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Abstract

In this paper, we considerthe genesative modelfor affine
transformaions on point setsand showhow a priori infor-
mationonthenoiseandthetransformatiorcanbeincorpo-
ratedinto themodelresultingin more accuate algorithms.
Whileinvariants havebeenwidely used the existinglitera-
turefails to fully accaintfor theuncertairiesintroduecdby
boththe noiseandthe transformation \WWe showhow using
sud priorsleadsto algarithmsfor Bayesiarestimatiorand
a probabilisticinterpretation of invariants which addesses
thelimitationsof currentmethodsWe presensyntheticand
real resultsfor objectrecagnition, image registration and
determiniry objectplanarity to demonstate the power of
usingpriors for image compaison.

1. Intr oduction

In thispapemwe shav haw we canincorporateknowvledgeof
boththetransfamationandnoisepriors into a prokabilistic
analysis of the affine point geneative mocel. This mocel
leadsto different estimatorsjnamelya Bayesianestimate
of posteriorprobaility and a probabilistic interpretation
of the affine invariant. We shav how using such priors
improvesthe performarce of the algaithmsfor registering,
matching andcompaing images.Two of the main criteria
for comparingimagesor imagesto modelsareregistration
erra andinvarants. Thesemethals have a long history
([1, 5]) and togethe with image basedrepresentations
male up the bulk of imagepatternrecoqition techniges.
Algorithmsthatuseregistrationfind thetransfamationthat
minimisesa given residu& error. The differencesbetween
methals are the transfomations(ie. Projectve, Affine,
Euclideanetc.) and the error metricsused. In contast,
invariantsare functions of points that are indepemnlent of
the transfornation andaffine invariantsarewell studiedas
atool for matchingandindexing [8, 5]. Theaffine modé is
also useful sinceplanesunder a weak persgctive camea
mocel behae in anaffine manrer.

The limitation of standardtechnquesis that they do not
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correctly accoun for data noise. Thus in the case of

registraion, thecommory usedleastsquaresnetric might

beinapprgriate. Similarly for affine invariants, invaiance
doesnot hold whenthe datais noisy In sucha case,the
estimateof the invariant will dependon both the amourt

of noise presentand the applied affine transfomation.
Often, for objed recogition theinvarantis compitedand
matchedvith asetof modelsandthemodelwhichis closest
to theestimatan a Euclidearsensdie. usingleastsquaes
of thedifference)is declaedthewinne. Thisis ad-ha@ and
canonly be justified by compuational ease. There have

beena numter of papersunderthe nameof shapespace
(eg. [4] in the statistical literatue) and in the compter
vision literature that have studiedthe impact of noiseon

the invariantin orderto improve recogiition rates[3] and
indexing [6]. However thesemethals do not fully accoun

for all available prior information. While [3] introdicesa
prababilistic affine invariant its analysisonly considershe
effect of noiseon the invariant and doesnot incorpaate
information aboutthe transfamatiors. We point out that
the effect of noiseon theinvariant will alsodependonthe
scaleof the transfornation. If the transfomationis large
thentherelative impactof thenoiseis smallandvice-versa.
Thus this relative effect of the transfomationwill have to

be accouned for in a prokabilistic settingby meansof a
prior ontheaffine transfamatiors.

Therestof the paperis organisedasfollows. Sec.2 briefly
describs the generéive mocel for our caseandSec.3 de-
scribethedifferentestimatorghatfollow from aprobabilis-
tic interpretationof the geneative model. Sec.4 descriles
the resultsof applying our method to the prodemsof ob-
jectrecogiition, imageregistrationetc. andSec.5 will end
with someconclisions.

2. Generative Model for Affine Points

In this sectionwe describethe geneative modelfor affine-
transfamedpoints. The obsered two-dimensionalpoints
y are geneated by an affine transfamation on a modé



m andis corrypted by additve Gaussiamoise. Hence,
y = Am + n whereA is the2 x 2 affine transfornation
matrix! appliedto themodelm andn is theGaussiamoise
adcedwithn ~ N (0, X,). Similarly, theaffinetransfoma-
tionsareassumedio comefrom a Gaussiamlistributioni. e.
A ~ N(pa,Xa). It mustbekeptin mindthattheGaussian
assumptia of thetransformationmodkl prior is only for an-
alytic purppsesandwe caneasilyaccount for non-Gaussian
priors by expressinghis prior asa mixture of Gaussiansin
subsegentanalysis, we will examire the effect of boththe
transfamationandnoisepriors onthe estimationprocess.

3. Estimation Methods

In this section, we will descrile different estimation
methalsasapgied to our generatre mocel.

3.1 BayesianEstimation Method

Sincethe residualerra is d = y — Am and we have
a Gaussiannoise mockl, the condtional probalility of
the obsered datagiven the modelandthe transfornation
is P(y|A,m) = e~ 3(—Am)TS.7 (y-Am) 2 e can
rewrite the term Am = Ma, wherea is the columm-
orderedvecta containng thetermsin A andM is theap-
propriatematrix thatcontainselementsof m. Thus we can
rewrite the corditional probability givenabove as

P(y|A,m) = 6_%(y—Ma)T2n_1(y—Ma) (1)

Now, in our geneative mockl the affine transfomations
aredrawn from a Gaussiardistribution, which impliesthat
a ~ N(ua, Xa).Theefore,the posterio probability of ob-
servirg the pointsgivenamocdel m is obtainedby integrat-
ing out the affine transfamation by meansof its prior, i.

e.

P(y|m) = / P(y|A, m)P(A)dA @)

_ / o= (y—Ma) TS~} (y—Ma) .~} (a—p) TEa "} (a—p1) g

The exponentin Eqn 2 is quadatic in the affine transfor
mation a and hen@ can be solved easily by comgetion
of squares. For the problem of objectrecogition if we
have two mocels m; andm,, we cancompuite the condi-
tional probabilities, P(y|m;) and P(y|m2) and classify
accoding to whichever likelihood valueis higher In [2]

IWhile theaffine transformationhas6 parametersthetranslaion terms
do not affect the invariants. Henceto ensurea uniform comparisornwe
remove the translation termfrom our model. It canbe easily incorpomted
if required.

2Thereis a normalising termthatwill make this a true probalility dis-
tribution. However, unlessexplicitly required in our analysiswe will drop
this normalsing constant for notaional convenierce

a similar prior is usedto contrd the estimateof an affine
transfamationbetweentwo pointsets.

3.2 Affine Invariants

To compue affine invariarts we usethe first threemodé
poirts asthe basis(ie, m;, my, m3). Thewreforeary point
m is describedby its co-adinates(a, 3) in the invariant
spaceTheseco-adinatessatisfytherelationship,

m—m; = o(my —my) + f(mg —my) 3)

The relatiorship in Eqn 3 canbe seento be invariart to
the apgication of an affine transfamation on the modé
points sincem — m; = a(my — m;) + B(m3 — m;) =
Am - Am; = a(Am; — Amy) + S(Amz — Amy).
The “naive” way of usingthe affine invariantsfor objed
recoquition is to compue the affine invariants(c = (a, §))
for a given setof obseved featurepointsy and compare
themwith the modelco-ordnatesc; andcy;. The modé
closesto c is chasenastheclassification As we shallshav
in the next subsectiorthis methal fails to satisactorily
account for the effect of the noiseandthe transfamation
on the estimatednvariart (in particdar onemustnotethe
effectonthebasispoints).

3.3 Probabilistic inter pretation of invariant

Sincein our formuation, the kth featurepoint is given by
yr = Mya + ny andby definition of theinvariant, we have

yi = (1 —ax — Br)y1 + ary2 + Brys. Conseqently, the
noisetermin thekth pointcanbe expressedas

n; =y — Ma
= (1—ar — Br)y1 + ary2 + Brys — Mjia
=[(1 - ag — Br)Mi + axMs + BtM3 — Mi]a

+[(1 — ag — Br)n1 + agng + Brns] (4)

This implies that given the objectmodé andthe affine
co-adinatesthe“estimated’noisein ary featue poirt de-
pend on the 4 paranetersof the affine transfornation (a)
andthe6 paranetersof the noisein the basispoints(i. e. in
n;, ny, n3). Therefae, we have the following condtional
prabability for P(n|M),

/e_%“’“Tz“_ln’“P(a)P(nl)P(nz)P(ng)dadnldngdng

(5)
wherethe term n;, is as given in Eqn. 4. However, the
probability thatwe areinterestedn is P(ay, 8;|M). Thus
we transfam the probaility distribution from n, to that



of (ax,Br) by mears of the Jacobianof the transfoma-
tion betweenthe two variables, i. e. |J| betweern, and
(o, Br|M). Now to expresstherequred protability asan
integral, we corcatenatehe affine transfomationandthe
noisetermsinto asinglevectot x = [a, n;, ny, ng]. There-
fore,

P(ak,ﬂk|M) — e_%s/6_%(x_m“x)TEx_l(x_mu")|J|dX
(6)

whete J is therequiled Jacobiammatrix ands is a corstant
term.FromEqn.4 we seethat

On
—k = [M2 —Ml]a—}—nz —1n = LaX
30tk
% = [Mg —Ml]a+n3 —1ng :LBX
9Pk

where L, andLg areappopriatematrices.Sincetheabore
partial derivatives canbe expressedaslinear constraintsn
x, theentireJacobiarcanberepiesentedisa qualratic ex-
pressiorin x, i. e.|J| = [xTBx|. Butwehave N — 3 affine
co-adinatesthat are beingtransfamed, makingthe effec-
tive transfamation |J|N_3. Therebre, the resultantform
for the probability function P(«, 3|M) is

e—%s/e—%(x—mux)TEx_l(x—mux)|XTBX|N_3dX (7)

whee (a, ) repesentsthe affine co-ordnates for the
obseved poirts. This formulationis similar to that of [3].
However, the affine transfamationprior is alsoincluded in
ouranalysis.

In our solutionto Eqn 7 adoped from [3], the absolde

value is droppedtherebyproviding anappoximatian when
N is evensincethenN — 3 is odd. This apprximation
is reasoable only whenthe covariances¥, and X,, are
small. However for oddpowersof N this solutionis exad.

Thereadelis referedto [3] for detalils.

Also we would like to addessthe issueof nonGaussian
priors for the affine transfomation, a situationthat arises
in real life. Often we canreasonablyappoximate P(A)
asamixtureof Gaussians, e. P(A) = ) .m;G(u;, X;)
where m; is the relative mixing proportion and G(u, X)
derotesa Gaussian.As can be easily seenfrom Eqns.2
and5, we canincomporatethis non-Gaussiarprior into the
analysis dueto thelinearity of theintegral opeator We are
unable to presentresultson this aspectof the prablem in
this paperdueto spaceconstraints.
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Figurel: Therelative errorratesof eachmethod.

Finally, in the standardieast square method the modé

. . ~ 2, .
with the smallestresidualerra, (d = ||y — Aml]|") is se-
lected.Here A is thelinearestimateof A.

4. Experiments

In this sectionwe will descrile expelimentswith syntheic
andrealdatathatdemastratethe power of explicitly incor
porating priors into the geneative modé for objectrecog-
nition andimagecomparison.

4.1 RecognitionAccuracy

In this subsectionwe will describethe perfamanceof
the different algoritms for object recogiition. We will

briefly describethe experimentalproto®l usedand shov
theresultsthancanelucidatethe behaiour of the different
recoquition methals.

For our expeimentswe usedpoint setsthatrange from 4
to 10 pointsin eachdataset. For eachcasewe geneated
two modelsand perfamed recogition using the various
algotithms. Our experimentsaresymmetrici. e. for each
pair of modelsgeneated,we testfor recogition accuray
with one instanceof eachmockl generatig a data set.
Theerrorratesare averaged over 1000 trials (i. e. the av-
eragimg is over (10—3) x 1000 x 2 = 14, 000 experiments).

In ourexperiments,notonly dowe look attheperfamance
of the differert algoritims but we are also interested
in looking at the effect of incorpaating the priors into
our mockels. Theseis of impoartance since we want to
demamstratethe power of usingsuchpriorsin recogrition
andcompaison. Themodds m; andm, aregeneratd by
picking V — 3 affine co-odinates(the other3 pointsbeing
the canoiical basis)using a Gaussiandistribution with a
mean0 andvaiianceof 5. Now for eachinstancewe do



not simply pick an affine transfomation A and noisen

from fixeddistributions. Insteadwe first pick priors for the
transfamation and noise and then use themto randanly

pick instance®f thetransfomationandnoise. Theranges
for the transfamationprior andnoiseare|[0, 5] and|0, 0.5]

respectiely. Themefore for eachinstance,we first pick
the quantitiesoca and o, uniformly from theseranges.
Thus we now constriet two priors >, = oa’Isx4 and
dou = o2l «n Wherel, ., is ann-dimensionalidentity
matrix. Therefterwe drav anaffine transfornation A and
noisevaluesn from )" , and)_  respectiely andgeneate
datapointsy = Am; + n wherei € {1,2},i. e. eachof
thetwo modelsareusedonce.

Since the erra rate for the Bayesianmetha is always
the lowest, we usethis as a lower bound and shav the
relative erras by dividing eachof the erra rateshy the
Bayesiarerra rate. This allows usto focuson the relative
performarce of eachmethodwithout having to accoun
for the actual error rates which will vary accoding to
the dimensiomlity of the prodem (i. e. with the nurber
of points). In Fig. 1 we show the relative error ratesfor

the different method that are appopriately labeled The
methal dueto Leungetal [3] is alsoshavn for compaison.
Obviously therelative Bayesiarerra rateis always1. The
plot labeled“naive invariant” is one where the invariant
for the datasetis compued and compredwith the two
mocklsto find the closestonein the Euclidea sense.This
is of coursethe standardmethal of using an invariant
for recoqnition without using ary prior information and
expectedly doesthe worst amomgst the different methals
(asindicatedby its high value of relative errop. It can
alsobe clearly seenthat our prokabilistic invariant (“prob
invariant”) doessignificantlybetterthan“Leung's method

dueto thefactthatourgeneratie modelandthesubsequen
analsis in Sec.3.3 explicitly incorporatespriors for both
theaffinetransfornation A andthenoisen.

It bearsrepeatig that just the way we use a Gaussian
prior for data noise the knowledge that certain affine
transfamatiors are lesslikely thanotherswill have to be
explicitly accounted for in our mockel. This is obviously
important sincein the processof computing the invariant
the datais scaledby an estimatedaffine transfornation
implying that the scale of the affine transfamation will
detemine the impact of noise on the accurag of the
invariantcomputed. Thusin a truly prokabilistic analysis,
we will needto accountfor the transfomation prior as
is the casewith our prokabilistic invariant. In contiast,
Leurg’s methal canrot usethe prior information of the
affine transfomationandis limited to usingthe knowledge
of thenoiseprior. It is alsoworth noting thata simpleleast
squaes estimationmethod(that doesnot useary priors)

doesbetteror aswell asthe prokabilistic invariantmethal.
This could probably be attributedto the lossof information
thatresultswhenwe compessthe N pointdatainto N — 3
affine co-odinates(ie. the invariant). Thereis no such
compessionof informationin the full Bayesianmethod
resultingin the highestaccurag. However, in the evert
we are interestedin compuing an invariant and using
it for object recanition, our experiments demastrate
that we shoulduseall the prior information available and
incomporateit into our prokabilistic analysis.

Theresultsin Fig. 1 shov the erra ratesthat usesa fixed
prior which is the averag of the priors used, since in
real-life we do not always have full knowledge of the
uncerlying prior. It is interestingto note that Leunds
metha’s perfamanceis similar to that of the naive invari-
antwhile our probabilisticmethodhasbetterperformarce.

4.2 Lik elihood Ratios for matching sets

To usetheprobabilitiesdefinedearlierfor hypothesigesting
we will have to compae themwith a threshold Hencewe
needo “normalise”theprababilitiesfor meanimful thresh-
oldsto bedefined.In thecaseof theBayesmethodof Eqn.2
we have a conditioral probability which can be extenced
to a likelihood. Thus,giventwo point setsy; andys, we
candefinetheirBayedikelihoodasL(y1,y2) = %.
However a symmetricBayesiarLikelihoad canbe defined
as

_ P(Y1|Y2)P(Y2|Y1)
Ly(y1,y2) = \/P(y1|y1)P(y2|y2) (8)

This ratio is symmetric(Ly(y1,y2) = Ls(y2,y1)) andis
nomalisedto lie in the range[0,1]. The likelihood for
the prababilistic invariant canbe similarly defined. These
likelihoad ratioscanbe usedto measurghe confiderce we
have thattwo given poirt setsarisefrom the sameundely-
ing model. It mustbe emphaisedthatthis likelihoodmea-
suredoesnot deped on knowing the uncerlying modelat
all, ratherit simply definesa probaility-lik e measurehat
two obsered datasetsarefrom the samegeneative model.
A highlikelihoad value impliesa high “match” confidence
which lendsitself to the following methodfor finding cor-
respomlences.

4.3 Correspondacesin multi-sensorimages

One commonmethodfor image registrationis to match
featuespoints andcompute therelative transformation be-
tweenthe two images[1]. In geneal, compuing feature
correspondecesis a hardtaskandis further compuncded
for imagesfrom different sensorsas thereis no olvious



(a) SPO image

(b) TM image

(c) Registeredimages

Figure2: Registrationof multi-sensoimagesusinglik elihoodto derive correspadenes.

radiametric relationshipbetweenthe images(SeeFig. 2).
Herewe have to rely on the geomety of theimagesto es-
tablishcorrespondaces.

In thisexanple,we demorstratetheuseof thelik elihoods to
establistcorrespondenesbetweerfeatue pointsin thetwo
images. Usinga simplecornerdetectomwe extract 300"“in-
terestpoirts” from eachimage. We marually select3 cor
respadencs for a basissetfor the affine invariarts. Sub-
sequetly we automae the procesf deriving morefeatue
corresponénces For points{ X; } and{ X} in thetwo im-
agesgvely tuplein theset{X; x X} is apoterial corre-
spordencebut this setcanbeprunal usingthebasedo limit
the searchspace(saywithin d pixels aftertransfomation)
For every z; in thefirstimage,we compue thelikelihoads
of its possiblematctesin the secondsetandselectthe one
with the highestlikelihoodvalueandfinally disambigate
multiple matchesin the correspondene set. This is sig-
nificartly fastersincenow our searchcompexity is O(NN)
insteadof O(N?) for N interestpointsin eachimage.The
resultsof the registrationobtainedusing 46 “discovered”
corresponéncesareshavn in Fig. 2(c) andcanbe seento
be very accurate. The root meansquareregistrationerror
is 0.95 pixels 3, As a contrd test,we usedthe basispoints
to warp one point set onto the otherand picked the clos-
estmatchto selectcorrespnderceswhichresultedn in 46
corresponénceswith a slightly highererra of 0.96 pix-
els. This erroris higher sincesomeof the correspndertes
obtanedherewerewrong. In contrastour modelmore ac-
curaely captuesthenotionof likelihoad of pointmatches.
It is significantthat our procesds autonatic sinceobtain-
ing featue correspadercesin amulti-sensoscenaridesp.
with large scalechangs)is difficult.

3Theresuls for bothdefinitions of lik elihoodareidentical in this case
Also, we usethe samedaia setto derive the transformationandthe noise
priors. In acasewith mary imagesetstheundefying priorscanbelearnt.

4.4. Measuring coplanarity

While in Sec.4.1we consideedrecogition accurag, here
we focus on using the likelihood measues for andher
task,i. e. verifying if a poirt setis affine transfamed.
Whenthe poirts lie on a planeandthe camerais rouchly
weak-ferspectre, we expect the points to behae in an
“affine” manneri. e. theirrelative transfomationswill be
sufiiciently captued by an affine transfomation. Thusthe
goadnesxf affinefit of the datais a measureof how close
the datais to beingplanarandcanbe usedto guideimage
segmenation. In [7], planarinvarants are used (albeit
in a non-pobalilistic sense)o groy coplarar poirts for
groundplanedetection.

We will illustrateour resultsusingtwo sequencefom the
familiar COIL datalasefrom Columba University, (Fig. 3)

whichwe call “Anacin” and“Piggybank” respectiely. The
Anacinimagesconsistof planesandthe the Piggybak is

a nonplanarsurface. In both theseexanples, the objects
were placedon a turntalle and rotatedby one complete
revolution in fixed steps. For our pumposeswe use 13
imagesfrom eachsequene sincethe areasbeing viewed
disappar beyond the rangeof theseimages. We use a
conventioral imagematchingschemeto matchand track
featue points over the entire sequence.In Fig. 3(b) we
shawv the Bayesianlikelihodd ratio of thesepointsfor the
entiresequencécontinwusblue plot with the legend“two

planes”) In the samefigure, we alsoshow the likelihood
ratio whenwe conside only thosepoints that lie on the
verticd planeof the Anacin box (in red and marked with

diamadswith the legend“single plane’). Thelikelihocod
ratio shawvn in the expeiimentsof this subsectiorare the
Bayesianlikelihoad of each point set compaed to the
poirts in the first image,implying that the likelihoad for

thefirstimageis 1.



(a) Anadn image

(b) AnacinLikelihood

(c) Piggybark image (d) Piggybank Likelihood

Figure3: Likelihoods for sequenesfrom the COIL databae.

As maybeobsened, boththelikelihoad valuesstaycloseto
1 for mostof the sequene andtaperoff towardsthe endof
the sequene sinceherethevertical planeis almostparallel
tothez-axisof thecamerd(. e. viewing directian) resulting
in pronourced perspectie effeds. The relative behaiour
of the two plotsis alsointeresting.As would be expected,
in the casewhereall the featue pointsare confinedto the
sameplane(asthe basispoints)we geta betterlik elihood
ratio thanwhensomeof the pointshapgnto lie on a dif-
feren plane. In Fig. 3(d), we shaw the likelihoodratio of
thePiggybanksequeneusingits own correctpriors(shavn
in blackdashedine). For the sale of comparison,we have
alsoincludedthe likelihood plots for the Anacin sequene
from Fig. 3(b)in this plot. As canbeeasilyobseved,since
the pointson the Piggybankarenot coplarar, the effea of
the rotationof the objectis pronainced As the objed ro-
tates thetransfamationbetweerthetracked pointsandthe
poirts in the first imageareless“affine” like asthe effect
of thenonplanaritygetsmoreprorouncel. Thusthelik eli-
hodad ratiofalls off significantly Thus, Fig. 3(d)tellsusthat
the Piggytankis nota planarobjectwhile the pointsin one
setof the Anacin sequene are coplana. It alsosuggests
thatthe secondsetof pointsin the Anacinsequenceleviate
lessfrom coplararity ascomparedto thatof the Piggybank,
thusconfirmng our notionof “affineress”. While we shav
the Bayesiarlikelihoad here,the sameresultsareobtained
with the probabilistic invariantlik elihood

5. Conclusions

In this paperwe have consideed the geneative mockl for
affine transfomationson imagepoints. We have descrile
how theincomporatian of apprgriatepriors of the transfor
mationandnoiseinto the generéive modelleadsto better
estimators. The use of theseestimatorsare demanstrated
on the problans of objectrecogtition, imageregistration

andcomgarison. It is obsened that the Bayesianmethod
outperforms all othermethod and our formuation of the
prababilisticinvariantis prefeableover others.

References

[1] L.G.Brown. A suney of imageregistration technques.
Surves, 24(4):325-376,Decembe 992

[2] A. FitzgibbonandA. Zisserman. On affine invariant
clusteringandautomatic castlisting in movies. In Eu-
ropeanConfeenceon Computeision, 20Q2.

[3] T. Leurg, M. Burl, andP. Perona Prolabilistic affine
invariantsfor recogition. In Proceediys IEEE Con-
ferenceon ComputerVision and Pattern Recagrition,
1998

[4] K.V.MardiaandlanL. Dryden StatisticalShapeAnal-
ysis JohnWiley & Sons, 1998

[5] J.L. Mundy andA. Zisserman Geometriclnvariance
in Computenision. MIT Press19®.

[6] Isidore Rigoutsosand RobertHumnel. A Bayesian
apprach to model matchirg with geometic hashing.
ComputerVision and Image Understandirg: CVIU,
62(1):11-2, 1995

[7] D. Sinclairand A. Blake. Quantitatve planarregion
detection Internatianal Journal of Computer\ision,
18(D:77-9, 1996

[8] H.J. WolfsonandY. Lamdan. Geoméric hashing A
geneal andefficient mocel-basedecogition scheme.
In Internaional Confeenceon Computeiision, pages
238-249,1988



	Back

