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Abstract

Pixel correspondence is an important problem in
stereo vision, motion, structure from motion, etc. Sev-
eral procedures have been proposed in the literature for
this problem, using a variety of image features to i-
dentify the corresponding features. Di�erent features
work well under di�erent conditions. An algorithm
that can seamlessly integrate multiple features in a
exible manner can combine the advantages of each.
We propose a framework to combine heterogenous fea-
tures, each with a di�erent measure of importance, in-
to a single correspondence computation in this paper.
We also present an unsupervised procedure to select
the optimal combination of features for a given pair of
images by computing the relative importances of each
feature. A unique aspect of our framework is that it
is independent of the speci�c correspondence algorith-
m used. Optimal feature selection can be done using
any correspondence mechanism that can be extended
to use multiple features. We also present a few exam-
ples that demonstrate the e�ectiveness of the feature
selection framework.

1 Introduction

Many computer vision algorithms need to identify
the projection of common scene structure into simi-
lar image features in multiple images. These images
could be taken by di�erent cameras simultaneously
as is the case in stereo vision, where the focus is on
recovering the geometric structure of objects in the
scene by matching up the common scene structure
between images. Other structure from motion algo-
rithms may move the camera and attempt to match
the same scene points through the sequence of images
generated. Motion analysis algorithms may have the
objects also move in the scene and require their com-
monality be identi�ed in di�erent frames of the image.
Recently, many algorithms that derive adequate repre-
sentations of scenes from multiple views { either using
multiple cameras or by moving a camera { have been

proposed for image based modelling and rendering of
scenes. All algorithms mentioned above require pixel
correspondences, i.e., the match between pixels of one
image to pixels representing the same world structure
in another. This may be extended to a series of im-
ages by matching them in pairs. Pixel correspondence
is the fundamental structure one can compute from
multiple images representing the same scene.

Correspondence computation is a diÆcult task.
The basic philosophy of correspondence computation
is to recover features in the images that capture the
essence of the scene feature, keeping the imaging pro-
cess in mind. The image features that are invariant
to motion of the camera or the object can be matched
from one image to the other. Identi�cation of suitable
image features that can be used e�ectively for match-
ing is still an art. The gray level or colour values of
each pixel, the image gradients or other local edge in-
dicators, features such as lines and corners, local tex-
ture measures, etc., are among the features used for
matching. Some features work well for some types of
images and others for other types of images, with only
heuristic reasoning to support them. It is also typical
to match a small neighbourhood of pixels around each
pixel to a similar neighbourhood in the other image as
individual pixel values result in many false matches.

Correspondence algorithms using di�erent types of
features have been reported in the literature [1, 2, 3, 4,
5]. Each performs well under some conditions but may
be poor under other conditions. There has also been
some work on selecting the best features for matching
[6]. These algorithms, however, usually use only one
feature at a time. E�orts to take advantage of di�er-
ent kinds of features in an integrated manner are not
many; it is rare to �nd features other than gray levels
and edges used for correspondence. A reason could
be that their basic mechanism does not extend easi-
ly to heterogenous features. We introduced a frame-
work to combine heterogenous features e�ectively into
a common generalized correlation function in an earlier



work [7]. It can handle features such as gray or colour
values, multispectral data if present, edge strengths,
texture measures, etc., and can produce one matching
score that can be compared between di�erent candi-
date matches. The relative importance of each feature
was captured in a feature relation matrix in the gen-
eralized correlation framework.

There have been some attempts to formulate the
correspondence problem in a general statistical frame-
work using the maximum likelihood estimates for the
pixels [8] or by estimating the Bayesian priors from the
intensity distribution [9]. These, in essence, compute a
simple similarity measure between gray-values of pix-
els in both the images and �nd the optimal matches
by imposing new constraints, using penalty terms for
the occluded pixels. They do not exploit the fact that
desirable properties, like photometric invariance, can
be achieved by emphasizing or de-emphasizing select-
ed features.

Any framework to combine diverse features for cor-
respondence computation should ideally have the ex-
ibility to emphasize some features in one situation and
some others in other situations. No single combination
of features is going to dominate in all situations. The
feature relation matrix provides that functionality in
the generalized correlation framework. A mechanism
to select the most e�ective few among a large super-
set of heterogenous features, based on the situation,
will improve the correspondences immensely. Thus, a
mechanism to evaluate the e�ectiveness of each fea-
ture type on a speci�c pair of images and to suppress
those with low relevance should be an integral part of
the correspondence algorithm. The same features can
be used for other similar images, once the selection is
performed.

In this paper, we describe a framework for both in-
tegrating multiple features e�ectively and to compute
their relative importance from a pair of example im-
ages. The framework uses a joint optimization of an
objective function based on both the image structure
as well as the feature weights. The result is a mecha-
nism to evaluate the e�ectiveness of each feature in the
matching process and to adjust its importance auto-
matically. The feature selection is performed speci�c
to one or more image pairs. We could also iterative-
ly re�ne the selection till an optimality constraint is
satis�ed. A particular combination of features could
be selected for the entire image or, if necessary, for
di�erent partitions of the image. For instance, each
quarter of the image, or another segmentation of the
image, could use a di�erent combination of features
for matching, if desired. The features can be select-

ed using a few example image pairs and used for all
similar image pairs. For example, all images taken un-
der similar circumstances with the same cameras can
use the same importances for the features. A speci�c
case in point is video stereo, or correspondences com-
puted between frames of two video sequences. Such
an adaptive correspondence computation scheme can
�nd many other applications in computer vision. We
believe this is the �rst time such a quantitative fea-
ture selection mechanism based on sample images is
presented in the literature.

We de�ne the basic correspondence problem using
multiple features in the next section. The feature se-
lection process is explained in Section 3. A few syn-
thetic studies to demonstrate the characteristics of our
method are presented in Section 4. A discussion on the
applications of the approach and its extensions can be
found in Section 5.

2 Integration of Multiple Features
The pixel correspondence problem between two im-

ages is de�ned as follows. For two set of pixels
fx1; : : : ; xMg belonging to the �rst (or source) image
and fy1; : : : ; yNg belonging to the second (or target)
image, �nd the mapping xj ! yk such that xj and
yk are similar pixels, being images of the same scene
point. The mapping need not be one-to-one or onto.
Some points in both images may not have a corre-
sponding one in the other due to occlusion.

Correspondence is typically computed using a sim-
ilarity measure S(xj ; yk) or a dissimilarity feature
D(xj ; yk). The matching point for xj is the pixel yk
that maximizes S or minimizes D over a search space.
It is often possible to limit the search space for each
pixel based on geometric or other constraints. For in-
stance, the epipolar constraint, valid if the scene struc-
ture does not change from one view to the other, lim-
its the search space for xj to the set fykjx

T
j Fyk = 0g,

where F is the fundamental matrix between the two
views and xj and yk are the homogenous represen-
tation of the pixel coordinates. This condition con-
strains the matching point to be on a line in the sec-
ond image. The ordering constaint, the smoothness
constraint, etc., can also be used to limit the search
space in some situations.

We generalize the similarity or dissimiliary mea-
sures for pixel correspondence to include heteroge-
nous, correlated or uncorrelated features so that al-
l available evidence can be used e�ectively to com-
pute the correspondences. Let the pixel be repre-
sented by a p-dimensional feature vector Xj 2 IRp,
whose individual components iXj represent di�eren-
t features computed from the image. These could



be pixel values from a neighbourhood, edges, corner-
s, texture measures, etc. Correspondences can be
computed either by maximizing the dot product of
two feature vectors Xj �Yk or by minimizing the dis-
tance jjXj �Ykjj between the feature vectors. Such
formulations assign equal importance to all compo-
nents of the feature vector. This may not be desirable
even if the features are normalized. We introduce
a weight vector W = [w1 : : : wp]

T ; wi � 0 that en-
codes the relative importances of the features. Thus,
a weighted similarity measure to use is SM = XT

j MYk

and a corresponding weighted dissimilarity measure is
DM = jjXj�YkjjM = [Xj�Yk]

TM [Xj�Yk], where
M = [mii]p�p is a diagonal matrix with mii = wi.

Note that the generalization presented above has
not committed to any speci�c correspondence �nding
algorithm. It has only generalized the notion of sim-
ilarity or dissimilarity between pixels. Practically all
correspondence algorithms use such a notion and can
be extended in a similar manner to take advantage of
multiple features in a exible way. The algorithms d-
i�er in the way the optimal point is identi�ed using
the individual similarity or dissimilarity measures or
on the constraints used in the matching process. They
can continue to use the original mechanisms with the
generalized notion of similarity to achieve the same
kind of computational performance.

The matching point for each pixel is found by min-
imizing the dissimilarity measure over the set of pos-
sible matches in the target image. (We consider only
the minimization of a dissimilarity function for the rest
of this paper, though it is simple to extend the argu-
ments to the use of similarity measures.) The pixel
matching score  j for pixel j in the source image can
be de�ned as

 j = min
k2S

j
t

DM (Xj ;Yk) (1)

where Sjt is the set of possible matches in the target
image for pixel j, which depends on the applicable ge-
ometric and other constraints that reduce the search
space. This framework allows the integration of het-
erogenous features in the correspondence computation
process in a exible manner.

We are further interested in studying the perfor-
mance of each feature used in the matching process so
that we can enhance those that help in the process and
suppress the others. We need a measure to gauge the
contribution of each feature to the matching score of
a pixel for this. We use i j to denote such a measure

for feature i and de�ne it as follows.

i j = DM (iXj ;
iYl) where l = arg min

k2St
DM (Xj ;Yk)

(2)
We further use the following measure �i, called the
feature performance measure, to study the aggregate
contribution of feature i over a set of pixels.

�i =
X
j2Ss

i j (3)

The summation is performed over a partition Ss of
the source image. All pixels in the partition share the
weight vector and have the same relative importances
for the features. The partitions could be individual s-
canlines, a segmentation of the region based on image
characteristics, or even the entire image itself. Our
framework will use a unique combination of features,
encoded by the weight vector, for each partition. D-
i�erent partitions are handled independently. An ag-
gregate measure over a set of pixels is better at judging
the utility of a feature in the matching process than a
measure for a single pixel.

We can now de�ne an overall objective function to
measure the performance of all features in the corre-
spondence computation. The optimal combination of
features is the one that optimizes this objective func-
tion, for a set Ss of source pixels.

J(W;�) =

pX
i=1

w�
i �

�
i (4)

where W = [w1; : : : ; wp] gives the relative impo-
rances of each feature for the optimization and � =
[�1; : : : ; �p] is the set of feature performance measures.
The same weights are used for the objective function
to emphasize each feature in a balanced manner. The
exponents � and � can be used to emphasize the con-
tributions of the weights and the dissimilarity meaures
on the objective function. We now look at the prob-
lem of selecting the optimal features and their relative
weighting for a given pair of images in the next section.

3 Selection of Optimal Features

The generic objective function for pixel correspon-
dence in our framework is given by Equation 4. Our
objective is to �nd the W vector for each partition
of the image that optimizes J given a set of match-
es. Since J also depends on �, which in turn depends
on the pixel matches and hence on W , a joint opti-
mization on W and � is necessary. An iterative joint
optimization can be carried out in two steps as follows.



Step 1: Optimize the objective J with respect to
�is keeping weights wi constant. This is implic-
itly performed by the matching algorithm as ex-
plained below.

Step 2: Optimize the objective J with respect to the
wis keeping �i constant. This step is explained in
Section 3.2.

We examine each of these steps closely now.

3.1 Step 1: Optimized feature matching

For a given set of weights W , the problem of iden-
tifying the appropriate � that minimises J is same
as the problem of identi�cation of optimal correspon-
dence. Any correspondence algorithm that can make
use of the multiple feature integration framework can
be used for this. Correspondence algorithms optimize
 j for each pixel j according to Equation 1.

The objective function J given by Equation 4 is
minimized when the feature performance measure �i
for each feature i is minimized, for �xed positive W
since the features are essentially independent. The
feature performance measure �i given by Equation 3
is minimized when each i j is individually minimized
over the partition, since each pixel j is independen-
t and each i j is a positive quantity. The quantity
i j for each pixel j given by Equation 2 is minimized
when the corresponding  j is minimized. Thus the ob-
jective function can be minimized with respect to the
image structure using an appropriate correspondence
algorithm.

3.2 Step 2: Optimized feature impor-
tances

We devise a procedure to minimize J with respect
to the weight vector W now. The following analysis
works only for the minimizing of a dissimilarity func-
tion. It can easily be extended to maximize a similar-
ity measure.

An unconstrained minimization of J with respect
to W is impossible, as wi = 0 will be the minimum.
We have already mentioned the constraint wi � 0. S-
ince the interest is only in �nding the correspondences
which will yeild optimal value of J , and not the abso-
lute value of J , we impose the following constraint.

pX
i=1

wi = 1 (5)

The Lagrangian used for the optimisation is

F (W;�) =

pX
i=1

w�
i �

�
i � �(

pX
i=1

wi � 1) (6)

Di�erentiating Equation 6 with respect to wm and
equating to zero

@F

@wm
= �w��1

m ��m � � = 0 (7)

or

wm =

�
�

���m

� 1

��1

(8)

Substituting Equation 8 into Equation 5,

pX
k=1

�
�

��
�
k

� 1

��1

= 1 (9)

This gives

(�)
1

��1 =
1

Pp

k=1

�
1

��
�

k

� 1

��1

(10)

Substituting Equation 10 into Equation 8,

wm =
1

(���m)
1

��1
Pp

k=1

�
1

��
�

k

� 1

��1

=
1

Pp

k=1

�
�m
�k

� �

��1

(11)
Thus the weight wm for each feature m can be up-

dated, possibly for use in the next iteration, using E-
quation 11. Such a weight updation scheme has many
advantages. If a feature has a high cost of matching,
its weight will be reduced and vice versa. If step 1
and step 2 are performed iteratively till a convergence
criterion is satis�ed, the weights will adapt to the pair
of images based on the relative performance of each
feature without supervision.

4 Case Studies
In this section, we demonstrate the applicability

of the method in computing correspondences and its
quantitative e�ectivenss, with the help of numerical
examples. Stereograms with synthetic 3D structures
were constructed for this experiment. The method
does not depend on any speci�c correspondence algo-
rithm. Any algorithm that can provide integrate mul-
tiple features and provide a performance measure for
each can be used. We speci�cally used a pixel-to-pixel
matching algorithm based on dynamic programming
(more details are given in [10]) for the studies present-
ed in this paper. We use � = 1 and � = 2 in the
Equation 4 of the objective function.

Example 1 We study the e�ect of integrating mul-
tiple features into the correspondence framework in
this example. We simulate each feature image using



a 10% sparse random dot image pairs with a synthet-
ic 3D structure imposed on each. Since the \feature
image" is sparse, correspondence computation results
in a number of mismatches. We generalised this to an
n-feature situation, treating each random dot image as
a di�erent feature. Results, in terms of the number of
mismatced pixels, of varying n from 1 to 10 are shown
in Table 1. It can be seen that each additional feature
results in a reduction in the number of mismatches.

Number of Number of
feature images mismatched pixels

1 1241
2 509
3 352
4 272
5 210
6 177
7 132
8 106
9 81
10 70

Table 1: E�ect of increasing the number of features
on the matching error

Example 2 In this example, we consider a natural
image texture, comprising of regions with strong and
medium variations of grayness, shown in Figure 1(a).
A wedding cake structure was imposed on this to gen-
erate the right image. Additionally, an additive zero-
mean Gaussian noise with standard deviation � = 5
was also introduced. The left and right images are
shown in Figure 1(a) and Figure 1(b) and the true
dispaity map is shown in Figure 1(h). The dispar-
ity map computed using the gray level alone, shown
in Figure 1(e), is very noisy. This is due to the well
known weakness of pixel-to-pixel matching schemes us-
ing a single feature in the presence of noise. We sub-
sequently integrated two derived features to the match-
ing process using our framework. The edge strength {
the magnitude of the edge vector obtained using sim-
ple Sobel operators in horizontal and vertical directions
{ was the �rst derived feature used. Texture number
{ a ternary number representation of the neighbour-
hood gray-values, whether they are less, more or equal
compared to the present pixel { was the second [11].
The texture number encodes the local relationships of
the pixel's gray level value with those of its neigh-
bours. The feature images corresponding to the two

derived features are shown in Figure 1(c) and Fig-
ure 1(d) respectively. Correspondences were computed
using combinations of these three features. Figure 1(f)
shows the disparity map computed using the gray value
and edge strength and Figure 1(g) shows the dispari-
ty image computed with all three. In each case, the
features were weighted equally. The additonal feature
images reduced the mismatches considerably as can be
seen from the disparity maps. Disparity map comput-
ed with gray-value alone had 21954 mismatched pixels.
The combination of edge and gray-value reduced this to
3373 and the combination involving all three features
reduced it further to 1614 pixels.

The above example demonstrates the advantages
of using hetereogenous features to improve the cor-
respondence accurracy. We now explore the e�ec-
t of estimating their relative importances using our
nonsupervised procedure. Emphasising some features
above the others adaptively can improve the corre-
spondence performance further, depending on the sit-
uation.

Example 3 We estimated the feature relevances us-
ing the procedure described in the previous section to
the above example for computing the weights of the
three features used. For this, the performance of each
feature was independently computed while matching
and the weights were adjusted using Equation 11 iter-
atively. The process converged in 28 iterations with a
weight vector of [0:11; 0:41; 0:48]T . Converegnce prop-
erties were excellent with the total change in weight
going below 0:1 within 6 iterations and below 0:0001
within 28 iterations. The disparity map computed with
the estimated weights is shown in Figure 2(a). This
further brought down the number of mismatched pixels
to 1302.

The estimated weight of each feature represents its
relative importance in the matching process for the
speci�c pair of images. In the presence of noise in an
image, our method automatically takes into account
the noise content in each band or feature. Each feature
can subsequently be emphasised or deemphasised.

Example 4 In this example. we consider a random
colour stereogram. An ideal random colour stereogram
can provide very accurrate disparity maps with many
of the algorithms, but not so when the colours are per-
turbed or when noise is added. We added zero-mean
Gaussain noise of standard deveriation 1, 5 and 10 re-
spectively to each of the three colour bands to evaluate
our feature selection methodology. The disparity map
with equal weights to each, shown in Figure 2(b), had



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Improvement in correspondence with derived features (Refer to the Example 2 in the text for more
details)

12363 mismatched pixels. The iterative feature rele-
vance estimation procedure converged in 33 iterations
and yielded a weights vector of [0:77; 0:15; 0:08]T . It-
erations stopped only when the change in weight was
below 0:0001. The disparity map using the estimated
weights, shown in Figure 2(c), had 266 mismatched
pixels.
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Figure 3: Decrease in relative weight of a noisy feature
with the increase in noise

The feature selection algorithm is therefore able to
adapt to the distortion in the signal or channel of the

imaging system intelligently, as shown in the above
example. We study the e�ect of the distortion in a
more systematic manner next.

Example 5 In this example, we study the e�ect of
increasing the noise content in one band on the rel-
ative importance of it estimated by our method. We
consider a 5 band random stereogram with equal in-
formation content in each band. With no noise, our
estimation scheme came up with almost equal weights
to each band. Noise level was progressively increased
in one band, resulting in poor disparity maps with e-
qual weights. The results improved when the estimat-
ed weights were used for the bands. The weight of the
noisy band become smaller as the noise content was
increased. Figure 3 plots the change in the weight of
the noisy band against the standard deviation of the
Gaussian noise added. The plot demonstrates that the
selection criterion captures the noise characteristics
well.

Convergence is a critical point in any iterative al-
gorithm. We now study the numerical properties of
the convergence of our estimation algorithm

Example 6 The total change in weight (jjWnew �
Woldjj is shown at the end of each iteration of the
estimation process in Figure 2(d) for the Exam-
ple 3. Monotonic convergence can be observed from
the graph. It can also be seen that the convergence
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Figure 2: (a) Disparity map using the estimated weights for pairs considered in Example 2. (b) Disparity map
with equal emphasis on all bands for a noisy random colour stereogram. (c) Disparity map for the same after
feature relevance estimation. (d) Convergence rate of the iterative algorithm. Note the sharp fall in change in
weights in the initial phase.

was fast and that the weights changed little after 5 or
6 iterations. This is our experience with other exam-
ples also. It is also true that the �rst few iterations
bring about the most changes in the weights.

5 Discussion

5.1 Computational Implications

We will look at the additional computational cost of
multifeature integration framework we presented. The
feature vector grows in dimension as more features are
used in the matching process. The e�ort required to
compute the dissimilarity measure D grows linearly
with the dimension of the feature vector. The weight
matrix adds an extra multiplication for each compo-
nent of the vector. The time to compute the weight-
ed measure DM , therefore, increases only linearly as
more features added. This is highly reasonable as each
feature that participates in the matching process im-
proves the match quality.

The iterative feature importance estimation step in-
volves keeping track of the measure �i for each feature
i at the matching point. This takes a �xed number
of multiplications and additions per pixel per feature.

Computation of the modi�ed weights is done only once
per iteration for each partition Ss. This takes a couple
of operations for each feature per iteration. Hence the
total time taken to modify the weights is linear in the
number of features per pixel per iteration. The main
increase in computation time comes from the itera-
tive nature of estimation process. The matching and
weight updation have to be done a number of times,
depending on the termination criterion. In most cas-
es, a �xed and small number of iterations can suÆce,
since the weights enter into the acceptable region very
quickly in practice.

5.2 Applications

An algorithm implementing the multifeature inte-
gration and estimation framework presented here has
many applications. The pixel correspondence between
two images improves iteratively by optimizing � and
W in turn. The computed set of weights for the fea-
tures will produce good results for all similar images.
Thus, a two stage procedure can be used for a class of
images. First, a representative image pair can be used
to select and weight the features. in the second stage,
the parameters learned in the �rst can be applied to



the entire class of images. Our framework is ideally
suited for such a two stage processing of image pairs.
The two stage processing also has the advantage that
the overhead of optimization is incurred only by the
�rst stage.

A problem for which the two stage algorithm is well
suited is video processing for motion and stereo. The
problem could be to compute frame-to-frame motion
or to compute stereo correspondences between frames
of two video streams. Since the image characteristic-
s do not change much in a video stream, the features
and their weights can be estimated for optimal match-
ing using the �rst few frames. The features so selected
will produce good results for the entire video sequence.
Alternately, the feature weights can be recomputed for
each pair of frames, to be used in the computation of
correspondences for the next. Thus, the feature im-
portances will continue to evolve over time and will
produce good matches since the video properties will
not change appreciably from one frame to the nex-
t. It will be suÆcient to perform two or three iter-
ations of the learning process as the weights change
sharply in the �rst few iterations and change little in
the subsequent iterations as seen earlier. We are in
the process of applying the feature selection strategy
to dynamic stereo sequences, using two algorithms we
proposed earlier, namely the generalized correlation
algorithm [7] and the dynamic programming based al-
gorithm [10].

6 Conclusions

We presented a framework for integrating multiple
features in the computation of pixel correspondences
between two images. Di�erent features work well un-
der di�erent conditions. Therefore, it is important to
select adaptively the best subset of features based on
their e�ectiveness to the speci�c conditions. We pre-
sented an unsupervised, iterative procedure to select
optimal fetures for a given given pair of images. The
results are very promising. Multifeature integration
based on their relative perfromance can be applied
to any basic correspondence �nding algorithm. All
that is necessary is a match measure that incorporates
multiple features and a performance measure to gauge
the e�ectiveness of each feature in the matching pro-
cess. The multifeature integration framework we pre-
sented does increase the computation time. However,
with the ever increasing computational power per unit
cost, the additional computations are justi�ed for the
tremendous improvement in the matching quality the
framework brings.
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