
Maximal Arc-Length Matching at Multiple Thresholds (MALT) for

Variational Shape Recognition

Anjan Goswami Amitabha Mukerjee

Dept. of Computer Sci. & Elec. Engg. Dept. of Computer Sci. & Engg.

Univ. of South Florida, Tampa Indian Instt of Technology, Kanpur

agoswami@csee.usf.edu amit@iitk.ac.in

Abstract

Widely varying shapes are diÆcult to recognize es-
pecially when present as part of an occluded shape.
Handling such situations requires the consolidation of
data at di�erent levels of con�dence, which is the phi-
losophy motivating the Maximal Arc-Length matching
at multi-Thresholds algorithm (MALT). The algorithm
matches segments from two contours and rates a pair
of matches more highly if the arc-length shift in the
two matches is equal.

Unlike traditional matching strategies, dependency
on threshold selection is avoided by considering multi-
ple thresholds and ranking the matches. All the models
are tested in the polygonal domain, in which varia-
tional shape classes at di�erent levels of deformation
have been generated using vertex and edge deforma-
tion from a nominal model. Although in its current
form the algorithm is restricted to polygonal contours,
in this domain it exhibits very robust recognition even
in the presence high deformations and occlusion.

1 Introduction
We consider model based polygonal or segmented

shape recognition where the input shape may contain
gross deformations and occlusions. In case of severe
model deformation, recognition requires the applica-
tion of some novel steps beyond the consolidation of
individual feature matches. We propose the following
steps for this problem:

� Representing shapes based on relative relations of
sequence of edges. This is one oldest approach in
biological shape analysis [15] and also recently
have been tried in vision under names such as
relative order indexing or relational indexing [8,
6, 3].

� Consolidate feature matches across multiple
error-thresholds (di�erent con�dence`levels), and

� Express higher con�dence if there are a large
number of matching feature pairs with the same
arc-length shift between them.

We develop a multi-threshold model of Hausdor�
fraction where the decision is based on cumulative
error in multiple error zones instead of any speci�c
threshold parameters. We present empirical evidence
indicating that the speci�c choice of di�ering error
zones do not a�ect the rankings generated by the al-
gorithm. This is further integrated with the dominant
arc-length shift heuristic (section 3.2), which says in
essence that if a model contains a large number of
matching feature pairs which are shifted from the con-
tour by the same arc-length shift, then this model is
likely to be actually present in the image and with a
similar shift. This model is developed under the belief
that relative relation between the sequence of edges
will be less sensitive under contour deformation and
a shape will no longer be the same shape if these re-
lations change arbitrarily. The combined algorithm,
Maximal Arc-Length at multi-Threshold (MALT) is
seen to be very robust against shape variation. The
model has been tested by a comprehensive procedure
for generating Variational Shape Classes, which has
been developed by variations on the contours of 2D
polygons.

A shape contour constructed from a sequence of
control edges (linear or curved) can be represented by
a small set of relations between each edge with one
or more preceding edges (the supersegment). This
representation is scale and displacement invariant and
saves considerable auxiliary e�ort in indexing. Similar
representation over any feature space can form quasi-
invariants [4] which are of great signi�cance in gen-
eral object recognition schemes. Test results from the
polygonal domain demonstrate successful recognition
in some of the worst input shapes.



To obtain the input shapes, we furst deformed a
given model to obtain a variational shape class. De-
formed shape instances are combined to form occluded
images, which are then presented as input shapes for
disambiguating the models that may be present in the
shape.

Shapes

C0101

C0501

C0505

C0510

C1515

Shapes

V05

V10

V20

V30

V45

Table 1: Variational Shape Class created by Contour
Deformation. a) Relative \chain" variation (C 0105 =
length tolerance 01% of average edge length and angle
tolerance 05% of 10Æ. b) Vertex variation ( V 05 =
05% of average edge length.

2 Shape Class
A shape is all geometrical information that remains

when translation, scale and rotational e�ects are �l-
tered out from an object [9]. In computer vision and
image processing applications shapes are subjected to
variation either due to inexact knowledge of transfor-
mations (Rigid body or AÆne), natural variation in
models (Biological Shapes) or perturbations due to the
error in feature extraction etc. The notion of \Shape
Class" captures these variations. Given the nominal
shapes, �nding out deformed samples of it from a oc-
cluded background is a very diÆcult problem. In [7],
we addressed the problem of modeling shape variation
and have shown di�erent models of object recognition
schemes with asymmetric Hausdor� measures.

2.1 Variational Shape Class
Variational shape classes are generated by applying

a deformation to a nominal shape contour. (Examples
are Shock Graphs [10, 17], Parametric Boundary vari-
ation [1], Manufacturing Tolerance models [16], Axis
models [12]). We generate variational shape classes in
a polygonal model by vertex deformation (perturbing
each vertex within a rectangular tolerance zone pro-
portional to the bounding box on the nominal shape or
chain-edge perturbation in which the edge length (nor-

malized by perimeter) and the angle from the preced-
ing edge within are varied within a speci�ed tolerance
zone (Table 1).

To ensure that all Images generated by this pro-
cedure are consistent, any self-intersecting or open
polygonal chains arising from this procedure are
pruned from the image set to ensure consistency in
generated images.

M-0 M-1 M-2 M-3 M-4

62 30 26 15 32
M-5 M-6 M-7 M-8 M-9

18 8 17 40 37
M-10 M-11 M-12 M-13 M-14

6 12 6 56 18
M-15 M-16 M-17 M-18 M-19

37 27 41 43 8
M-20 M-21 M-22 M-23 M-24

24 51 15 10 15
M-25 M-26 M-27 M-28 M-29

18 39 24 13 26

Table 2: Database of Model Shapes (number of edges
below each �gure).

2.2 Occluded Variational Shapes

A further challenge in recognizing variational
shapes arises in the problem of occlusion where the
test image may be constituted by combining partial
contours from a number of models, each of them hav-
ing been deformed to di�ering degrees. Even in the
simple domain of polygon recognition, this is seen as
a diÆcult problem. Whereas considerable work has
been done on occluded shapes [2, 11], and on shape
class recognition [13, 17], the problem of recognizing a
variational shape when it is occluded has not been for-
mally modeled, either from the shape class perspective
or from the recognition perspective.



A measure for the degree of overlap of two shapes
can be constructed with area occlusion (area(A\B)�
area (A[B)) or perimetric occlusion = (peri(A\B)�
peri (A [ B)). While this measure is easily gener-
alized for three or more shapes, it does not re
ect
the asymmetric occlusion of di�erent shapes - e.g. a
small shape may be lost to the extent of 90% by area
whereas the occlusion may be shown as 10%. An al-
ternate measure may be to re
ect the individual oc-
clusions of each shape, but this involves

�
n
2

�
relations

for n objects. The results reported here use perimetric
occlusion since the models are contour based.

E-2 E-3 E-4 E-5

80 edges 58 edges 55 edges 63 edges

P.O: .10 P.O: .25 P.O: .33 P.O: .14

exact V:05 both V:05 both V15,V20

E-8 E-10 E-11 E-12

58 edges 54 edges 63 edges 62 edges

M-4, M-9 P.O: .36 P.O: .16 P.O: .18

and M-15 V25 both V:40 both V50 both

Table 3: Experimental Images formed by combining
various deformations of the models in Table 2. Below
each Image: Total Number of Edges, Perimetric Oc-
clusion, models present, and shape variation. E-5, 10,
11, 12 have the same two objects (duck and elephant)
with increasing vertex perturbation.

3 Maximal Arc-Length at
multi-Threshold (MALT)

A variant of Hausdor� measure can be de�ned as
the maximum number of points in the model such that
the distance is below a given error threshold,

hk (Mm; In) �  ;

where hk () denotes a distance from m-th Model fea-
ture to n-th input feature where the n-th input feature
is closest to m-th model feature. Let k (M; I) denote

the maximum k for which the above relation is true,
and kM k is the number of features in M . The ratio

F (Mj ; I) =
k (Mj ; I )

kMj k

re
ects the fraction of the shape M present in I at the
con�dence indicated by the threshold  [14].

3.1 Multi-Threshold Fraction (MT)
Instead of �xing on a speci�c threshold to identify

k , it may be possible to fuse the conclusions that
can be arrived by consolidating the data from di�erent
levels of con�dence, which is the motivation for the
multi-threshold (MT) Hausdor� Fraction model.

In particular, it is unlikely that any model with a
single con�dence level (single threshold cuto�) would
be able to identify severely deformed models, where
di�erent features may agree to di�ering degrees [7].

Given a list of �+1 error thresholds  i, in increas-
ing order  0;  1 : : :  �, (de�ning � error intervals or
zones), the multi-threshold fraction FMT (Mj ; I) sums
the fractions at di�ering levels of error:

FMT (Mj ; I) = 1=�

 
i=�X
i=0

F i(Mj ; I)

!
;

where, F (Mj ; I) =
k (Mj ;I )
kMjk

and k (M; I) denotes the

maximum k for which hk (Mm; In) �  .
Since the matches at low values of  are also present

in the higher values, these edges get reinforced more
than features detected for higher  which may contain
some noise. This process re
ects an harmonic assump-
tion that a match found only in the last error zone has

1
(��r) less validity than a match at error-zone r. An

alternate geometric decay model - that the last error
zone has k�(��r) less validity, introduces an additional
parameter - the con�dence decay rate k - and also did
not appear to work very well in preliminary tests.

3.2 Dominant Arc-Length Shift
If the features being detected happen to consti-

tute successive segments in both the image and model
shapes, then there is a strong likelihood of a match.
More generally, if the j-th and i-th Input shape fea-
tures are found to be closest to the (j+�)-th and (i+�)-
th model features then it is possible that shifting the
model by � edges would result in a match between
the contour fragments. This belief would be strength-
ened if a large number of other matching feature pairs
also exhibited the same shift, which is the basis of the
Dominant Arc-Shift Heuristic:

� The dominant arc-length shift (that which is com-
mon to the largest set of matched feature-pairs) is



likely indicative of an actual arc-length shift that
matches a contour fragment between the image
and the deformed model.

� The greater the dominance of the dominant arc-
shift, the higher the con�dence in the match. (see
Figure 1).

This heuristic provides a mechanism for combining
multiple feature matches, an idea that has also been
proposed recently in [5].

This heuristic is combined with the multi-threshold
measure (FMT ) to obtain the MALT algorithm. To
re
ect the higher importance of a greater number of
matches at the same arc-length shift, we have cho-
sen the simple measure of counting all feature pairs
at each arc-length shift (p i), weighted by 2

kMk to dis-

count the e�ect of models with many more edges. The
sum of this factor over all thresholds is the arc-length
dominance measure FAL. The Maximal Arc-Length
at multi-Threshold (FMALT ) measure combines the
Multi-Threshold (MT) Hausdor� fraction FMT with
this arc-length dominance measure FAL:

FMALT (Mj ; I) =
1

�
(

i=�X
i=0

(F i(Mj ; I) + 2p i=jjM jj))

Note that p is the number of matching pairs and not
the number of matching edges; thus if f edges from
the Model match successively with f edges from the
Image (with a constant shift of �), then p =

�
f
2

�
,

which can quickly overwhelm the contribution of MT
if there are many sequence matches.

Dominance Fraction

The frequency distribution of the arc-length shift is an
important indicator of the con�dence one can have in
the MALT estimate. The dominant arc-length shift,
which has the highest number of matching edge pairs,
is strongly indicative of the presence of a long arc-
chain from the model in the image.

The Dominance Fraction DM is the maximum
number of edges in a single arc-length shift divided
by the total number of edges in the model ( f

kMk ) (see

�gure 1). The dominance fraction is a measure of
the percentage of the model we are highly con�dent
of �nding in the image. It is also directly related to
FMALT which is the summation of

�
f
2

�
and is domi-

nated by the highest f .

3.3 Error Threshold Values
The MT model was formulated based on the belief

that cumulative data over multiple thresholds would
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Figure 1: E�ect of Increasing Variation on dominance
fraction As the model variation increases, the arc-
length shift is no longer concentrated at a dominant
value. Dominance fraction in E-5, E-10, E-11 and E-
12 are respectively 0.41, 0.16, 0.19, 0.08.

remain more or less the same if the intervals changed.
We have tested this premise empirically over repeated
experiments and a sample at di�erent error levels is
shown in Figure 2 Furthermore, as the error threshold
increases, more and more noisy data will enter and
the rate of growth 
attens out. This implies that the
maximum error threshold  � is also not very critical.
In the experiments that follow, we have used � = 15
and error thresholds with a maximum threshold  � =
0:6, in a geometric thresholding scheme (higher errors
correspond to a longer error interval). However, as
noted in Figure 2 the results are more or less identical
for di�ering choices of these numbers.

4 Algorithm
The basic idea of the algorithm is to �nd, for each

feature in each model, the minimum distance to an im-
age feature and the arc-length shift. The arc-length
shift between these two feature is the di�erence in in-
dices between the two mapped features.

Given a list of �+1 error thresholds  i, if the min-
imum distance is below some threshold  r then the
Fraction count FMT is incremented for all thresholds
 r and above and also, an index of frequencies is main-
tained for each occurring arc-length-shift � indicating
the number of feature matches with this arc-length
shift. Eventually, if the number of edge-matches at
a arc-length shift value is n then there are

�
n
2

�
pairs

of matches at the same arc-length distance and the
MALT measure FMALT is incremented appropriately.

1. For each Model M (0 to m),
BEGIN

2. For each feature eMi of model M
BEGIN

3. min dist(i)=1
4. For each feature eIj of image I

if dist(eMi ; e
I
j ) < min dist(i)



f min dist(i)=dist(i,j); min-posn p=j; g
5. Arc-Length shift �= Abs(p-i)
6. Find error-threshold  r; r 2 (1 : : : �) s.t.
 r > min dist(i) >  r�1 (Binary Search)

7. FMT += (�� r + 1)� 1
kMk

8. Increment Frequency of Arc length Shift
at threshold  r : Frequency[r][� ]++

END
9. For each f = Frequency[r][� ], if f � 2

FAL +=

�
f
2

�
� 2
kMk

10. Return ( FMALT = (FMT+FAL
�

), FMT = FMT
�

)

END
11. Best matches are k highest FMT or FMALT

Complexity

The complexity of this algorithm is determined by step
4, and is O(mNn) where m is the number of models,
N the maximum number of model features (max k
M k), and n the number of features in the input image.
Normally, there are more input image features than
error-thresholds (n > �), so steps 6 and 9 with costs
of O(mN log�) and O(mN�) are dominated by step
4.
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Figure 2: E�ect of Additional Arc Length mea-
sure . The results at di�erent error zones for the
Hausdor� Fraction with Multi-Threshold FMT (left),
and for with Maximal Arc-Length (\MALT", right).
The match fractions remain unaltered by threshold
changes.

5 Results
We use a database of 30 hand-drawn model shapes

(Table 2). Table 1 shows some samples of generated
variational shape classes and table 3 shows 12 exper-
imental shapes. Table 4 shows results of the recogni-
tion algorithm with E-2, E-3 and E-4.

5.1 Increasing Shape Variation
If a model appears in a highly deformed state, then

it is possible that some other models may contain su-
persegments that are a better approximation to some
of the deformed edges. The \MALT" algorithm is able

E-2 E-3 E-4
FMT FMALT FMT FMALT FMT FMALT

.82 16.94 .35 5.92 .42 9.30

.81 13.10 .37 4.29 .27 1.57

.16 0.16 .21 0.22 .20 0.20

Table 4: Results for some simple cases: E-2 (with M-
17, M-26, M-8), E-3 (with M-9,M-4, M-0),E-4 (M-9,
M-4, M-0). For each case �rst two models are con-
stituent candidates; the \best of the rest" model is
also reported for comparison.

E-5 E-10
M FMT FMALT M FMT FMALT

9 .13 .72 9 0.11 .27
4 .15 .45 4 0.12 0.19
26 .11 .16 15 0.08 0.17
8 .10 .15 26 0.10 .15
27 .12 .14 0 0.09 0.14

E-11 E-12
M FMT FMALT M FMT FMALT

9 .09 .20 4 .12 .26
4 .11 .16 23 .13 0.16
8 .08 0.14 8 0.09 0.15
25 .10 .14 1 0.11 0.14
10 .13 .13 10 .13 .11

Table 5: Results for increased perturbation and occlu-
sion. All these shapes involve the duck and the ele-
phant (M-4 and M-9). Even in E-11, where the duck
shape is hardly recognizable even by humans, the al-
gorithm manages to �nd it (barely!). In E-12 however,
where the vertex perturbation is 50% of the average
edge length, it fails to �nd the elephant (M-9) among
the top 5. Data is shown for the 0.6 error level in
Figure 3.
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Figure 3: E�ect of high variation. As the variation
from the model shapes increases, results for the \best
of the rest" (a model not actually present in the shape)
approaches that of a model present due to high noise
levels in images E-11 and E-12, which are highly noisy
with 40-50% vertex perturbation (see �gures in Ta-
ble 3).



to identify both elephant and duck in E-5, E-10, E-11
where the shapes are highly deformed but it fails to
recognize the elephant in E-12 where human beings
can also hardly interpret the elephant (Table: 5).

E-9 E-6
M FMT MALT M FMT MALT
9 0.42 9.17 9 0.41 9.61
4 0.19 0.43 4 0.15 0.26
14 0.11 0.23 14 0.11 0.19
3 0.13 0.20 18 0.09 0.19
18 0.10 0.19 6 0.18 0.18

Table 6: As the duck beak gradually disappears into
the back of the elephant, the multi-threshold fraction
FMT ranks the house (M-6) above the duck in the
barely recognizable E-6, but MALT recognizes it.

The shape E-6 is constructed using only �ve edge
segments of the duck in it; of these two are intersect-
ing. Even human beings can hardly recognize it (Table
6).

As the model variation increases, more spurious
edges match some of the model features, displacing
features at the correct arc-length. Thus the number
of feature-pairs at the same arc-length shift reduce
(Figure 1) and the dominance fraction decreases, and
with it, the con�dence of the matching process.

6 Conclusion

The main contribution of this work is in the Arc-
Length maximizing search, which is a form of sub-
string matching in partial image contours. Two obser-
vations are combined in this work { results from multi-
ple thresholds are combined to reduce dependence on
any pre-set threshold value, and also higher con�dence
is allocated for results that match multiple segments
with the same \arc-length" shift. The model has been
tested on polygonal data but is useful for matching
contours that are generated based on the same set of
control points as in sketches and artwork, CAD draw-
ings, etc.

The extent of deformation and occlusion permitted
are exceptional and in some cases appear to be supe-
rior to the human ability to recognize a noisy shape
occluded in a contour. This clearly indicates the merit
in the basic philosophy of arc-shift matching, though
it needs to be developed further for handling arbitrary
contour data.
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