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Abstract

We present a framework for tracking contours in 2D im-
age sequences by taking into account the motion informa-
tion and correspondence between contour points. With this
framework, The tracking problem can be divided into two
steps: i) Contour detection using general internal and ex-
ternal energies in separate frames, and ii) Tracking and re-
fining contours using motion information of the entire image
sequence. In addition to the traditional internal and exter-
nal energies, we introduce two new constraints in the tem-
poral domain which we call temporal internal energy and
temporal external energy in the post processing stage. The
temporal internal energy smoothes the contours by mini-
mizing the velocity difference between neighboring contour
points and the temporal external energy pushes the contour
points toward their best location according to their cor-
responding points in the preceding image. We show the
performance of the new constraints with synthetic image
sequences and also present the post processing results for
medical image sequences.

1. Introduction

Snake is an energy minimizing model which is popularly
used for automatic extraction and tracking of image con-
tours. As an active curve, snake moves under the control of
image forces and the curve properties. The image forces,
usually related to the image gradient, push the snake toward
the boundaries in images. The curve properties influence
the shape of snake and usually the goal is to get smooth
curves.

Since the snake model was introduced by Kass [10],
many works have been done to improve the performance
of this model. Cohen [8] [7] proposed the balloon model,
Gunn [9] introduced the dual active contour. Both these
models make the snake insensitive to the initial guess and
prevent it from stopping at local minima. Wang [15] in-
troduced the B-Spline representation of snake which is a
multistage active contour model. Leymarie [12] used the
extracted contour of the preceding frame as the initial guess
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for the next frame to track contour through a sequence of
images. In [2][3], in addition to the extracted contour of
preceding frame, optic flow is also used to find the candi-
date contour points for the adjacent frame.

In [12] [2][3], tracking in every frame is a separate 2D
problem except for the propagation of the result from the
preceding frame to the next frame. The advantage of this
scheme is that the selection of the initial position is quite
simple. The selection is only necessary for the first frame.
But if one frame contains missing boundaries, the error will
also propagate to the sequence. To address this problem,
multiple snakes in different frames are necessary. With 2D
contour model applied to each frame, temporal information
from neighboring frames can be used to achieve robust re-
sults. Akgul [4] constrains the smoothness between snakes
in different frames and Chalana [6] also uses the tempo-
ral smoothness in addition to the constraint of distance be-
tween snakes in successive frames. However, the temporal
smoothness is applied to points at different frames. These
points should correspond to each other but the correspon-
dence can not be guaranteed without additional constraints.
Chalana’s distance constraint also needs the assumption of
monotonic motion.

In [2][3], the extracted contour in an individual frame
is refined according to the contours of neighboring frames
with a novel dual snake technique. Contour correspondence
is used and the hard constraint is not considered in this post
processing. While in our approach, image correspondence,
motion information and user feedback will be used to do the
post processing.

2 Why Postprocessing?

Due to the inappropriate smoothness between non-
corresponding points in different frames and the difficulty
of motion estimation, no one model is perfect to track the
boundaries through a sequence of images. Generally, one
can always find that the results from the snake model are
good in some frames but not satisfying in other frames. Cor-
recting the results in every frame by hand is non-trivial and
can not fully utilize the information from correctly tracked
contours in other frames. Sometimes the user of an active



contour system refines the tracked contour in a single frame
by hand and expects that the correction be propagated to
the whole image sequence. Post processing is necessary in
these situations. Post processing should refine the results by
correcting the incorrectly tracked contours in some frames
according to the correctly tracked contours in other frames,
including the corrections given by the user. Our framework
deals with the post processing by using information from
motion, image correlation constraints and user feedback.

Peterfreund [13] applied the velocity control and con-
tour position prediction with general external and internal
energies in a single framework. By introducing the post-
processing stage, we divide contour tracking in 2D image
sequences into two steps: i) Contour detection using gen-
eral internal and external energies in separate frames, and
ii) Tracking and refining contours using motion informa-
tion of the entire image sequence. This strategy separates
the snake initialization problem and motion-based tracking
in two steps, which makes the tracking results more ro-
bust. At the post processing step, the requirement of con-
tour position prediction is removed because the motion es-
timation of contour points can be extracted from the posi-
tion difference of contour points at different frames. Dif-
ferent with [13], which uses variational approach, dynamic
programming is used in our approach. Dynamic program-
ming ensures global optimality of the solution and allows
for hard constraints to be enforced on the behavior of the
solution [5].

3 Snakesfor image sequence and im-
provements

Active contour, snake, can be defined as a set of
points [4][1].
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where (m;1,ms2, M3, m;N) IS an active contour in
frameiand (mq;, maj;, ms;, ...mp;) represents correspond-
ing contour points from frame 1 to frame F for the j** con-
tour point.

Given the contour representation as the above matrix for
an image sequence, the internal energy in one frame can be
defined as

Eru(f) = Y_(Espasmo(mis) + ETemsmo(mig)) (2)
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ETemSmo(mif) =1 (4)
The Espe.smo corresponds to the bending force of the
smoothness term in the original snake formulation. The
Eremsmo 15 the bending force which constrains the bend-
ing of corresponding contour points in different frames.
With this bending force, the motion of the contour points
in the temporal domain is smoothed. The tracking problem
is not limited to a single 2D image anymore. Multiple ac-
tive contours in different frames converge to the boundaries
using both spatial and temporal energies.

The external energy can be defined as the negative of
the gradient of the image intensity and minimization of the
external energy will push the active contours toward high
spatial image gradient areas which are the positions of the
boundaries. In a single frame

Epzi(f) = — Z VI (mig). ®)

The total external energy of a sequence is just the sum of
external energies of all frames. The total energy associated
with the snake in one frame is,

Ea(f) = a1Erni(f) + B1Ega(f) (6)

where a; and 3, are the weighting parameters.

With the temporal smoothness energy defined in Equa-
tion (4), contours in successive frames will affect each other.
Minimizing the temporal smoothness energy should give a
smoothly moving contour in time and this temporal smooth-
ness should be between the corresponding contour points.
However, without an additional constraint, the correspon-
dence cannot be guaranteed and the performance of the con-
straint in the temporal domain is unsatisfied.

To improve the performance of the constraint in the tem-
poral domain, more information of the images such as the
image correspondence should be taken into account. By
introducing the temporal external energy, we combine the
contour correspondence and the image correspondence in a
single framework.

Another constraint we introduced in the temporal do-
main comes from the motion information. In the general
active contour model, neighboring points control each other
by minimizing Espasmo in Equation(3). With the tempo-
ral internal energy that we will talk about in the next sec-
tion, the position of one contour point is affected not only
by the positions of its neighbors but also by the motion of
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Figure 1: The motion of neighboring contour points is close
to each other

its neighbors. Our framework does not need pre-estimated
motion since we can get the contour motion from the posi-
tion difference of corresponding contour points in succes-
sive frames.

4  Tracking Framework With Tempo-
ral Constraints

4.1. Temporal Internal Energy

When tracking contours from an image sequence, we can
approximate the motion of a contour point with the differ-
ence between its position and the position of its correspond-
ing point in the successive frame. If two neighboring con-
tour points in the same frame are close to each other, which
is necessary in order to not lose the details of the contour,
we can assume their motion is very similar. That is, the ve-
locity of the neighboring points along the contour should be
close as in Figure 1. This assumption does not require the
small motion between successive frames in time. It induces
the motion smoothness of neighboring points in space.

For every contour point m;z, we can get its estimated
velocity V:f as:

— — —

Vip = Xigr1 — Xig )

where X1 and X ; are the positions of points ;1 and
m;y respectively.

Based on the observation above, we propose the tempo-
ral internal energy for one contour point:

ETemInt(mif) = al (‘_/;f - ‘Z—lf)‘ +ﬂl
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(8)
where o' and 3’ are the weighting parameters. Minimiz-
ing the Eremrn: Will give the similar motion to neighbor-
ing points along the contour. If the contour in one frame
is smooth, the contour smoothness will be propagated to
the successive frame and the relative positions of the con-
tour points in the successive frame will not change very
much. That means with this temporal internal energy, not

only the contour smoothness but also the similarity between
contours in successive frames is incorporated.

4.2. Temporal External Energy

External energy is the only term that attaches the contour to
the image in a snake model. It is usually related to the im-
age gradient. Sometimes it can also be defined as a function
of the distance to some edge points. The external energy
is usually limited to one single frame as in [4] [6]. Im-
age information from other frames in the sequence does not
constrain the shape and location of a single contour. For
instance, one frame in the sequence may be blurred and the
boundary in it may not have a strong potential to attract con-
tour points. As a result, the active contour of this frame
will lock into an incorrect boundary. Thus, we need to have
a framework where other frames that will potentially have
correct boundaries to influence the incorrect snakes.

Motivated by the temporal internal energy which applies
contour information from neighboring frames to the current
frame, we propose the temporal external energy. It uses
the correlation between corresponding points in successive
frames. Even though the image force in one single frame is
not strong enough, the corresponding points in successive
frames still have a high correlation. Since this constraint
comes from the previous frame and is decided by the image
information, we call it temporal external energy.

Optic flow is also a good choice to be the external force
to drive the snakes in continuous frames [13]. But we are
only interested in the motion of contour points and need to
consider the hard constraints. Correlation is more suitable
and efficient to pick up the best position from the neighbor-
hood for a point, as it is well suited for a dynamic program-
ming implementation.

For point m; ¢ which is the corresponding point in frame
f of point m;;_4 in frame f-1, its temporal external energy
can be defined as:

Erempat(mif) =
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where Zif andEf_l are the intensity mean values of the
region centered around the point m;y and m;¢_;. A and
Bjy, are the intensities of the elements in these two regions.
For some noisy image sequences, we can also use the cor-
relation between their gradient images which are obtained
from the original images’” Gauss blurred images.

With the temporal external energy, the active contours
get more information from images. Contour correspon-
dence and image correspondence are combined together.
Minimizing Eremez:(miy) Will guide the contour point
m;y Move to a better position according to the image in-



formation it can get from its corresponding contour point
m;_1. Since the correspondence between contour points in
successive frames can be guaranteed with this temporal ex-
ternal energy, the temporal smoothness in Equation(4) can
affect the contour shape in a more reasonable way.

4.3. Energy Minimization

Combining the temporal internal and external energy to-
gether, the temporal energy associated with the snake in one
frame is:

Eo(f) = aaBremint(f) + B2EremEat(f)- (10)

Where
ETemInt (f) = Z ETemInt (mzf) (11)

ETemEmt (f) = Z ETemE'zt (mlf) (12)

The energy of the snake in one frame now is:

Esnake(f) = aEsi (f) + BEs2(f) (13)

where E; (f) and Es»(f) are defined in Equations (6) and
(10) respectively.

Given all the energies definition above, we can now write
the optimized total energy of an image sequence as:

ETota.l = min Z ESnake (f) (14)
f

To reduce the computation complexity, based on the dy-
namic programming [5], we approximate Equation (14) as:

ETotal = Z minESnake (f) (15)
f

For an image sequence with & frames, assume that there
are n contour points [ms g, may, ..., My ¢ in one frame and
the search window size for a point is I. The Equation(15)
reduces the computation cost of Equation(14) from O(I™*)
to O(k = I™). But the cost is still an exponentially increas-
ing number with respect to the contour point number in
one frame. Fortunately, the energy formula Equation(13)
can be written in terms of separate energies E1, Es, ..., E,
such that the energy term E; only depends on three contour
points m;_1f,m;f, m;q1¢. The dependence of E; on other
contour points in continuous frames has been removed from
Equation(15).

Eonare(f) = ) Es(mizigymigymigay).  (16)
The energy of end points can be approximated as their
neighbor points’ energy. Based on the above definition, en-
ergy minimization in one frame is decomposed to n sepa-
rated steps. Total computation cost for Equation(15) is re-
duced to O(k*n [?). The details of the decomposition can
be found in [11].

Figure 2: Frames with global affine transformation before
post processing

However, the above optimization is only performed in
separate frames. The global optimal solution defined by
Equation (14) cannot be guaranteed. To overcome this prob-
lem, the optimized result of Equation (14) is calculated
iteratively over the the whole image sequence: 1) mini-
mize Esnqke individually in every frames with dynamic
programming; 2) calculate the total energy Er:q; OVer the
whole image sequence; 3) if Er.q; iS decreased, go back
to step 1). Otherwise the optimization process is stopped.

With this iterative minimization algorithm, in addition
to the reduction in the computation cost, the temporal con-
straints are also applied to neighbor frames in an iterative
way. The correctly tracked result in one reference frame
can be propagated to the whole image sequence.

5 Experiments with medical image
sequences

We have applied our algorithm to medical ultrasound image
sequences and tested the performance of our framework for
post processing. We selected a sequence of ultrasound im-
ages of the tongue during speech. Two pairs of images are
also created according to a synthetic motion using an ultra-
sound image as the reference frame.

Ultrasound images are produced by a Head and Trans-
ducer Support System(HATS) [14] and are very noisy. In
the image producing process, structures such as tendons and
blood vessels within the tongue and noise echo artifacts can
cause high contrast edges unrelated to the interest in ultra-
sound images. In some poor images, the tongue contours
are even discontinuous. These problems make it difficult to
track the contour in the ultrasound image.

5.1 Medical imageswith synthetic motion

To evaluate the performance of our framework with precise
ground truth, we test it with images which are created ac-
cording to the synthetic motion.

5.1.1 Medical imageswith synthetic global motion

We first tested the performance of our framework with a pair
of images in which a global affine transformation is applied.



Figure 3: Frames with global affine transformation after
post processing

Figure 4: Frames with local affine transformation before
post processing

We made the second frame of the pair by applying the same
affine transformation to every pixel in the reference frame.
The reference image is a frame of an ultrasound image se-
quence. Since we know the ground truth of the contour in
the reference frame, the ground truth of the synthetic frame
can be calculated. We intentionally changed some contour
points in the synthetic frame to incorrect positions and only
used the temporal energy to do the post processing.

This pair of images is showed in Figure 2. The contour
of the synthetic frame of this pair has some manually cre-
ated errors, which average to a 4.83 pixel difference from
the ground truth. Figure 3 shows the result after we apply
only the temporal constraints to the synthetic frame. The
errors now average to only a 2.06 pixel difference from the
ground truth.

5.1.2 Medical imageswith synthetic local motion

we tested another image pair in which a local affine trans-
formation is applied. The second frame of this pair is the
result of applying different affine transformations to differ-
ent regions of the reference frame.

To get reasonable local affine transformations for differ-
ent regions, we first analyzed the motion of the tongue con-
tour in an ultrasound image sequence for which we know
the positions of the contours in all frames. Because the ul-

Figure 5: Frames with local affine transformation after post
processing

trasound transducers of HATS are employed in a fan-like
configuration, it is natural to represent every pixel of these
2D ultrasound images with (r, 8) in a polar coordinate sys-
tem.

For every ultrasound image frame we are only interested
in the part which contains the tongue contour. We divided
the interesting part of every ultrasound image frame to 40
regions according to the angle 4 in the polar coordinate sys-
tem. In each region, we selected a contour point as the sam-
ple point to be analyzed.

The affine transformation we applied to all regions is:

R‘g—i_l = (lﬂ'f'i‘ble:
pitt = ¢l (17)

where r{ and 0{ are the radius and angle of the sample point
for the " region in the j** frame respectively. R:** and
67t are the transformation results. a; and b; are the motion
parameters for the i** region. Because of the fan-like con-
figuration of transducers in HATS, we constrain the trans-
formation to be along the radius direction in Equation (17).
The error of the affine transformation for the i¢* region is:

n—1
err; = Z[(aﬂ“{ + bi0;) — rit]? (18)
i=1
where 771" is the radius of the i** sample point in the (j +
1)tk frame.

After getting the local motion parameters for every re-
gion by minimizing the error function in Equation (18), we
created the second frame for the image pair by moving dif-
ferent regions in the reference frame with different affine
motion. Since we know the contour position in the refer-
ence frame, we can calculate the contour positions for the
synthetic frame according to the local affine transformation.

The pair of images with synthetic local motion(affine
transformation) is showed in Figure 4. The contour of the
synthetic frame has some manually created errors, which
average to a 3.71 pixel difference from the ground truth.
Figure 5 shows the result after we apply only the temporal
constraints to the synthetic frame. The errors now average
to only a 0.98 pixel difference from the ground truth.

5.2 Image sequence with real motion

We also tested the post processing with the medical image
sequence in which real motion is presented. The post pro-
cessing is based on the tracking results of tonTrak which is
developed by Akgul [4]. The tonTrak system [4] works well
for the tongue contour tracking problem. This system ap-
plies contour smoothness constraint in the temporal domain
in addition to the traditional constraints applied in every sin-
gle image frame. But due to the problems we talked about



Figure 6: Tracking result before post processing. Circled
contour points are incorrectly located at the tongue bound-
aries

Figure 7: Tracking result after post processing. Incor-
rectly located contour points have been pushed to the tongue
boundaries

in Section 2 and the noise of ultrasound images, there are
still some contour points that are not tracked correctly. Fig-
ure 6 shows some frames of an ultrasound image sequence
with the tracking results of tonTrak [4]. We circled con-
tour points that were not in the correct positions. These
points incorrectly converged before they reached the correct
boundaries, due to the poor image quality. The image infor-
mation in one single image was not enough to push these
points anymore.

With more information from the tongue motion and the
image correlation, our post processing can push these in-
correctly located contour points to the tongue boundaries.
Figure 7 shows the post processing results for image frames
in Figure 6. The positions of these circled contour points
have been corrected.

6 Conclusion

We divide the tracking problem into two steps: i) Con-
tour detection using general internal and external energies
in separate frames, and ii) Tracking and refining contours
using motion information of the entire image sequence. A
temporal internal energy and a temporal external energy are
introduced in our framework.

Experiments performed on synthetic images and ultra-

sound image sequences showed that our framework works
well and properly corrects positions of contour points.
Based on this framework, we are now trying to develop a
tracking framework which can fully utilize the information
from the temporal domain and is insensitive to the initial-
ization of contours.
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