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Abstract

A single view of an object may not contain suÆcient
features to recognize it unambiguously. Further, the
entire object may not �t in the camera's �eld of view.
This paper presents a new on-line recognition scheme
for the recognition and pose estimation of an isolated
3-D object. Our approach is independent of the in-
ternal parameters of the camera. The scheme uses a
probabilistic reasoning framework for recognition and
planning. Our knowledge representation scheme en-
codes part-based information about objects as well as
the uncertainty in the recognition process. This is used
both in the probability calculations as well as in plan-
ning the next view.

Keywords 3-D Object Recognition, Next View Plan-
ning, Pose Estimation, Inner Camera Invariants

1 Introduction
In this paper, we present a new on-line scheme for

the recognition and pose estimation of an isolated 3-D
object using reactive next view planning. We consider
an uncalibrated projective camera, and consider the
case when the internal parameters of the camera may
vary.

Most model-based 3-D object recognition systems
use information from a single view of an object. How-
ever, a single view of a 3-D object may not contain
suÆcient features to recognize it unambiguously. Fur-
ther, two objects may have all views in common with
respect to a given feature set, and may be distin-
guished only through a sequence of views. A further
complication arises when in an image, we do not have
a complete view of an object. Figure 1(a) shows such
an example. Such a view could have come from any of
the three models, di�erent views of which are shown
in Figure 1(b), (c) and (d), respectively. Further, even
if the identity of the object were known, the same con-
�guration of parts could occur at more than one place
in the object { it is not possible to know the exact pose
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of the camera with respect to the object from one view
alone. In these situations, multiple observation-based
recognition strategies are needed.

In the context of planning the next view, one needs
a sensor which can be positioned using vision-guided
feedback. Such a sensor is called an active sensor, and
recognition systems using such sensors are referred to
as active recognition systems. Active recognition sys-
tems have been proposed which can work with di�er-
ent assumptions about the nature of the sensors and
the environment, the degrees of freedom between the
object and the sensor, and the object models them-
selves. While our earlier work on isolated 3-D object
recognition through next view planning [1], [2] does
not have the limitations associated with other systems
such as [3], [4], [5], [6], like the others, it su�ers from
two important limitations. First, all these approaches
assume that the object completely �ts into the cam-
era's �eld of view. The second is handling the case
when internal parameters of the camera are allowed
to vary, either unintentionally or on purpose.

2 Part-based Object Recognition
Part-based object recognition systems such as [7],

[6], [8], [9] assume that the object to be identi�ed is
wholly composed of identi�able parts. While the �rst
two use volumetric primitives (which are associated
with a high feature extraction cost), the other two
assume the view of the object to be partitioned into
`appearance-based parts' - Appearance-based methods
have the constraining requirement of segmenting out
the object from the background. While [7] does not
consider multiple views, systems [6], [8], [9] addition-
ally have the overhead of tracking the region of interest
through successive views.

In this paper, we speci�cally consider situations
where a complete view of a 3-D object is not avail-
able. We consider a very general de�nition of the word
`part'. What may be observed are 2-D or 3-D parts of



(a) (b) (c) (d)

Figure 1: (a) The given view of an object: only a portion of it is visible. This could have come from any of the
models, di�erent views of which are shown in (b), (c) and (d), respectively

objects (which are detectable using 2-D or 3-D invari-
ants, for example), and other `blank' or `featureless'
regions which the given set of feature detectors can-
not identify. Thus, an object is composed of parts,
but is not partitioned into a collection of parts.

This paper presents a new on-line recognition
scheme for 3-D objects when the complete 3-D object
does not lie within the camera's �eld of view. The
scheme uses a probabilistic reasoning framework for
both recognition and planning. We propose a hierar-
chical knowledge representation scheme which encodes
both domain knowledge, as well as the uncertainty in
the recognition process. This is used both for proba-
bility calculations, as well as in planning the next view.
An important feature of our scheme is the use of an
uncalibrated projective camera to estimate the pose of
various parts visible in a given view of the object.

3 Pose Estimation using Inner Camera

Invariants

A multi-view 3-D object recognition system needs
pose information for a given view, to generate di�er-
ent hypotheses corresponding to the information ex-
tracted from the view. The next view planning module
uses this information to propose a move from the cur-
rent position to disambiguate between the competing

hypotheses.
We use the basic perspective projection model of a

pin-hole camera [10] to derive new image-computable
constraints which are invariant to the internal param-
eters of the camera. We refer to these constraints as
Inner Camera Invariants. We show that these new
constraints can be used for pose estimation { without
going through the often cumbersome step of camera
calibration. We have described Inner Camera Invari-
ants in detail in an earlier work [11].

The following equation describes the imaging pro-
cess [10]:

�m = PM = A [R j t]M (1)

Here, M = (X;Y; Z;W )T is a 3-D world point, and
m = (x; y; 1)T is the corresponding image point. R

(3� 3) and t (3� 1) are the rotation and translation
aligning the world coordinate system with the camera
coordinate system (the external camera parameters),
and A is the matrix of the internal parameters of the
camera. A may be written as [10]:

A =

2
4 fx 0 u0

0 fy v0
0 0 1

3
5 ; (2)

where fx and fy are the e�ective focal lengths in



the x and y directions and (u0; v0) is the principal
point. Suppose we know three 3-D points, Mp =
(Xp; Yp; Zp; 1)

T , p 2 fi; j; kg, and their images on the
image plane, mp = (up; vp; 1)

T , p 2 fi; j; kg. By elim-
inating the internals of the camera, we obtain
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ui�uj
ui�uk
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; (3)

where Jijk and Kijk are image measurements that
are functions of R (= [r1 r2 r3]

T ), t and Mp (p 2
fi; j; kg), and are independent of camera internals. We
may write the above equations as:

�
Jijk = fijk(R; t;Mi;Mj ;Mk)
Kijk = gijk(R; t;Mi;Mj ;Mk)

(4)

Jijk andKijk are Inner Camera Invariants { image
measurements that are independent of the internals of
the camera.

Suppose we know the Euclidean coordinates
(Xi; Yi; Zi; 1)

T of 5 points in the world coordinate sys-
tem. Six independent (inner camera) invariant mea-
surements give us six equations. For a 4-DOF case
(e.g., a setup with one rotational degree of freedom
and all three translational degrees of freedom), Four
independent (inner camera) invariant measurements
result in four equations. These equations can be solved
numerically, for pose estimation using an uncalibrated
camera and known landmarks. The solutions in gen-
eral, require non-linear optimization. In [11], we also
show two special cases where it is possible to obtain
closed-form linear solutions for pose estimation. Since
these impose a special structure on the landmarks used
for pose estimation, we consider the general pose esti-
mation case in this paper.

4 The Knowledge Representation

Scheme

We propose a hierarchical knowledge representation
scheme that encodes domain knowledge about the ob-
jects in the model base. Each object Oi is composed
of Ni parts. We represent the jth part of object Oi

as �i;j , 1 � j � Ni. In this context, we de�ne the
following term:

Part-Class A Part-Class is a set of parts, equivalent
with respect to a feature set. In other words, the
set of parts is partitioned into di�erent equiva-
lence classes with respect to a given feature set.
These equivalence classes are part-classes.
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Figure 2: The knowledge representation scheme: an
example

Figure 2 illustrates an example of our knowledge rep-
resentation scheme.

� O represents the set of all objects fOig. An object
node Oi stores its probability, P (Oi)

� A part �i;j has a PART-OF relationship with its
parent object Oi. A part node stores the 3-D
Euclidean structure of its n constituent vertices
[Xi; Yi; Zi]

T , 1 � i � n. (Section 3: n � 5 for the
6-DOF case, and n � 4 for the 4-DOF case.)

� A part node has links with its neighbouring parts.
Each link represents the R and t values i.e., the
rotations and translations needed to go from one
part to its neighbours. Figure 2 shows an example
where the parts nodes form a complete graph.

� C represents the set
of all part-classes fC1; C2; : : : Ckg for all parts
belonging to the objects in the model base.

� A part node �i;j has exactly one link with its cor-
responding part-class node Ck, and the node for
the object Oi, to which it belongs.

5 Object Recognition and Pose Iden-

ti�cation through Next View Plan-

ning
We are given an arbitrary view of an object in our

model base. Let this view containm parts. Our aim is
to identify the given object, and the viewer pose with
respect to it. Our recognition scheme is divided into
three parts:

1. Hypothesis generation
2. Probability calculations, and
3. Next view planning

In what follows, we discuss these three topics in detail.
Figure 3 describes the main steps in our algorithm.



ALGORITHM identify object and pose

(* ------ FIRST PHASE ------ *)

1. initialize object probabilities();

(* Initialize to 1/N *)

2. image:=get image of object();

3. part class info:=identify part classes(image);

IF NO part class observed THEN

make random movement; GOTO step 2;

4. search tree root:=

construct search tree node(

part class info,[Ij0]);
5. compute hypothesis probabilities(

search tree root); (* Eq. 6 *)

6. IF the probability of some hypothesis

is � a pre-determined thresh THEN

exit & call success;

7. expand search tree node(search tree root,

MAX LEVELS); (* Section 5.3 *)

(* ------ SECOND PHASE ------ *)

previous:=search tree root;

expected:=get best leaf node(

search tree root);

8. f[Rjt]g:=compute movements(expected,previous);

make movements(f[Rjt]g);
image:=get image of object();

9. part class info:=identify part classes(image);

IF NO part class observed THEN

(* | backtrack | *)

undo movements(f[Rjt]g);
expected:=get next best leaf node(

previous);

GOTO step 8;

10. IF obs view does NOT correspond to expected

THEN

new node:=construct search tree node(

part class info,f[Rjt]g);
ELSE

modify search tree node with observation(

expected,part class info);

new node:=expected;

11. compute hypothesis probabilities(new node);

12. IF the probability of some hypothesis

is � a pre-determined thresh THEN

exit & call success;

13. expand search tree node(new node,MAX LEVELS);

expected:=get best leaf node(previous);

previous:=new node;

14. GOTO step 8

Figure 3: The Object Recognition and Pose Identi�-
cation Algorithm

5.1 Hypothesis Generation

The input to the system is a view of the given
object. Let this given view contain m parts {
�i;j1 , �i;j2 , . . . �i;jm . From the image information,
we can only identify the part-classes Ck1 , Ck2 , . . .
Ckm (where Ckp and Ckq are not necessarily di�er-
ent) corresponding to each observed part, respectively
(PART � CLASS(�i;jp) = Ckp). The part-classes
may be identi�ed by using 2-D or 3-D projective in-
variants, for example. However, our scheme is inde-
pendent of the particular technique to identify a part-
class. This con�guration of visible parts could belong
to any of the n objects in the model base. Further,
this con�guration could have come from many di�er-
ent positions within the same object Oi.

We wish to generate di�erent hypotheses corre-
sponding to the identity of the observed con�gura-
tion of parts in the image. For the �rst part, we con-
struct hypotheses corresponding to every part node
�i;j , which has an outward link to part-class node Ck1
i.e., every part which belongs to part-class Ck1 . For
every such part, we associate the given image coordi-
nates of the part to the 3-D Euclidean structure of the
hypothesized part (having the same part-class), and
compute its pose. Since we use general pose estima-
tion (Section 2), we use non-linear optimization rou-
tines with rough bounds (� 5o and � 20mm) within
which to look for suitable solutions. Any such part
whose pose does not lie within these bounds is consid-
ered invalid, and is pruned from the list of hypothe-
ses. We repeat this procedure for each observed part
in the image { looking for parts in the model base
which could give consistent hypotheses for the part
being considered, with respect to the existing hypoth-
esized con�gurations. At each stage, we use the pose
information to prune out invalid hypotheses. At the
end of this phase, we are left with a list of hypotheses
of part con�gurations, which could have given rise to
the observed con�guration of parts in the given view.

5.2 Probability Calculations

The given view consists of m parts �i;j1 , �i;j2 , . . .
�i;jm . The hypothesis generation stage computes a
list of valid hypotheses of part con�gurations, which
could have given rise to the observed view. First, we
compute a priori probabilities for each such hypoth-
esis. For N objects in the model base, the a priori
probability of each object before taking the �rst ob-
servation, is 1=N . We need estimates of the a priori
probabilities of di�erent con�gurations of parts that
may occur.

P (�i;j1 ; �i;j2 ; : : : �i;jm) =



P (Oi) � P (�i;j1 ; �i;j2 ; : : : �i;jm j Oi) (5)

We may form estimates of P (�i;j1 ; �i;j2 ; : : : �i;jm j Oi)
by taking a very large number of views of the given
object from di�erent positions, and di�erent values of
the internals of the camera (the focal length, for exam-
ple on which the �eld of view of the camera depends)
| this is done o�-line, before taking the �rst obser-
vation.

For an observation, we compute the a posteriori
probability of each hypothesized con�guration using
the Bayes rule:

P (�i;j1 ; �i;j2 ; : : : �i;jm j Ck1 ; Ck2 ; : : : Ckm)

= Numerator=Denominator (6)

where Numerator is given by

P (�i;j1 ; �i;j2 ; : : : �i;jm) �

P (Ck1 ; Ck2 ; : : : Ckm j �i;j1 ; �i;j2 ; : : : �i;jm)

and Denominator, by

X
[ P (�l;j1 ; �l;j2 ; : : : �l;jm) �

P (Ck1 ; Ck2 ; : : : Ckm j �l;j1 ; �l;j2 ; : : : �l;jm) ]

The summation in Denominator is for all objects
Ol, and all possible con�gurations of parts within
the object. Because of the IS � A relation be-
tween a part and a part-class in our knowledge rep-
resentation scheme (Section 4), each of the terms
P (Ck1 ; Ck2 ; : : : Ckm j �l;j1 ; �l;j2 ; : : : �l;jm) is 1 for
all parts belonging to a particular part-class and 0,
otherwise.

We now compute the a posteriori probability of
each object in the model base:

P (Ol) =
X

P (�l;j1 ; �l;j2 ; : : : �l;jm j Ck1 ; Ck2 ; : : : Ckm)

(7)
The summation is for all con�gurations of parts
�l;j1 ; �l;j2 ; : : : �l;jm belonging to object Ol, which
could have given rise to the given view containing
part-classes Ck1 ; Ck2 ; : : : Ckm . Each object node in the
knowledge representation scheme updates its proba-
bility with values from Equation 7.

5.3 Next View Planning

If the probability of no hypothesis is above a prede-
termined threshold, we have to take the next view to
try to disambiguate between the competing hypothe-
ses. The state of the system may be described in terms
of the competing view interpretation hypotheses, and
the set of R and t movements made thus far. The
planning process aims to determine a move from the

current step, which would uniquely correspond to ex-
actly one part-con�guration for one object. Our search
process uses a search tree for this purpose. The aim is
to get to a leaf node { one corresponding to a unique
part-con�guration. A search tree node is expanded
for each part in a view interpretation hypothesis. The
moves from a viewpoint are based on the pose infor-
mation calculated using inner camera invariants (Sec-
tions 3 and 5.1). Here, we assume that the principal
point of the camera is somewhere near the centre of
the image. However, we do not assume that we know
is value in any way, nor do we assume it to be �xed.
The �rst move gets the expected part in the camera's
line of view. The subsequent moves are from the cur-
rent expected part to its neighbours, using the R and
t relations between parts in the knowledge represen-
tation scheme (Section 4). Thus, the only signi�cance
of the above assumption is to maximize the chance of
the expected part to be present in the camera's �eld of
view. This o�ers some robustness to small movement
errors. Further, a zoom-in/zoom out, or focusing op-
eration may be performed. If the principal point is
near the centre of the expected part, chances of hav-
ing the expected part in the camera's �eld of view and
hence detecting it, are higher than otherwise.

Due to the exponential space and time com-
plexity corresponding to search tree expansion, one
may expand the search tree only to a �xed depth
(MAX LEVELS in Figure 3). We now use three stages
of �ltering to get the best leaf node or pseudo-leaf node
(a node which has no child nodes, but does not cor-
respond to a unique part, but has not been expanded
due to the �xed maximum search depth from a node).
First, we consider those leaf/pseudo-leaf nodes which
lie along a path from the most probable hypothesized
view interpretation in the search tree node correspond-
ing to the previous observation (the `previously ob-
served node'). For each node in the search tree, we
assign the weight slevel, where s represents the number
of hypothesized view interpretations corresponding to
this node, and level is the search tree level (depth)
the node lies on. The rationale behind this strategy is
to favour nodes with low ambiguity among the di�er-
ent hypothesized view interpretations, and those cor-
responding to less movement cost. A leaf/pseudo-leaf
node also stores the sum total of the weights of all
nodes which lie on the path to it, from the previously
observed search tree node. From among those leaf and
pseudo-leaf nodes selected in the �rst stage, we select
those with minimum total weight. The third stage
of �ltering concerns a setup limitation { our camera
setup can achieve more accurate translational move-



ment compared to a rotational one. From among the
second stage selections, we choose a node having the
least number of rotational movements.

The system makes the required movements
fh Rx; Ry; Rz ; tx; ty; tzig, and takes an image at this
position. We then �nd out the part-class information
corresponding to this image. Similar to the process
in Section 5.1, we generate di�erent interpretation hy-
potheses corresponding to this view, for the particu-
lar sequence of R and t movements taken to reach
this particular viewpoint. We now check if this ob-
served con�guration of parts corresponds to the best
leaf/pseudo-leaf node. Since we do not make any as-
sumption regarding the knowledge of the camera in-
ternal parameters or their constancy, we do not make
any assumptions about the �eld of view of the camera.
We simply check if the observed con�guration of parts
corresponds to the expected node. This is a simple
way to make the system robust to slight movement
errors, or intentional/unintentional changes in the fo-
cusing and �eld of view. Since we do not predict any
view which might be observed, even if some parts in
the vicinity of the expected part are not detected (due
to feature detection errors), this does not a�ect the
system in any way. Another important consequence of
this fact is the robustness of the system to the presence
of clutter in a view. If the current observation does
correspond to the expected search tree node, we up-
date the search tree node with the information from
the current view (Step 12 in Figure 3). We compute
the probabilities of each view interpretation hypothe-
sis. If the probability of some hypothesis is above a
the predetermined threshold, we declare success, and
exit. The pose of the camera with respect to the ob-
ject is the one corresponding to this hypothesis, and
the parts corresponding to the view are the ones in
this view interpretation.

If the current observation does not correspond to
the expected search tree node, we search for the
node corresponding to this observation among all
leaf/pseudo-leaf nodes corresponding to the move-
ments made from the previous viewpoint. If we �nd
one, then we repeat the process described in the pre-
vious paragraph. If not, we undo the current move-
ments, get the next best leaf node, and proceed (Fig-
ure 3, step 11).

If the probability of no hypothesis is above the
threshold, this node needs to be expanded further.
The system �nds out the best leaf node again, and
the entire process is repeated.

Figure 4: The 7 part-classes which the 459 parts be-
long to, for our model base: DW4, DW6L, DW6R,
OPEN , DW8HANDLE, DW8T , and DW12, re-
spectively in row-major order.

6 Experimental Results & Discussion
Our experimental setup has a camera system with

4 degrees of freedom - translations along the X-, Y-
and Z- axes, and rotation about the Y- axis. We
have experimented with a set of architectural models
shown in Figure 1. We have chosen as (2-D) parts
the doors and windows of di�erent shapes and sizes
in the models. We have chosen this set of models
because of the large number of parts grouped into a
few part-classes { this ensures a very high degree of
interpretation ambiguity associated with a particular
view of a few parts of the given object. Model LH
(Figure 1(a)) has 167 parts, model DS (Figure 1(b))
has 170, while model GH (Figure 1(c)) has 122. Fig-
ure 4 shows the 7 di�erent part-classes these 459 parts
(of di�erent sizes) correspond to. The 7 part-classes,
with the number of parts corresponding to each,
are DW4(374), DW6L(24), DW6R(24), OPEN(21),
DW8HANDLE(6), DW8T (6), and DW12(4), re-
spectively. Given a particular view of the object,
we �rst segment the image using sequential labeling.
Then we detect corners as intersection of lines on
the boundaries of `dark' regions. We use 2-D projec-
tive invariants using the canonical frame construction
method [12] for recognizing all part-classes (except the
4-cornered ones, for which we use grey-level informa-
tion near their centroids). Figures 5 { 8 show some re-
sults of experimentation with the objects in our model
base. The detected corners and parts are shown su-
perimposed. Each of these experiments shows that
the planning to get to the centre of the expected part
(Section 5.3) provides some immunity to small move-
ment errors and changes in the camera's �eld of view.
For our experiments, we have adopted a stricter cri-
terion for program termination than the probability
of a particular hypothesis in an observed node being
above a threshold. We stop when there is exactly one
hypothesis possible for the observed node.

The initial view in Figure 5 shows two parts with
part-classes DW8T and DW4. For the �rst part



Figure 5: Experiment 1: The sequence of moves re-
quired to identify the object and its pose. The failure
to detect a part does not a�ect the system (details in
text).

Figure 6: Experiment 2: The sequence of moves re-
quired to identify the object and its pose. The parts
in the initial view do not lie in the same plane.

alone, there are 6 hypotheses. Of the 6 hypotheses
formed on including the information from the second
part, 4 are pruned out since the estimated pose of
the second part comes out to be invalid (Section 5.1).
The system takes the required movements, and the
view observed is the second image in Figure 5. This
view contains the expected part, as well as a couple of
neighbouring parts. Here, the system fails to detect
the part corresponding to part-class DW6. The pres-
ence of the neighbouring parts (their part-classes, and
their pose information) is consistent with that of the
expected part (centre of the bottom row). Thus, this
feature detection error does not a�ect the performance
of our algorithm in any way.

Scenes containing a small number of parts belong-
ing to part-class DW4, have a very high degree of
ambiguity associated with their interpretation. This
is due to the large number of parts belonging to part-
class DW4 { 374. Due to this reason, we use a depth-
restricted search tree expansion method. We present
results of experiments where the �rst view contains a
pair of DW4 parts (Experiment 2), and �nally, only
one DW4 part (Experiments 3 { 4).

Here, we present an example where the parts in the
initial view do not come from the same plane. Figure 6
shows the moves taken by the system to identify the
object, and the pose of the camera with respect to it.
For the �rst part in the �rst image, 374 hypotheses

#

. # &

(a) �! (b) �! (c)
The camera progressively zooms out

Figure 7: Experiment 3: For the same �rst two views,
we progressively zoom out the camera in three stages.
(a), (b) and (c) depict the three views which the cam-
era sees, for the third view. This does not a�ect the
recognition system in any way (details in text).

are proposed, out of which the part pose estimation
prunes out all but 115 hypotheses. The information
from the second part results in a hypothesis list of
size 87. The system plans a move to disambiguate
between the di�erent hypotheses. This corresponding
move takes us to a view (the second image in Figure 6),
whose view interpretation is unique.

For the next experiment (Figure 7), we changed
the zoom parameter of the camera, thus changing
the e�ective focal length of the camera system and
consequently, its �eld of view. The �rst view could
have come from 257 con�gurations of two adjacent
parts with part-class DW4. We need three image
processing operations (2 moves) to recognize the ob-
ject and its pose, uniquely. In this case, we repeated
the experiment for various values of the camera zoom-
out at the third camera station. The expected part
is the large 4-cornered window, GH W 15. Since
our strategy does not make any assumptions about
the �eld of view of the camera, the recognition re-
sults are the same in each of the cases | (a), (b)
and (c) in Figure 7. Further, the camera pose with
respect to part GH W 15 in these three cases are
h 9:425o; �22:000mm; �9:999mm; 150:000mm i,
h 9:888o; �22:000mm; �9:999mm; 150:000mm i, and
h 9:896o; �22:000mm; �9:999mm; 150:000mm i, re-



Figure 8: Experiment 4: The �rst, third and fourth
views are cluttered by the presence of a tree. The
image at the bottom shows an overall view. The cor-
responding window is highlighted with a black square.

spectively.
In Experiment 4, The �rst-level pruning results in

304 hypotheses, which reduces to 5 for the third view.
The presence of a tree (an unmodeled object) accounts
for clutter in the �rst, third and fourth view of Fig-
ure 8. Here, our system is able to perform correct
recognition even in the case of clutter.

7 Conclusions
This paper presents a new scheme for the recog-

nition of an isolated 3-D object through on-line next
view planning, when only a portion of it is visible to
the camera. The system uses an uncalibrated cam-
era, and uses inner camera invariants for pose recog-
nition. Our knowledge representation scheme is used
both for probabilistic hypothesis generation, as well
as in planning the next view. Experiments show abil-
ity of the system to correctly identify objects and their
pose even when there is a high degree of interpretation
ambiguity associated with the initial view.
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