective

views of a point W in 3-D space. f1 and f2 are the focal

lengths of �rst and second cameras respectively.
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Figure 2: Two arbitrary perspective projections s1 and

s2 of a line segment S in 3-D space.
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Figure 3: Given a pair of projections s1 and s2 for a line

S in 3-D, the co-ordinates of an arbitrary point W on

the line S can be obtained by selecting a point P1 on

line s1. The intersection of line OP1 and plane O0PQ in

3-D, gives the coordinates of the point W corresponding

to the point P1 on image plane I1
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Figure 4: 3-D Plot showing the errors in reconstruction,

l varies from [0 � 1], m = n =
p
(1� l2)=2, � varies

from [0 � 10], �1 = �2 =
2�
3
, 3 =

�
6
, f1 = f2 = 1:0,

xd = 10:0; yd = 20:0; zd = 30:0, xw = yw = 10:0; zw =
200:0 and N = 320.
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Figure 5: 3-D Plot showing the errors in reconstruction,

m varies from [0 � 1], l = n =
p
(1�m2)=2, � varies

from [0 � 10], �1 = �2 =
2�
3
, 3 =

�
6
, f1 = f2 = 1:0,

xd = 10:0; yd = 20:0; zd = 30:0, xw = yw = 10:0; zw =
200:0 and N = 320.
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Figure 6: 3-D Plot showing the errors in reconstruction,

n varies from [0 � 1], l = m =
p
(1� n2)=2, � varies

from [0 � 10], �1 = �2 =
2�
3
, 3 =

�
6
, f1 = f2 = 1:0,

xd = 10:0; yd = 20:0; zd = 30:0, xw = yw = 10:0; zw =
200:0 and N = 320.
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Figure 7: 3-D Plot showing the errors in reconstruction,

N varies from [30� 350], l = m = n = 1=
p
3, � varies

from [0 � 10], �1 = �2 = 2�
3
, 3 =

�
6
, f1 = f2 = 1:0,

xd = 10:0; yd = 20:0; zd = 30:0, xw = yw = 10:0 and

zw = 200:0.
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Figure 8: 3-D Plot showing the errors in reconstruction,

zw varies from [100�500], l = m = n = 1=
p
3, � varies

from [0 � 10], �1 = �2 = 2�
3
, 3 =

�
6
, f1 = f2 = 1:0,

xd = 10:0; yd = 20:0; zd = 30:0, xw = yw = 10:0 and

N = 640.
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Figure 9: 3-D Plot showing the errors in reconstruction,

zw varies from [100�500], l = m = n = 1=
p
3, � varies

from [0 � 10], �1 = �2 = 2�
3
, 3 =

�
6
, f1 = f2 = 1:0,

xd = 10:0; yd = 20:0; zd = 30:0, xw = yw = 10:0 and

N = 320.


