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Abstract

We present an algorithm for tracking objects in a

video sequence, based on a novel approach for motion

detection. We do not estimate the velocity �eld. In-

stead we detect only the direction of motion at edge

points and thus isolate sets of points which are moving

coherently. We use a Hausdor� distance based match-

ing algorithm to match point sets in local neighborhood

and thus track objects in a video sequence. We show

through some examples the e�ectiveness of the algo-

rithm.
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1 Introduction

Tracking a moving object in a video sequence is
an important application of image sequence analysis.
Tracking is useful in many problems [12, 10, 8, 7, 6],
like collision avoidance, survelliance, gesture recogni-
tion, distance education with live teacher, searching
sport clips, etc.

In most tracking applications a portion of an object
of interest is identi�ed in the �rst frame and we need
to track its position through the sequence of images.
Ideally, if the object to be tracked can be modeled
well so that its presence can be inferred by detect-
ing some feature sets in each frames we can look for
objects with required features. Many generic features
such as, active blobs, Kalman snakes or characteristics
of object boundary are used as features [9, 11]. If the
object of interest is highly articulated then features
based detection would be good [11, 12, 7]. Weather
or not we can identify characteristic features of an ob-
ject, motion analysis is very useful for tracking. This
is because if we can estimate the motion of the object
of interest then we know where to look for the object
in the next frame, thus saving a lot of computation in
search and feature extraction. Most methods use some
motion estimate techniques. The Optic Flow Equation

(OFE) [1] based techniques give a good estimate of 2D
velocity �eld. 3D motion techniques based on point
correspondence can give the real motion of the object
as oppose to the 2D techniques that can detect motion
only relative to the camera. Using estimated velocity
�elds we can predict where the object would be in the
next frame and then look for the appropriate features
in that region in next frame. Bretzner and Lindeberg
[5] show how the performance of feature trackers can
be improved by building a view-based object repre-
sentation consisting of qualitative relations between
image structures at di�erent scales. Blake and Isard
[15] track outlines and features of objects, modeled as
curves. They established a stochastic framework for
tracking curves in visual clutter using a sampling algo-
rithm. Rehg and Cham [13] have used a probabilistic
multiple-hypothesis framework for tracking highly ar-
ticulated objects.

Our method for object tracking is based on the idea
that we do not need full velocity �eld for tracking ob-
jects. Here we show that information about direction
of motion at the boundary points of an object is suf-
�cient for tracking purposes. Our method works as
follows. We �rst detect direction of motion at each of
the edge points using an algorithm based on a sim-
ple cooperative network [4]. In the implementation
presented here, this results in each of the edge points
getting stamped with one of the eight directions of mo-
tion or a label of no motion. Thus edge points of each
frame are now segregated into clusters of coherently
moving points. Some of the clusters would correspond
to the boundary points (and may be interior points) of
the portion of object of interest. Hence, if we identify
a piece of object of interest in one frame, it can be
tracked across the sequence of frames using point set
matching techniques. We use a simple Hausdor� met-
ric based algorithm for matching point sets. Since our
method of motion detection gives only 2D motion, the
2D shape of the object (and hence of our point sets)
does change across the frames if the object is under-



Figure 1:

going 3D motion. However across successive frames
the shape change is small and our point set matching
algorithm is generally robust enough for this purpose.
All the same, our algorithm is best suited for the ap-
plication when most of the motion of an object is in a
plane perpendicular to the camera axis, e.g. distance
education with live teacher, survelliance, searching s-
ports clips, etc. The method as presented here uses no
information other than that obtained from our motion
direction detector. However any extra knowledge re-
garding the apparent shape of the object or any other
object feature, if available, can be easily incorporated
into the matching algorithm.

2 Object Tracking Algorithm

Our algorithm has two main parts: Detection of
motion direction at edge points, matching of point
sets. Each of them are explained in the next two sub-
sections.

2.1 Motion direction detection

Our motion direction detection is a cooperative dy-
namic system that, at each step, updates motion di-
rection at each point based on the detected motion at
the previous step (the current state of the dynamic
system) and the next image frame (the current input
to the dynamic system). The intuitive idea behind
such motion detection can be explained as follows.

Consider detection of motion direction at a point
X shown in Fig 1. If we have detected in the previous
time step that many points (shown as A, B, and C)
to the left of X are moving towards X, and if X is `a
possible object point' in the current frame, then, it
is reasonable to assume that part of a moving object,
which is to the left of X earlier is now at X. General-
izing this idea, any point can signal motion in a given

X
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Figure 2: Region of support for X (a) in ! direction
(b) in % direction

direction if it is a possible object point and if suÆcient
number of points `behind' it have signalled motion in
the appropriate direction earlier.

The state of our dynamic system is represented by
a binary vector with components St(i; j; k); 1 � i; j �
N ; k = 1; � � � ; 8; t = 1; 2; � � �. Here the image size is
NxN and t denotes time or frame number in the image
sequence. St(i; j; k) = 1 represents that at time t, the
point (i; j) has motion in direction k (St(i; j; k) = 0;8k
corresponds no motion). Given St(: : :), the curren-
t state of the dynamic system, and the next image
frame, our algorithm updates St into motion St+1. As
explained in the previous paragraph the updation is
based on evaluation of support for motion in an ori-
ented non-symmetric neighborhood around the point
(i; j). The shape of neighborhood is shown for two
di�erent motion directions (two di�erent values of k)
in Figure 2. Given below is the equation to update
St. The updation goes in two steps. We �rst cal-
culate the support for motion in di�erent directions,
denoted by S`

t+1(i; j; k) and then threshold it to obtain
St+1(i; j; k).

S0t+1(i; j; k) = f(A �
P

(m;n)2Nk(i;j)
(St(m;n; k)

�FB(m;n; k)) +B � I(i; j)
�C � Lk(i; j)� �)

(1)

where,
St(i; j; k) is the motion detector output for direction
k at (i; j) at time instant t.
(i; j) is coordinate of a point and k is a direction of
motion.
A is called Lateral Excitation Weight, A > 0
B is called Edge Excitation Weight, B > 0
� is a threshold, � > 0

I(i; j) =

�
1 if (i; j) is an edge point
0 otherwise



Lk(i; j) =

8<
:

1 if, locally, edge at (i; j) is in
direction k

0 otherwise
Nk(i; j) is the excitatory neighborhood (as illustrat-

ed in Fig.2) at (i; j) in the direction k, and

f(x) =

�
x if x > 0
0 if x � 0

FB(i; j; k) is a `feedback' signal determined as follows,

if(S0
t+1(i; j; kmax)�

1

7
�
P

l6=kmax
S0
t+1(i; j; l))

> (Æ � S0
t+1(i; j; kmax))

then

FB(i; j; kmax) = 1 and FB(i; j; l) = 0; 8 l 6= kmax

else

FB(i; j; k) = 1 8 k

(2)
where kmax = argmaxl S

0
t+1(i; j; l)

We binarize S0t+1(i; j; k) to obtain St+1(i; j; k) i.e.

St+1(i; j; k) = �
�
S0t+1(i; j; k)

�
(3)

�(x) =

�
1 if x > 0
0 if x � 0

(4)

The constants A;B; � in eq(1), the size of neigh-
borhood Nk and the parameter Æ in calculation of FB
are the parameters of the algorithm.

The intuition behind motion updation as speci-
�ed by eq (1) is as follows. The value of S0 is de-
termined by essentially three terms, two of which
are positive and one is negative. The �rst term, in
the argument of f in eq (1), counts the amount of
support in an oriented neighborhood for motion at
(i; j) in direction k, given the motion at the pre-
vious time. The value of A, the lateral excitatory
weight, determines the amount of weightage to be
give to this support. In this term we sum over the
neighborhood Nk, St(m;n; k) �FB(m;n; k). The feed-
back signal FB(m;n; k) decides whether or not point
(m;n), which is in the neighborhood around point
(i; j), should support motion at (i; j) in direction k.
From eq (2), it can be seen that, generally, the FB

signal assures that each point (m;n) support motion
in only one direction at all (i; j). This is needed be-
cause oriented neighborhood around a point overlap
and hence it is possible to get positive support for
many of such directions of motion at each point. The
feedback essentially segregates such multiple evidence
so that the same evidence is not compared twice, while
gathering support. From eq (2), it is easy to see that
the calculation of FB signal is such that if there is a

predominant motion at a point then such point will
support only one motion direction. Till enough evi-
dence is built up at a point the point is potentially
considered to be capable of supporting motion in al-
l directions. There are two more terms in eq (1) for
gathering support for a motion direction. The positive
term with a coeÆcient B, the edge excitatory weight,
is meant to give a large weight to edge points. This is
because edge point can be thought of as points which
are `object points'. The term with coeÆcient C, line
inhibition weight, is meant to discount the evidence
of the edge point for motion direction k, if the local
edge direction at that point is also k. The threshold
� decides the minimum amount of support needed to

ag motion at a point. We need edge detection to get
I(i; j) and L(i; j). Any edge detector can be used. We
have used non-directional Canny edge detector [2] and
the edge directions are calculated locally.

We also need proper initialization for this dynamic
system. Initialization is done in two cases, To start
the algorithm, at t = 0, we need to initialize motion.
To get S0(i; j; k)8i; j; k, we run one iteration of Horn-
Schunk OFE algorithm [1] at every point. We also
need to initialize motion when a new moving objec-
t comes into frame for the �rst time. This can po-
tentially happen at any time. Hence, in our current
implementation, at every instant, we run one itera-
tion of OFE at a point if there is no motion in a 5x5
neighborhood of the point.

More details of this motion detection algorithm can
be found in [4]. The idea of using feedback as a mean
of segregating evidence, which is useful in many early
vision processing, is discussed in [3].

2.2 Hausdor� Distance based Image
Comparison

Our motion direction detection algorithm segre-
gates edge points into clusters of coherently moving
points. The portion of the object of interest in two
frames would then correspond to such two clusters in
consecutive frames. So, to track an object we need a
method of matching such point sets. We use Hausdor�
distance for this. We need to compare a motion points
set with motion points of a sub-image in the direction
of object motion in the next frame. Since we assume
that object does not move drastically, we search sub-
images in a local neighborhood to �nd object in next
frame.

Given two sets of points A = faig; i = 1; � � � ; n and
B = fbjg; j = 1; � � � ;m , the Hausdor� distance [14] is
de�ned as

H(A;B) = max (h(A;B); h(B;A)) (5)



where,

h(A;B) = max
a2A

min
b2B
jja� bjj (6)

The function h(A,B) is called the directed Haus-
dor� `distance' from A to B. Function h(:; :) is not
symmetric and thus is not a true distance. It identi-
�es the point that is farthest from any point of B, and
measures the distance from A to its nearest neighbor
in B. Thus the Hausdor� distance, H(A,B), measures
the degree of mismatch between two sets, as it re
ects
the distance of the point of A that is farthest from any
point of B and vice versa. Intuitively, if the Hausdor�
distance is d, then every point of A must be within a
distance d of some point of B and vice versa. Primar-
ily the motion of a moving object will be translation
in consecutive frames. Every iteration, based on cur-
rent motion direction we take a few sub-images (of
motion points), Xk; k = 1; � � � ;K, from next frame.
The Hausdor� distance is measured between the mo-
tion points in Xk and object O. Also note that Haus-
dor� distance computation di�ers from many other
shape comparison methods as no correspondence be-
tween the points in the two sets is attempted. The
complete pseudo code for tracking is given below.

1. Let t = 1.

2. Select an object, O, from frame, Ft.

Run Motion detector on Ft. Find the

direction of motion for object O (that

is, majority direction of motion of

moving points in O). Let Om denote the

point set of moving points in O.

3. Set t = t + 1. Get next frame Ft and run

motion direction detector.

4. for ( sub images, Xk in motion direction

of O )

k̂ = argminkH(Xk; Om)

5. Update object, O  X k̂ and direction of

motion for object O.

6. Go to 3.

3 Simulation
In this section, we present some simulation results

of object tracking on two video sequences. Note that
the tracking is done without actually estimating dense
motion �eld. For the simulations we have taken A =
100, B = 800, C = 500, � = 1000 and Æ = 0:7 in our
motion detection algorithm.

Figures 3 and 4 give the details of the result-
s. The square marked in Fig.3 (a) is the object s-
elected. Fig.3 (a){(f) show image frames (at time
t = 3; 6; 10; 14; 25; 35) in a video sequence where t-
wo men are walking towards each other and the result
of tracking is marked by a rectangle. In Fig 3(d), at
time t = 14, we see that the two men are overlapping.
Since our model separates motion directions correct-
ly, we are able to track object even during occlusion
like this. Fig.4 gives tracking results for another video
sequence where we track tail of an airplane 
ying up.

4 Conclusion
In this paper we presented a tracking algorithm

based on a novel idea of motion direction detection.
This motion detector gives global coherent motion.
The results of tracking just based on motion direc-
tion are good and fast. Such tracking is very useful
for various application like survelliance, distance edu-
cation with live teacher, searching sport clips etc. We
do not need to estimate velocity vector at each lattice
point to track an object. In some application (e.g. in-
terception), if the exact value of velocity is required
then it could also be locally calculated.

References
[1] B. K. P. Horn and B. G. Schunck, Determining

optic 
ow, Arti�cial Intelligence , V 17, 1981,
pp. 185{203

[2] John Canny, A Computational Approach to
Edge Detection, IEEE Trans. Pattern Anal.
Machine Intell. Vol PAMI-8, 6 (1986) pp. 679{
698.

[3] P. S. Sastry, S. Shah, S. Singh, K. P. Unnikrish-
nan, Role of Feedback in Mammalian Vi-
sion: A New Hypothesis and a Computa-
tional Model, Vision Research, Vol 1, pp 131-
148, Jan 1999.

[4] Prashanth Nayak K., Shesha Shah, P. S. Sastry,
A Feedback Based Algorithm for Motion
Detection, Communication Control and Sig-
nal Processing-2000, organised by IEEE seciton,
Bangalore, INDIA, Jul 2000.

[5] Lars Bretzner, and Tony Lindeberg, Qualitative
Multi-Scale Feature Hierarchies for Object
Tracking Technical report ISRN KTH/NA/P{
99/09{SE

[6] Blake, A., Bascle, B., Isard, M., and Mac-
Cormick, J., Statistical models of visual
shape and motion. Phil. Trans. R. Soc. Lond.,
A(356), 1283-1302,(1998).



[7] Bregler, C., Learning and recognizing human
dynamics in video sequences, In Computer
Vision and Pattern Recognition (pp. 568-574),
1997.

[8] Cedras, C. and Shah, M. , Motion-based
recognition: A survey, Image and Vision
Computing, 13(2), 129-155, (1995).

[9] Dickinson, J., Jasiobedzki, P., Olofsson, G., and
Christensen, H., Qualitative tracking of 3-d
objects using active contour networks, In
Computer Vision and Pattern Recognition (pp.
812-817),(1994).

[10] Duric, Z., Rivlin, E., and Rosenfeld, A. , Un-
derstanding object motion, Image and Vision
Computing, 16(11), 785-797,(1998).

[11] Heisele, B., Kreel, U., and Ritter W. , Tracking
non-rigid, moving objects based on color
cluster 
ow, In Computer Vision and Pattern
Recognition (pp. 257-260), (1997).

[12] Gavrila, D. and Davis, L. 3-d model-based
tracking of humans in action : a multi
view approach, In Computer Vision and Pat-
tern Recognition (pp. 73-80). (1996)

[13] T.J. Cham and J.M. Rehg. A multiple hy-
pothesis approach to �gure tracking, In
Proc. IEEE Conf. on Computer Vision and Pat-
tern Recognition, volume II, pages 239-245, Fort
Collins, CO, 1999

[14] Daniel P. Huttenlocher and William J. Rucklidge
, A Multi-Resolution Technique for Com-
paring Images Using the Hausdor� Dis-
tance . Technical Report :cstrl.cornell/TR92-
1321, December 1992

[15] Blake,
A. and Isard, M. Condensation - condition-
al density propagation for visual tracking,
IJCV 1998. ftp://ftp.robots.ox.ac.uk/pub
/ox.papers/VisualDynamics/ijcv98.ps.gz



(a) (b) (c)

(d) (e) (f)

Figure 3: 2 men walk sequence (a) at t = 3, tracking head of a man marked inside a box. (b) at t = 6 (c) at
t = 10 (d) at t = 14 (e) at t = 25 after occlusion (f) at t = 35

(a) (b) (c)

Figure 4: Air plane sequence (a) at t = 3, tracking tail of a plane marked inside a box. (b) at t = 10 (c) at t = 20


