
Simultaneous Estimation of Super-resolved Depth and Image from

Low Resolution Defocused Observations

Deepu Rajan Subhasis Chaudhuri

School of Biomedical Engg. Dept. of Electrical Engg.

Indian Institute of Technology - Bombay Indian Institute of Technology - Bombay

Mumbai, India 400 076 Mumbai, India 400 076

deepu@ee.iitb.ernet.in sc@ee.iitb.ernet.in

Abstract

This paper presents a novel technique to simulta-
neously estimate the depth and the focused image of
a scene both at a super-resolution, from its defocused
observations. Super-resolution refers to the genera-
tion of high resolution images from a sequence of low
resolution images. Hitherto, the super-resolution tech-
nique has been restricted only to the intensity domain.
In this paper, we extend the scope of super-resolution
to acquire depth estimates at high resolution simulta-
neously. Given a sequence of low resolution, blurred
and noisy observations of a static scene, the problem
is to generate a dense depth map at a resolution higher
than one that can be generated from the observations
as well as to estimate the true focused image. Both
the depth as well as the image are modeled as separate
Markov Random Fields and a maximum a posteriori
method is used to derive a cost function which is then
optimized using simulated annealing (SA).

1 Introduction
Availability of high resolution images is often de-

sirable in most computer vision applications. Be it
remote sensing, medical imaging, robot vision, indus-
trial inspection or video enhancement (to name a few),
operating on high resolution images leads to a better
analysis in the form of lesser misclassi�cations, bet-
ter fault detection, more true-positives, etc. However,
acquiring high resolution images is severely limited
by the drawbacks of sensors that are cheaply avail-
able. Thus images acquired through such sensors suf-
fer from aliasing and blurring. Aliasing occurs as a
consequence of insuÆcient density of the detector ar-
ray which causes frequencies above the Nyquist rate
to alias, while blurring occurs due to integration of
the sensor point spread function (PSF) at the sensor
surface. An imaging sensor having a dense detector
array is too expensive to be considered as an alterna-
tive to generate high resolution images. Hence, one

must resort to image processing methods to construct
a high resolution image from one or more available low
resolution images. Super-resolution refers to the pro-
cess of producing a high resolution image from several
low resolution images. Many researchers have tackled
the super-resolution problem both for still and video
images [1, 2, 3, 4].

It was Pentland who �rst suggested that measuring
the amount of blurring at a given point in the im-
age could lead to computing the distance to the corre-
sponding point in the scene, provided the parameters
of the lens system are known [5]. This understanding
ultimately led to extensive research in an area which
came to be known as depth from defocus. Given two
images of a scene recorded with di�erent camera set-
tings, we obtain two constraints on the spread param-
eters of the point spread functions corresponding to
the two images. One of the constraints is obtained
from the geometry of image formation while the other
is obtained from the intensity formation in the defo-
cused images. These two constraints are simultane-
ously solved to determine distances of objects in the
scene.

In this paper, we expand the scope of super-
resolution to include high resolution depth informa-
tion in a scene, in addition to recovering intensity val-
ues. As mentioned earlier, one of the degradations in
a low resolution image is the blur which produces a
defocused image. We exploit this blur to generate a
depth map through the depth from defocus formula-
tion; moreover, now the depth map is estimated at a
higher resolution than one that can be extracted from
any of the observations. We call such a dense depth
map as super-resolved depth obtained from defocused
images. In addition to this, we also simultaneously
estimate the true focused image of the scene.

In Section 2 and Section 3, we review the depth
from defocus and the super-resolution techniques re-



spectively. We model the formation of the low res-
olution depth and image in Section 4 and describe
the proposed method to simultaneously extract super-
resolved depth and image in Section 5. Preliminary
experimental results and conclusions are presented in
Section 6 and Section 7, respectively.

2 Depth from Defocus
Recovery of 3-D information about a scene from its

2-D images has numerous applications such as robotic
manipulation, automatic inspection, surveillance, etc.
Over the years, a wide variety of techniques have been
developed to extract structural information in a scene,
e.g. depth from stereo, structure from motion, shape
from shading and, more recently, depth from defocus
(DFD).

The basic premise of depth from defocus is that
since the degree of defocus is a function of lens setting
and the depth of the scene, it is possible to recover the
latter if the amount of blur can be estimated, provided
the lens setting is known. An out-of-focus point light
source images into a blurred circle [6], whose radius is
described by a blur parameter � de�ned as
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where f is the focal length, u is the distance of the ob-
ject point from the lens, v is the distance between the
lens and the image detector, r is the radius of the lens
aperture and � is a camera constant. Since the depth
at various points in the scene may be varying contin-
uously, � would also vary all over the image. Given
two defocused images of a scene with blur parameters
�1 and �2, it can be shown that [7]

�1 = � �2 + � (2)

where � and � are constants that depend on the cam-
era settings. The relative blur between the two de-
focused images estimated using the intensity informa-
tion, together with equation (2), are used to solve for
�1 and �2.

Early investigations of the DFD problem were car-
ried out by Pentland [5] who measured the blur at
known image characteristics like edges. In another
method [6], he compared two images locally, one
formed with a pin-hole aperture and then recovered
the blur parameter through deconvolution in the fre-
quency domain. In [7], Subbarao removed the con-
straint of one image being formed with a pin hole aper-
ture by allowing several camera parameters like aper-
ture, focal length and lens-to-image plane distance to
vary simultaneously. The blur was recovered in the

frequency domain through inverse �ltering by assum-
ing a local shift-invariance of the blur.

Recently, Chaudhuri and Rajagopalan have car-
ried out a thorough investigation of the DFD prolem
[8]. In [9], they use the complex spectrogram and
the pseudo-Wigner distribution for recovering depth
within the framework of space-frequency representa-
tion of the image. In [10], they extend this approach
to impose smoothness constraints on the blur param-
eter and use a variational approach to recover depth.
In [11], a MAP-MRF framework is used for recover-
ing the depth as well as the focused image of a scene
from two defocused images. However, the recovered
depth map and image are at the same resolution as
the observations. Other techniques for depth recov-
ery and issues relating to optimal camera settings are
described in [8].

In this paper, our aim is not only to recover depth
from defocused images, but also to do so at a higher
resolution. Thus given a sequence of low resolution
blurred observtions of sizeM�N , we wish to generate
a dense depth map of size, say qM � qN , where q is
the upsampling factor. We call this the super-resolved
depth estimate. Clearly, by doing this, we get a more
accurate description of the depth in the scene, which
eventually leads to a better performance of the task
at hand.

3 Super-resolution Imaging
As indicated in the introduction, the physical lim-

itations of currently available image sensors, such
as size and density of detectors, impose a limit on
the spatial resolution of images and videos. Also,
the bandwidth limit set by the sampling rate also
indirectly determines the resolution. These restric-
tions imposed by the sensor is sought to be removed
by image processing methods, speci�cally by super-
resolution restoration of images. The underlying phi-
losophy of this method is to acquire more samples of
the scene so as to get some additional information
which can be utilized, while merging the samples to
get a high resolution image. These samples can be
acquired by sub-pixel shifts of the camera, by chang-
ing scene illumination or by changing the focus of the
camera.

Tsai and Huang [1] were the �rst to propose a fre-
quency domain approach to reconstruction of a high
resolution image from a sequence of undersampled low
resolution, noise-free images. Ur and Gross use the
Papoulis-Brown generalized sampling theorem to ob-
tain an improved resolution picture from an ensemble
of spatially shifted pictures [12]. However, these shifts
are assumed to be known by the authors. An iterative



backpropagationmethod is used in [2], wherein a guess
of the high resolution output image is updated ac-
cording to the error between the observed and the low
resolution images obtained by simulating the imaging
process. But back-propagation methods can be used
only for those blurring processes for which such an op-
erator can be calculated. Shekarforoush et al. [3] use
MRFs to model the images and obtain 3D high res-
olution visual information (albedo and depth) from a
sequence of displaced low resolution images. The ef-
fect of sampling a scene at a higher rate is acquired
by having interframe sub-pixel displacements. But
they do not consider the case of blurred observations.
Elad and Feuer [13] propose a uni�ed methodology
for super-resolution restoration from several geomet-
rically warped, blurred, noisy and downsampled mea-
sured images by combining ML, MAP and POCS ap-
proaches. Chiang and Boult [14] use edge models and
a local blur estimate to develop an edge-based super-
resolution algorithm. Recently Rajan and Chaudhuri
proposed a generalized interpolation scheme and used
it to generate super-resolution images from photo-
metric stereo [15]. Here we present a new technique
wherein a sequence of low resolution spatially vary-
ing blurred and noisy observations is used to simul-
taneously estimate the super-resolved depth and the
image of a scene. Both the high resolution blur and fo-
cused image are modeled as separate Markov Random
Fields (MRFs). The maximum a posteriori estimates
of depth and the focused image of the scene are recov-
ered using the simulated annealing algorithm.

4 Low resolution image and blur for-

mation
We brie
y present the formation of a low resolu-

tion image and blur from their respective high reso-
lution counterparts. Note that the problem we solve
here is actually the inverse. Suppose the low reso-
lution image sensor plane is divided into M1 � M2

square sensor elements and fyi;jg, i = 0; : : : ;M1 �
1 and j = 0; : : : ;M2 � 1 are the low resolution
intensity values. For a decimation ratio of q, the
high resolution grid will be of size qM1 � qM2 and
fzk;lg; k = 0; : : : ; qM1 � 1 and l = 0; : : : ; qM2 � 1
will be the high resolution intensity values. The for-
ward process of obtaining fyi;jg from fzk;lg is written
as [16]

yi;j =
1

q2

(q+1)i�1X
k=qi

(q+1)j�1X
l=qj

zk;l (3)

i.e., the low resolution intensity is the average of the
high resolution intensities over a neighborhood of q2

pixels.

We assume that the space-varying blur (PSF) is
Gaussian in nature. Figure 1 illustrates the forma-
tion of the low resolution observations using the low
resolution blur kernels that are implicitly embedded
in the H matrix. In the �gure, �H(i; j) and �L(i; j)
denote the high and low resolution blurs, respectively,
while z(i; j) is the high resolution image. Downsam-
pling by a factor of 2 is denoted by # 2. g(i; j) is the
decimated image which is subsequently blurred by the
space varying blurring kernel through H to obtain the
low resolution observation y(i; j). Noise is uncorre-
lated between di�erent low resolution images.

5 Super-resolved depth and image re-

covery using MRF models
The super-resolution problem is cast in a restora-

tion framework. There are p observed images fYig
p
i=1

each of size M1 �M2. These images are decimated,
blurred and noisy versions of a single high resolu-
tion image z of size N1 � N2, where N1 = qM1 and
N2 = qM2. If yi is the M1M2�1 lexicographically or-
dered vector containing pixels from the low resolution
image Yi, then a vector z of size q2M1M2� 1 contain-
ing pixels of the high resolution image can be formed
by placing each of the q � q pixel neighborhoods se-
quentially so as to maintain the relationship between
a low resolution pixel and its corresponding high reso-
lution pixel. After incorporating the blur matrix and
noise vector, the image formation model is written as

yi = Hi D z+ ni; i = 1; : : : ; p (4)

where D is the decimation matrix of size M1M2 �
q2M1M2, Hi's are the low resolution space vary-
ing blurring matrix (PSF) of size M1M2 � M1M2

with blurring parameters given by �Li (k; l), ni is the
M1M2�1 noise vector and p is the number of low reso-
lution observations. The decimation matrix D consists
of q2 values of 1

q2
in each row and has the form [16]

D =
1

q2

2
6664

1 1 : : : 1 0
1 1 : : : 1

. . .

0 1 1 : : : 1

3
7775 (5)

Our problem now reduces to estimating z and the
blur parameters �k;li 's given yi's, which is clearly an
ill-posed problem. Once the blurs are determined it is
straight forward to obtain the depth map.

We model the both the high resolution image as
well as the blurs as separate Markov Random Fields.
Let S and Z denote the random �elds correspond-
ing to the high-resolution space-variant blur parame-
ter sk;l(= �H(k; l)) and high-resolution focused image
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Figure 1: Low resolution image formation from high resolution image and blur.

over the N1 � N2 lattice of sites L, respectively. We
assume that S can take B possible levels and Z can
take C possible levels. The a posteriori conditional
joint probability of S and Z is given by P [S = s; Z =
zjY1 = y1; : : : ; Yp = yp]. From Bayes' rule,

P [S = s; Z = zjY1 = y1; : : : ; Yp = yp] =

P [Y1 = y1; : : : ; Yp = ypjS = s; Z = z]P [S = s; Z = z]

P [Y1 = y1; : : : ; Yp = yp]
:

(6)

The random �elds S and Z can be assumed to be
statistically independent. Since the denominator in
equation (6) is not a function of s or z, the maximum a
posteriori (MAP) problem of simultaneous estimation
of high resolution space-variant blur identi�cation and
super-resolved image can be posed as:

max
s;z

P [Y1 = y1; : : : ; Yp = ypjS = s; Z = z]

�P [S = s]� P [Z = z]: (7)

Note that the random �elds S and Z are high resolu-
tion while the observations are low resolution. Taking
the log of posterior probability, and since ni's are in-
dependent, equation (7) can be rewritten as

max
s;z

pX
i=1

logP [YijS = s; Z = z]

+ logP [S = s] + logP [Z = z]: (8)

Since noise is assumed to be i.i.d. Gaussian,

pX
i=1

P [Yi = yijS = s; Z = z] =

pX
i=1

log
1

(2��2�)
M1M2

2

exp

(
�
k yi �HiDz k

2

2�2�

)
=

�

pX
i=1

k yi �HiDz k
2

2�2�
�
M1M2

2
log(2��2�); (9)

where �� is the noise variance.
Since S and Z are both modeled as MRFs, the pri-

ors P [S = s] and P [Z = z] have a Gibbs distribution
given by

P [S = s] =
1

Ks
expf�

X
c2C

V s
c (s)g

and

P [Z = z] =
1

Kz
expf�

X
c2C

V z
c (z)g

where Ks and Kz are normalizing constants known as
partition functionss , Vc(:) is the clique potential and
C is the set of all cliques. Thus the posterior energy
function to be maximized is

�

pX
i=1

k yi �HiDz k
2

2�2�
�
X
c2C

V s
c (s)�

X
c2C

V z
c (z) (10)

which is equivalent to minimizing

pX
i=1

k yi �HiDz k
2

2�2�
+
X
c2C

V s
c (s) +

X
c2C

V z
c (z) (11)

Smoothness is an assumption underlying a wide range
of physical phenomena. However, careless imposition
of the smoothness criterion can result in undesirable,
oversmoothed solutions. This could happen at points



of discontinuities either in the image or in the depth
map. Hence it is necessary to take care of discontinu-
ities. Smoothness constraints on the estimates of the
space-variant blur parameter and the intensity process
are encoded in the potential function. Preservation of
disconitnuities are done through line �elds [17]. The
horizontal and vertical line �elds corresponding to the
blurring process are denoted by lsi;j and vsi;j , respec-
tively, while the line �elds corresponding to the inten-
sity process are denoted by lzi;j and vzi;j . Simulated
Annealing (SA) is used to obtain the MAP estimates
of the space-variant blur and the super-resolved image
simultaneously. Since the random �elds S and Z are
assumed to be statistically independent, the values of
si;j and zi;j are changed in the SA alogirthm indepen-
dently of each other. The posterior energy function to
be minimized is now de�ned as

pX
i=1

k yi �HiDz k
2

2�2�
+Es +Ez (12)

where

Es =
P

i;j �s[(si;j � si;j�1)
2(1� vsi;j)

+ (si;j+1 � si;j)
2(1� vsi;j+1)

+ (si;j � si�1;j)
2(1� lsi;j)

+ (si+1;j � si;j)
2(1� lsi+1;j)]

+ 
s[l
s
i;j + lsi+1;j + vsi;j + vsi;j+1]

and

Ez =
P

i;j �z[(zi;j � zi;j�1)
2(1� vzi;j)

+ (zi;j+1 � zi;j)
2(1� vzi;j+1)

+ (zi;j � zi�1;j)
2(1� lzi;j)

+ (zi+1;j � zi;j)
2(1� lzi+1;j)]

+ 
z[l
z
i;j + lzi+1;j + vzi;j + vzi;j+1]:

Parameters � and 
 correspond to the relative weights
of the smoothness term and the penalty term neces-
sary to prevent occurance of spurious discontinuities.

6 Experimental Results
We present some results on the proposed technique

to recover super-resolved depth and image from de-
focused images. Figure 2 shows two of the �ve low
resolution images used in our simulations. The defo-
cused Taj images were generated such that the low-
resolution blurs �Li+1(k; l) = 0:5 � �Li (k; l); i =
1; : : : ; 4. As mentioned earlier, such a linear relation-
sip exists between the blurs when defocused images
of a scene are obtained using di�erent values of the
camera aperture. Note that �L1 (k; l) is the decimated

Figure 2: Two of the low resolution observations of
the Taj image.
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Figure 3: The true high resolution blur whose decima-
tion yields the �rst low resolution blur.

version of the true high resolution blur which is gen-

erated using �H(k; l) = a exp(�
(k�N

2
)2+(l�N

2
)2

2b2 ) and
plotted in Figure 3. In our experiment, the values are
N = 64; a = 1:0; and b = 35:0. We have chosen
a decimation factor of 2. The original Taj image is
decimated and blurred using the space-varying Gaus-
sian blurring kernels formed from the low resolution
blurs. The zero-order hold expansion of the Taj im-
age is shown in Figure 4.

The initial estimate chosen for the high resolution
blur was the output obtained using the complex spec-
trogram, as described in [10]. A square window of size
16� 16 was used for the purpose. The bilinear inter-
polation of the least blurred image was chosen as the
initial estimate for the true focused image. The esti-
mated values of the super-resolved blur parameter and
the super-resolved image are shown in Figure 5 (a) and
Figure 5 (b), respectively. We can see the blockiness
caused due to the pixel replication technique of image
expansion is absent in the super-resolved image. Next,
we consider the case where the blurring is constant
over a certain contiguous region of the image and then



Figure 4: The zero-order hold expansion of the Taj
image.

varies linearly over a second region and �nally is con-
stant again over the remaining part of the image. Two
such blurred images of the Sail image are shown in Fig-
ure 6(a) and (b). The depth pro�le is shown in Fig-
ure 7 where the constant blur regions are of widths 32
pixels each. The estimated super-resolved blur param-
eters are shown in Figure 8(a) and the super-resolved
image in Figure 8(b).The super-resolved image recov-
ery technique described has performed quite well. The
�gures on the sail as well as the thin lines on the sail
are discernible.

7 Conclusions

We have presented a technique to simultaneously
generate a super-resolved depth map and image from a
sequence of low resolution space varying blurred obser-
vations. Both the high resolution blur and the image
are modeled individually as MRFs and a MAP esti-
mate is used. The depth at a point in the scene can
be calculated from the estimated blur at that point
through the depth from defocus formulation. In the
method described in this paper, we recover both depth
and the true image at a higher resolution than any of
the observations. Future work will involve �ne tuning
the parameters of the �nal cost function for further im-
provement in the results, as well as using other models,
like the Ising model, for the prior probabilities of the
blur and the intensity �elds.
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