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Abstract

In this paper we introduce a fast, linear method
for estimating the motion parameters of an image se-
quence. For a sequence of images, a redundant set of
two frame motion estimates can be computed. Due to
the presence of noise, di�erent two frame motion esti-
mates will not be consistent with each other. However,
by using the redundant set of pairwise motion esti-
mates, we can enforce consistency and solve for the
global motion. Our algorithm exibly utilises all the
information available in the sequence in a linear man-
ner. It is fast and accurate and can be implemented
both in a batch or recursive formulation. Our method
is applicable to both three-dimensional global motion
and two-dimensional image motion models. Examples
of results on real data are provided to validate our
method for 3D camera motion estimation and 2D im-
age mosaicing. In this paper, we also describe the use
of our measure of motion consistency in recovering the
calibration (focal length) of an image sequence. Focal
length estimation is posed as a one-dimensional search
using the quality of �t for the rotation estimates. Real
examples of camera calibration are included to illus-
trate the good performance of our algorithm in recov-
ering the required focal length.

1 Introduction

In this paper we examine the problem of estimating
2D and 3D motion models and focal length for an
image sequence. Before introducing our method
for motion estimation, we will briey describe the
existing literature that is directly related to our
approach. For point features, fast, linear methods
exist for estimating motion in the case of two [12],
three [6] and four [4] views. Some linear methods for
multi-frame motion estimation are [11], [10] where
structure and motion are solved for simultaneously
using a factorisation technique based on the SVD.
However, this depends on being able to track features
across the entire sequence.
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For point features, the optimal solution (MLE)
is de�ned to be the minimisation of the distance
between feature points and reprojected points for the
estimated motion and structure in a least-squares
sense (eg [2], [9]). This minimisation is carried out
using the Levenberg-Marquardt gradient-descent
method which is non-linear and is typically very slow.
Moreover, an appropriate initialisation is required to
ensure convergence. On the other hand, the method
described in this paper is fast (since it is linear) and
although it is not optimal, it gives reliable results by
exploiting all the available redundancy of information
in a sequence. Also, as will be clear, our method is not
limited to feature correspondences and can be applied
in any situation where we can get two-frame estimates.

In this paper we describe a method that uses
multiple two-frame motion estimates and computes
a linear �t of these estimates to obtain a globally
consistent motion description. We develop the intu-
itive idea of our algorithm using a three-dimensional
rotation model. Consider the case of 3 frames shown
in Fig. 1 (a). As is obvious, if we start at frame
i and return to it via frames j and k, we have the
requirement that RkiRjkRij = I , ie. the composition
of all the transformations is an identity since we have
returned to our original frame of reference. This is the
notion of \consistency", ie. the individual pairwise
transformations are consistent with each other.

In the general case, we have an N frame sequence,
and hence we need to estimate N rotation matrices
with respect to a reference frame. However, due to
the presence of noise in the data, individual pairwise
estimates will be erroneous, therefore the composition
constraint on two frame motions (ie. Rik = RjkRij)
will not be satis�ed. In other words, two frame
motion estimates are not \consistent" with each
other. However as will be clari�ed in the next section,
each one of these equations provides a constraint
on the global motion estimates. Moreover, we note
that in a sequence of N frames, there are more than
N pairwise rotations that can be estimated (upto a



maximum of N(N�1)
2 in the case where the relative

rotation between every pair can be estimated), which
provide a redundant system of linear equations for
the global motion wrt a reference frame. Since
two frame motion estimation is linear (for point
features) and the system of equations is also linear,
the overall algorithm is very fast compared to the
non-linear, optimal method. Also, since we use the
inherent redundancy of information in a sequence,
the estimation is reliable and accurate. Hence, our
method is linear and consistent. In Section 2 we
describe the general framework of our approach to
motion estimation. In subsections 2.1 and 2.3, we
develop the solution for the multi-frame estimation
of three-dimensional rotation and translation re-
spectively. Section 3 details the results of tests on
real image sequences. In Section 5 we describe the
solution for the linear motion models between images
(ie. AÆne and Projective). In Sec. 6 we provide
real image examples to illustrate the improvement in
performance achieved by using our method.

We also observe that our measure of consistency
can be used to recover camera calibration. The
algorithm is based on the idea that for erroneous
estimates of camera calibration parameters, the
individual pairwise rotation estimates will also be
erroneous. This will be reected in the residual error
of the least squares �t for global motion. The larger
the error in calibration (say focal length), the worse
the �t. In Section 4, we demonstrate the eÆcacy of
our algorithm in recovering the focal length for real
image sequences.

2 Consistency of Motion Estimates

In this section we develop our solution for multi-
frame motion estimation. As mentioned in Section 1,
for N images, there exist N motions (wrt a reference
frame) that we want to estimate. We denote the mo-
tion between frame i 1 and the reference frame as Mi,
and the relative motion between two frames i and j as
Mij (See Fig. 1 (b)). Hence we have the relationship

Mij =MjMi
�1 (1)

Due to the presence of noise in our observations,
the transformation estimates would not be consistent.
Hence M̂ijMi 6=Mj , where M̂ij is the estimated trans-
formation between frames i and j.

1Henceforth, we shall use the term \frame" to denote a co-
ordinate frame attached to a given image

However we can rewrite Eqn. 1 in the form of a
constraint on the global motion model 2 , ie. M̂ijMi�

Mj = 0. In general there are upto N(N�1)
2 such con-

straints on the N motion models. Hence we have an
overdetermined system of equations

M̂ijMi �Mj = 0;8i 6= j (2)

Intuitively, we want to estimate fMig that are
most consistent with the measurements fMijg in a
least-squares sense. Thus the errors in individual
estimates of M̂ij are \averaged" out in such a linear
system of equations. Such an averaging ameliorates
the situation when certain individual pairwise esti-
mates have higher amounts of error. In our case, since
we are deriving a least squares �t for a redundant
system of equations, the errors will be forced to
redistribute in a manner such that the higher error
in this equation will be corrected to a signi�cant
extent. In contrast, the traditional method cascades
pairwise transformations between adjacent pairs, ie.
when transforming to the reference frame we have
Mk =M(k�1)k � � �M23M21. Such a composition of the
transformation uses the minimal set of constraints
and does not exploit the redundancy of information
that is available in a sequence. Consequently, any
individual error will a�ect all subsequent estimates.

We would like to emphasise that we are not
required to use every pairwise constraint to get a
solution. For extended sequences, there is seldom
overlap between frames well separated in time,
therefore their relative two-frame motions cannot
be estimated. However we can still get a consistent
solution by utilising all the pairwise motions that
can be estimated in such a long sequence (typically
there would be overlap between images within some
distance to each other). This is a crucial di�erence
between our algorithm and the factorisation based
methods of [11] and [10]. In their case, points are
required to be tracked throughout the entire sequence
(which is seldom possible for extended sequences),
but we are not constrained by such a requirement
since enough pairwise estimates are computable in
a long sequence resulting in a redundant system. In
other words, our method can utilise all available re-
dundancy to give reliable results. However, obviously
in Eqn. 2, the estimate accuracy depends on the
amount of redundancy used, ie. the number of con-
straint equations employed to obtain a global solution.

2The set of estimates fM1;M2; � � � ;MNg will be referred to
as the global motion model
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Figure 1: (a) The individual transformations are \consistent" if RkiRjkRij = I . (b) The relative motions Mij

are estimated from the data. The global motion fM1 � � �MNg wrt a reference frame is estimated by least squares
�tting of the relative motions.

Moreover, to compute the motion between frame
i and j, we do not require that the points be visible
(and tracked) throughout the subsequence between
frames i and j. As long as we can �nd enough
matched features (tracked or otherwise) between im-
ages, we can compute the required two-frame motion
estimate. Therefore we are not constrained to using
only sequences where the motion between adjacent
frames is small to enable tracking and can solve for
motion parameters of sets of images acquired from
arbitrary viewpoints. Moreover, in the most general
case, we are not even constrained to using point
(or discrete) features. The input to our algorithm
is a redundant set of pairwise motion estimates.
Each of these estimates can potentially be obtained
using any method (optical ow, direct methods
etc.)! 3 In this context, it must be emphasised that
our method is orders of magnitude faster than the
optimisation solutions like the Levenberg-Marquardt
minimisation. Moreover our linear method optimises
in the parameters space instead of the image space
(as is the case with the optimal solution) and hence
the computations can be carried out independent of
the three-dimensional structure of the scene being
view. In contrast, most non-linear techniques have
to optimise in both structure and motion resulting in
high computational costs since we have the additional
burden of estimating the three-dimensional structure

3However, the choice of algorithm for the two-frame case will
a�ect the total computation time.

of the visible scene.

If for every frame we use a �xed number of previ-
ous frames to compute the two-frame relative motions,
the linear system of equations can be recast in a recur-
sive formulation allowing for real-time computation of
motion. Eqn. 2 can be rewritten as

Pnmn = 0 (3)

where Pn is a matrix containing the terms Mij and
mn is a column vector denoting the global motion pa-
rameters being estimated, ie. fM1;M2; � � � ;Mng for n
frames. Now if the maximum distance between over-
lapping frames is k, ie. ji � jj � k, for computing
the motion for frame n + 1(Mn+1), we can hold all
previous motion estimates �xed and recompute the
least squares solution. In this case, the new system
of equations to be solved is Pn+1mn+1 = 0 where the
only unknown is Mn+1. Since, we are solving for the
least squared value of the residual error, we have a
quadratic equation in Mn+1. Such a recursive scheme
would have a �xed computational load per frame.

2.1 Rotation Estimation

In this section we describe the linear least squares
solution for three-dimensional rotation. We repre-
sent the relative rotation between frames i and j as
Rij . Therefore the consistency relationship is Rij =
RjRi

�1. The error in rotation estimates can be mod-
eled by a rotation about an arbitrary axis. This is
represented by the matrix Rerror, hence



R̂ij = RjRi
�1Rerror; (4)

where Rerror represents a rotation of magnitude
k!k about the axis represented by the orientation of
the three-dimensional vector !

k!k ( [5]). Thus the lin-

ear solution can be stated as follows :

R̂ijRi �Rj = 0 (5)

Clearly, the 9 elements of the rotation matrix have
only 3 degrees of freedom (ie. R�SO(3)). However, if
we were to directly solve for the least squares solution,
our solution would be an element of R9. Hence the
linear solution cannot be directly computed using the
row or column ordered representation of the rotation
matrix. However, the correct linear solution can be
computed using the quaternion representation.

2.2 Quaternion Representation

Any three-dimensional rotation transformation
can be uniquely represented by a four-dimensional
quaternion q = fq0; q1; q2; q3g, where q�S

3, ie. it is
constrained to have a norm equal to 1. Therefore
q0

2 + q1
2 + q2

2 + q3
2 = 1 [5].

The quaternion representation of a product of two
rotation matrices is a linear transformation of the el-
ements of the quaternion representations of the two
matrices. If we denote the quaternion corresponding
to Ri by qi and the linear transformation representa-
tion of Rij as Qij , ie. the relationship RijRi = Rj is
represented as Qijqi = qj , where

Q =

0
BB@

q0 �q1 �q2 �q3
q1 q0 �q3 q2
q2 q3 q0 �q1
q3 �q2 q1 q0

1
CCA (6)

Hence Equation 5 can be rewritten as Q̂ijqi�qj = 0

where Q̂ij is the matrix in Equation 6 corresponding

to R̂ij . This system of equations can be solved lin-
early. We can also show that this linear least squares
solution is optimal in the Maximum Likelihood sense.

Lemma 1 For uniform, Gaussian distributed rota-
tion error, the linear least squares solution for the
rotation transformations is the Maximum Likelihood
Estimate.

Proof:

We assume a uniform, Gaussian distribution for the
3D rotation represented by the Euler angles, !. This

implies that the rotation errors are about axes that are
randomly oriented and that the magnitude of the ro-
tation error angle has a Gaussian distribution (within
the range [0; �)). For such a noise model, the optimal
(Maximum Likelihood Estimate) solution is

arg min
M

X
i;j

k!ijk
2

(7)

whereM represents the consistent motion estimate,
fR1; R2; � � � ; RNg.

Using Equation 6, the linear system of equations
can be rewritten as

QijQerrorq
i � qj = �ij ; (8)

whereQij and Qerror are the linear transformations
associated with rotations Rij and Rerror. Since the es-
timation error is modelled by a small rotation, using a
Taylor series expansion, we have Rerror � I + [!]�,
where ! represents the error in the estimate (here
[:]� denotes the cross-product matrix, ie. a � b =
[a]�b). The equivalent quaternion representation is
q = [1; !1; !2; !3]. Therefore, we have

Qerror =

0
BB@

1 �!1 �!2 �!3
!1 1 �!3 !2
!2 !3 1 �!1
!3 �!2 !1 1

1
CCA (9)

where �ij 's are the residuals of the �t. Now since
Qijqi�qj = 0, we can remove the corresponding terms
in Eqn. 9. Therefore, since the norm of a quaternion
is 1, by carrying out the multiplication in 9, we haveP

i;jk�ijk
2
=
P

i;jk!ijk
2
. Hence the least squares er-

ror of Equation 8 is equal to the quantity minimised
in Equation 7. Therefore the linear solution is the
Maximum Likelihood Estimate.

2.3 Translation Estimation

In the case of translation estimation, the consis-
tency equations will be of the form Tij = Tj � Ti.
However for two frames, the inter-frame translation
estimates are known only upto a scale factor (ie. we
know only the translation direction, tij). Hence we
have equations of the form

tij = �ij(Tj � Ti) (10)

where �ij 's are unknown scale factors. But we can
utilise the cross-product relationship, tij � (Tj�Ti) =
0. This cross-product can also be described as

[tij ]�(Tj � Ti) = 0 (11)



Hence we have a linear system of equations that
can be solved to estimate the translations between
di�erent frames and the reference frame. It may be
noted that such a linear system of equations enables
us to recover three-dimensional translations from only
the translation directions 4.

Since the translation estimates are corrupted due
to the presence of noise in the observations, we have to
model the e�ect of noise on the translation direction
estimates. We model the error in translation direction
estimation by a small rotation of the true translation
direction, ie. t̂ij = Rerrortij where Rerror is a small
rotation represented by !. Here the rotation axis
represented by ! has to lie in the subspace orthog-
onal to tij . Similar to our assumption for rotation
error, we assume that the error in translation direc-
tion is modeled by rotation vector ! that is uniform,
Gaussian distributed in the subspace orthogonal to tij .

Since Rerror � I + [!ij ]�, each linear equation can be
written as

[t̂ij ]�(Tj � Ti) = 0 (12)

) [(I + [!ij ]�)tij ]�(Tj � Ti) = 0

Now we note that tij� tij = 0 and k(!ij� tij)� tijk =
k!ijk, since !ij?tij , which implies that (!ij�tij)?tij .
Therefore, for the residual error in each equation of 12,
we have

1

�ij
(!ij � tij)� tij = �ij (13)

)
X
i;j

k�ijk
2
=
X
i;j

k
1

�ij
!ijk

2

(14)

Therefore, the least squares solution for Equa-
tion 11 results in unequal weighting of the error
terms. While this solution may be suÆciently accu-
rate, we can further re�ne the solution by an iterative,
weighted least squares method as described below.

For notational convenience, we will drop the sub-
scripts ij. �n indicates the weights at iteration n.

� Initialise scalar weights �0 = 1

4It should be mentioned that since the translation directions
are computed in di�erent frames of reference, they need to be
rotated to conform to measurements in the reference frame.
This is done using the rotation estimate Ri obtained using the
method described in the previous subsection.

� At step n, compute the least squares solution of

[tij�
n�1]�(Tj � Ti) = 0 (15)

� Update �n = 1
kTj�Tik

� Repeat till convergence

The above iteration scheme is reminiscent of the
EM algorithm [13, 14]. At each step, the new scales
better approximate the appropriate scaling parame-
ters and therefore move the system of equations closer
to a least squares solution (where all equations have
the same \weightage"). We have empirically observed
that convergence is achieved in about 3 � 4 itera-
tions. Therefore, the additional computational load
is insigni�cant. Also at step n in the iterative scheme
de�ned above, the least squares error is

E =
X
ij

k
�n

�n�1
!ijk

2

(16)

At the minimum of the objective function after con-
vergence has been achieved, we have the condition
�n = �n�1. This implies that

X
i;j

k
�n

�n�1
!ijk

2

=
X
i;j

k!ijk
2

(17)

Therefore, the least square error is identical to the
error attained by the optimal solution.

3 Experimental Evaluation of 3D Mo-

tion Estimation
In this Section, we describe real experiments that

were used to test and validate our algorithms for
estimating three-dimensional motion as described in
the preceding sections. We are unable to include an
empirical evaluation of our algorithm here due to
space constraints. We evaluate the performance of
our algorithm on a real sequence for which ground
truth data is available. The well-known Castle
Sequence consists of 11 frames taken with a camera
that primarily translates and zooms. A frame from
this sequence is shown in Figure 2 (a). The errors
in rotation and translation direction estimation are
shown in sub�gures (b) and (c). We can see a signif-
icant gain in performance of our method (indicated
in dotted line) over the baseline 5 method (indicated
in solid line). The comparison of the recovered
translation scale with the ground truth is shown in
(d). As can be seen, there is very good agreement of

5The baseline is established by computing the transforma-
tion between every frame and the reference frame.



the recovered scales with the ground truth value. It
may be noted that our method automatically recovers
global translation scale (upto a single factor) from
only translation direction estimates.

We would also like to point out that this is a
particularly diÆcult sequence for linear methods to
work on. It is a well known fact that the Eight Point
algorithm biases its estimate of translation direction
towards the viewing direction. In this case, the true
translation is most of the time orthogonal to the
viewing direction (ie. in the x direction). Hence the
biases can be signi�cant as seen in the error values
for the baseline case. However, our method performs
quite well inspite of the fact that its input values are
estimates that are signi�cantly biased.

The computational load of our method is also very
low since it is a purely linear approach. The average
run time of our method for 6 frames is about 0:4
seconds for a MATLAB implementation. Hence our
method, while being suboptimal is preferable in many
situations and as discussed in Section 2 is amenable
to a recursive implementation.

4 Focal Length Estimation
The above analysis assumes that the feature corre-

spondences are available in normalised coordinates (ie.
the co-ordinate system of an ideal pinhole camera).
As we will demonstrate in this Section, we can use
our measure of consistency of the two-frame estimates
to accurately estimate the calibration of the camera.
In general, camera calibration is a hard problem and
is computationally intensive [17]. However in recent
times, researchers have focused on the relatively
easier problem of estimating camera focal length (by
assuming the rest of the camera parameters to be
known) [18, 19]. This is a reasonable assumption to
make since except for focal length, all other camera
parameters like, image center, pixel aspect ratio,
skew etc. do not change and can be easily obtained.
Our algorithm is based on the intuitive notion that
assuming a wrong focal length will result in erroneous
estimates of the three-dimensional rotation between
di�erent image pairs in the sequence. As a result,
when we perform the least-squares estimation (Eqn.

5), the residual error
P
k!ijk

2
will be large. We

consider this error value.

Let the fundamental matrix between images i

and j be Fij , and let the true calibration matrix be
K0. Therefore the corresponding Essential matrix

will be E0
ij = K0

TFijK0. The equivalent rotation
matrix Rij can be extracted from E0

ij . We now
denote the least squares error for �tting the set of
rotation matrices R = fRijg to be FIT (R(f)), where
f denotes the assumed focallength.

Now if we assume the calibration is K̂(f) instead
of the correct value K0, we have

Êij = K̂(f)
T
FijK̂(f). Therefore, for large errors

in calibration, the essential matrix Ê will move away
further on the essential manifold from E0. This will
result in large errors in rotation estimates. Therefore,
the focal length estimate is

min
f

FIT (R(f)) (18)

which is carried out by means of a one-dimensional
search. To evaluate the performance of our algorithm,
we performed focal length estimation on two image
sequences. In both cases, we assumed the camera
center to be �xed and located at the image center
and that the pixel aspect ratio was 1. For the �rst
experiment we used correspondences from a sequence
of 8 images of 1536� 1024 pixels. See Figure 4 of [16]
for details about this sequence. The global minimum
of our energy function is clearly located and occurs
at a focal length of 1560 pixels which is equivalent
to an estimated �eld of view of 52:42Æ � 36:34Æ. The
correct �eld of view (FOV) for this sequence was
51Æ � 38Æ. Thus there is excellent agreement between
the estimated calibration and the ground truth.

The second experiment we carried out was with
the well known PUMA sequence. In this experiment,
we used 32 feature correspondences that were tracked
over 16 frames. The true �eld of view in this case was
40Æ and the estimated �eld of view was 44:3Æ. Some of
the discrepancy in the result can be attributed to the
limitation of linear estimation of the fundamental ma-
trices. Experimentally, we have observed that using
better fundamental matrix estimates (obtained using
non-linear minimisations) does result in improved
performance. However, this improvement comes at
the expense of increased computational time due to
the non-linear minimisations used for estimating the
fundamental matrices. Given the simplicity of using
linear estimates for both rotation estimation and
obtaining a global �t, we believe that our algorithm
is a good way of estimating the focal length of an
image sequence. Due to space constraints, we are
unable to discuss the performance of our method
under noise. However, we would like to emphasise



that for moderate amounts of noise, our method gives
accurate estimates.
We believe that the above experiments adequately
demonstrate that our algorithm is e�ective in comput-
ing three-dimensional motion and camera calibration.
It is also important to reemphasise that our algorithm
runs very fast compared to nonlinear optimisation
schemes.

5 Image Motion Models
When we are interested in computing a two-

dimensional image motion model, a linear image trans-
formation (Projective or AÆne) suÆciently captures
the relative motion between pairs of images. In this
case, the linear relationship can be described as

0
@

x
0

y
0

1

1
A = �P

0
@

x

y

1

1
A (19)

where (x; y) and (x
0

; y
0

) are the co-ordinates of cor-
responding points in the �rst and second images re-
spectively. Since the 3�3 transformation P is projec-
tive, � is an unknown scalar except when P takes on
the form of an AÆne matrix (ie. when its third row
is of the form f0; 0; 1g) in which case � = 1. Hence
the linear system that solves for a consistent system
of projective transformations is

P̂ijPi � �ijPj = 0 (20)

In [7] and [8], consistency frameworks are adopted
to solve for global image motion models. In [7], im-
ages are aligned to a global mosaic and subsequently
a simultaneous bundle adjustment of the orientations
of all the images is carried out to correct for errors
in positioning. In [8], the global motion model is
computed such that the sum of the image intensity
variance at each pixel in the constructed mosaic is
minimised. This measure of the minimisation of the
variance of the aligned image pixels is equivalent
to solving for the global motion model using a
consistency measure where we minimise the total
sum of pairwise residual sum of squared di�erence
(SSD) between two images. However, both of these
methods involve a non-linear optimisation. In [1],
the author proposes a system similar to Eqn. 20
to solve for a consistent set of transformations to
align images in a mosaic. However, in that case, the
unknown factor �ij is omitted which would only be
appropriate when the image transformation model
is an aÆne transformation and not projective. In
the case of projective transformations, the scaling of

di�erent elements is not the same. The third column
consists of the translation components that have a
much larger scale than the rest of the entries (these
values can be of the order of the size of the image
itself, say 256). On the other hand, the third row is
typically close to [0; 0; 1]. This unequal scaling implies
an uneven weighting in the least squares �tting of
the estimates and can lead to numerical instabilities.
Therefore, it is important to apply a \whitening"
transformation to estimates P̂ij before solving for
a consistent solution. The need for a whitening
process has been noted earlier by Hartley in the case
of the Eight Point algorithm [3]. In our method,
we solve for the di�erent relative transformations
Pij and apply a \whitening transformation" to give
equal weightage to di�erent terms. Since we also
need to incorporate the estimation of the unknown
scaling factors (�), we use the following iterative
scheme to solve for a consistent set of transformations.

� For the kth row of all Pij ,(k = 1; 2; 3), compute
the average value (sk) of the corresponding ele-
ments

� Compute the scaling transformation
S = diag([ 1

s1
; 1
s2
; 1
s3
])

� Whiten individual transformations as
P

0

ij  SPijS
�1

Then we apply the following iterative scheme :

* Set all �ij = 1

* Solve the linear system P̂
0

ijPi
0

� �ijPj
0

= 0

* Update �ij =
kP

0

ijP
0

ik

kP 0

jk

* Repeat till convergence

� Unwhiten the individual global motion models as
Pi  S�1P

0

iS

6 Evaluation of 2D Image Model Esti-

mation
To evaluate the performance of this method,

we study the ability of our algorithm to construct
image mosaics with noisy data. In Fig. 3 (a), we
show the mosaic constructed using frames from a
long sequence. To solve for the relative pairwise
transformations, we extract 10 tracks over the entire
sequence using the KLT tracker [15].



In this experiment we evaluate the performance of
our algorithm with di�erent amounts of noise in the
point correspondences. Here the 2D aÆne model is
used. Our objective is to study the improvement in
performance (under noise) with increased use of the
redundant information available in the sequence. For
the input to our algorithm, we compute the relative
aÆne motion between every frame i and j, such that
ji � jj � k where k is a parameter we choose. The
parameter k determines the amount of redundancy
we utilise. For example, if k = 3, then we compute
the pairwise aÆne model for every pair of images
that are within a distance of 3 in the sequence. Thus
in an N frame sequence, when k = 1, there is no
redundancy utilised, ie. we simply compute the
transformations between adjacent frames, therefore
the set of pairwise transformations computed is,
(i; j) = f(1; 2); (2; 3); � � � ; (N � 1; N)g. In the case
where k � N � 1, we compute the pairwise transfor-
mation between all possible pairs in this set of images.

Although we use feature point correspondences, our
measure of performance is based on image intensity
instead since all pixels that correspond to the same
point on the mosaic should have the same intensity.
Thus, we de�ne the following �gure of merit

score = E[�2(Ii(p; Pi))]; (21)

where E[:] denotes the expectation operator. In
other words, we estimate the required transformations
and warp all images to the reference frame (The re-
sultant average of the images is shown in Fig. 3(a).
Subsequently, we compute the variance of the image
intensity at each pixel in the reference frame.

The performance of our algorithm is shown in Fig.
3 (b). For each experiment, we choose a value of k.
Di�erent amounts of Gaussian noise is added to all
the point correspondences and the mosaic is estimated
by averaging all warped images. The resultant �gure
of merit is plotted for di�erent amounts of noise.
At low levels of noise, the di�erence in performance
with increasing redundancy is negligible. This implies
that the original data set is good enough to generate
accurate mosaics and using more information cannot
result in improved performance. However as we
increase the noise level, it can be easily noted that
the quality of reconstruction degrades. In the case
where k = 1, ie. when the transformations between
adjacent pairs are cascaded, the performance is quite
poor. However, we can observe that an increasing
use in the redundant information does signi�cantly
improve performance. In fact, when k = 4, there is

almost a 40% improvement in performance compared
with the \baseline" case of k = 1. Of course, this
improvement does entail an increased computational
load. However, the total computational load is not
very signi�cant. In conclusion, this experiment is
a simple and powerful illustration of the argument
that within computational constraints, we should
utilise as much of the available redundancy as possible.

Finally, we demonstrate the usefulness of our
notion of linear consistency in constructing a mosaic.
In Fig. 4 we show mosaics constructed with the same
set of images. In this example, the camera has imaged
the scene by taking 6 consecutive overlapping images
along 4 horizontal strips resulting in 24 images. In
Figure 4 (a), the mosaic is constructed by computing
pairwise projective transformations between adjacent
images (using matched feature points) along the
horizontal direction and then aligning images in each
horizontal strip with respect to the reference frame by
computing the transformation between the rightmost
image in each strip and the reference frame. Thus
for each image, we are able to compute a product
of projective transformations that will align it with
respect to the reference frame. As a result, there is
good alignment along a horizontal strip. However,
as can be clearly seen, there is gross misalignment
between di�erent strips. This results in signi�cant
errors along a vertical direction (some error regions
are indicated in circles). This is due to the fact that
the errors in individual horizontal strips accumulate
as we move right to left along a strip. But the errors
in individual strips are independent, resulting in gross
misalignment along the vertical direction. In Figure
4 (b), in addition to the relative transformations used
in Figure 4 (a) we computed some of the relative
transformations between adjacent pairs along the
vertical direction. These transformations were then
used to compute a consistent set of transformations
as described above. As can be observed by comparing
the areas marked by the circles in the two images, for
our method there is good alignment over the entire
mosaic and none of the anomalies of Figure 4(a) are
present.

7 Conclusion
In this paper we have introduced a linear method

for computing the motion between images of a se-
quence. This method eÆciently exploits the redun-
dancy of pairwise motions estimates to give accurate
estimates for the motion of the entire sequence. In
comparision with non-linear methods, our method is
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(c) Translation Dir Error
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Figure 2: (b) and (c) show the error in rotation and translation direction for the Castle Sequence. The solid line
indicates the baseline algorithm and the dotted line indicates our method. (d) shows the recovered translation
scale by our method (indicated by dotted line). Ground truth is shown in solid line.

(a) Generated Mosaic
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(b) Performance vs Noise Level

Figure 3: (a) shows the mosaic created by our method. (b) shows the performance of our algorithm for di�erent
amounts of noise. Each curve represents the amount of redundancy used. The maximum overlap distance used
(k) is shown alongside each curve (1 - 4).



(a) (b)

Figure 4: (a) Mosaic created by aligning images along horizontal strips. Gross vertical errors can be seen at the
boundaries of strips (some are indicated by circles). These errors disappear in (b) created by our method that
uses all available information.

extremely fast. It also gives focal length estimates to
a good degree of accuracy.
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