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Abstract

In this paper, we considerthe generative modelfor affine
transformationson point setsandshowhowa priori infor-
mationonthenoiseandthetransformationcanbeincorpo-
ratedinto themodelresultingin more accuratealgorithms.
Whileinvariantshavebeenwidelyused,theexistinglitera-
turefails to fully accountfor theuncertaintiesintroducedby
boththenoiseandthetransformation. We showhowusing
suchpriors leadsto algorithmsfor Bayesianestimationand
a probabilisticinterpretation of invariants which addresses
thelimitationsof currentmethods.Wepresentsyntheticand
real resultsfor object recognition, image registration and
determining objectplanarity to demonstrate the powerof
usingpriors for imagecomparison.

1. Intr oduction
In thispaperweshow how wecanincorporateknowledgeof
boththetransformationandnoisepriors into aprobabilistic
analysis of the affine point generative model. This model
leadsto different estimators,namelya Bayesianestimate
of posteriorprobability and a probabilistic interpretation
of the affine invariant. We show how using such priors
improvestheperformanceof thealgorithmsfor registering,
matching andcomparing images.Two of themaincriteria
for comparingimagesor imagesto modelsareregistration
error and invariants. Thesemethods have a long history
([1, 5]) and together with image basedrepresentations
make up thebulk of imagepatternrecognition techniques.
Algorithmsthatuseregistrationfind thetransformationthat
minimisesa given residual error. Thedifferencesbetween
methods are the transformations(ie. Projective, Affine,
Euclideanetc.) and the error metricsused. In contrast,
invariantsare functions of points that are independent of
thetransformationandaffine invariantsarewell studiedas
a tool for matchingandindexing [8, 5]. Theaffinemodel is
alsousefulsinceplanesunder a weakperspective camera
model behave in anaffinemanner.

The limitation of standardtechniques is that they do not

correctly account for data noise. Thus in the caseof
registration, thecommonly usedleastsquaresmetricmight
beinappropriate.Similarly for affine invariants, invariance
doesnot hold whenthe datais noisy. In sucha case,the
estimateof the invariant will dependon both the amount
of noise presentand the applied affine transformation.
Often,for object recognition theinvariant is computedand
matchedwith asetof modelsandthemodelwhichis closest
to theestimatein a Euclideansense(ie. usingleastsquares
of thedifference)is declaredthewinner. This is ad-hoc and
can only be justified by computational ease. Therehave
beena number of papersunderthe nameof shapespace
(eg. [4] in the statistical literature) and in the computer
vision literaturethat have studiedthe impact of noiseon
the invariant in orderto improve recognition rates[3] and
indexing [6]. However thesemethodsdo not fully account
for all availableprior information. While [3] introducesa
probabilisticaffine invariant its analysisonly considersthe
effect of noiseon the invariant and doesnot incorporate
informationaboutthe transformations. We point out that
theeffect of noiseon the invariant will alsodependon the
scaleof the transformation. If the transformation is large
thentherelativeimpactof thenoiseis smallandvice-versa.
Thus this relative effect of the transformationwill have to
be accounted for in a probabilistic settingby meansof a
prior on theaffine transformations.

Therestof thepaperis organisedasfollows. Sec.2 briefly
describes thegenerative model for our caseandSec.3 de-
scribethedifferentestimatorsthatfollow from aprobabilis-
tic interpretationof thegenerative model. Sec.4 describes
theresultsof applying our methods to theproblemsof ob-
ject recognition, imageregistrationetc. andSec.5 will end
with someconclusions.

2. GenerativeModel for Affine Points

In this sectionwe describethegenerative modelfor affine-
transformedpoints. The observed two-dimensionalpoints� are generated by an affine transformation on a model



� and is corrupted by additive Gaussiannoise. Hence,����������	 where � is the 
���
 affine transformation
matrix1 appliedto themodel� and	 is theGaussiannoise
addedwith 	��������������� . Similarly, theaffinetransforma-
tionsareassumedto comefrom aGaussiandistributioni. e.��������! "���# �� . It mustbekeptin mindthattheGaussian
assumption of thetransformationmodel prior is only for an-
alytic purposesandwecaneasilyaccount for non-Gaussian
priorsby expressingthisprior asamixtureof Gaussians.In
subsequentanalysis,we will examine theeffect of boththe
transformationandnoisepriors on theestimationprocess.

3. Estimation Methods
In this section, we will describe different estimation
methodsasapplied to ourgenerative model.

3.1. BayesianEstimation Method
Since the residualerror is $ �%�'&(�)� and we have
a Gaussiannoise model, the conditional probability of
the observed datagiven the modelandthe transformation
is * ���,+ �-�.�/�0�2143�5687:9 3  <;>=@?BADCFE 5 7:9 3  <;G= 2. We can
rewrite the term ��� �IHKJ , where J is the column-
orderedvector containing the termsin � and H is theap-
propriatematrix thatcontainselementsof � . Thus we can
rewrite theconditionalprobability givenaboveas* ���,+ �-�.�/�<��1 3 5647:9 3MLON =@?PADCQE 5 7:9 3PLON = (1)

Now, in our generative model the affine transformations
aredrawn from a Gaussiandistribution, which impliesthatJRK���@� N �TS N � .Therefore,theposterior probability of ob-
serving thepointsgivena model � is obtainedby integrat-
ing out the affine transformationby meansof its prior, i.
e.* �@�,+ ���U�'V * �@�,+ �-�W��� * ����� $ � (2)� V 1 3 5687X9 3PLON =@?�A C E 5 7:9 3PLYN = 1 3 56Z7 N83M[ =@?BA]\^E 5 7 N83M[ = $ J
The exponent in Eqn. 2 is quadratic in the affine transfor-
mation J and hence can be solved easily by completion
of squares. For the problem of object recognition if we
have two models ��_ and �/` , we cancompute the condi-
tional probabilities, * ���,+ ��_a� and * ���,+ �/`b� and classify
according to whichever likelihoodvalue is higher. In [2]

1While theaffinetransformationhasc parameters,thetranslation terms
do not affect the invariants. Henceto ensurea uniform comparisonwe
remove thetranslation termfrom our model. It canbeeasily incorporated
if required.

2Thereis a normalising termthatwill make this a trueprobability dis-
tribution. However, unlessexplicitly required in our analysiswe will drop
this normalisingconstant for notational convenience

a similar prior is usedto control the estimateof an affine
transformationbetweentwo pointsets.

3.2. Affine Invariants
To compute affine invariants we usethe first threemodel
points asthe basis(ie, ��_b�.��`d�W��e ). Thereforeany point� is describedby its co-ordinates ��f,�hgi� in the invariant
space.Theseco-ordinatessatisfytherelationship,��&j�k_#�lf#����`m&n�/_�����go����em&j�/_p� (3)

The relationship in Eqn. 3 can be seento be invariant to
the application of an affine transformation on the model
points since �q&��0_>�(f#����`r&��/_T�i�/g,����er&��/_T�ts�)�u&����/_n�vf#������`w&'�)�/_T�m�xgo���)��ey&��)�k_T� .
The “naive” way of using the affine invariantsfor object
recognition is to compute theaffine invariants( z �{��f,�hgi� )
for a given setof observed featurepoints � andcompare
themwith the modelco-ordinates z _ and z ` . The model
closestto z is chosenastheclassification.As weshallshow
in the next subsectionthis method fails to satisfactorily
account for the effect of the noiseand the transformation
on the estimatedinvariant (in particular onemustnotethe
effecton thebasispoints).

3.3. Probabilistic interpretation of invariant
Sincein our formulation, the kth featurepoint is given by��|"��H}|~Jt��	]| andby definition of theinvariant,wehave��|"�K�h�,&jfD|r&-gP|4���i_U��f]|~�!`<�ngM|~�!e . Consequently, the
noisetermin thekth pointcanbeexpressedas	D|"����|G&jH}|8J�}���t&nfD|G&jgP|8���i_o��fD|~�!`#��gM|^�!e�&nH}|~J�}���h�t&jf]|G&�gM|8��H�_o��f]|dHK`o��gP|dH}em&jH}|~��J�������t&nfD|G&jgP|8�h	]_ ��f]|d	i` ��gM|d	ie � (4)

This implies that given the objectmodel andthe affine
co-ordinates,the“estimated”noisein any feature point de-
pends on the4 parametersof theaffine transformation ��J��
andthe6 parametersof thenoisein thebasispoints(i. e. in	]_d�.	D`8�W	ie ). Therefore, we have the following conditional
probability for * ��	,|�+ H}� ,
V�1 3 56 �Z�T?MA]�4E 5 �Z� * ��J�� * ��	 _ � * ��	 ` � * ��	 e � $ J $ 	 _ $ 	 ` $ 	 e

(5)
where the term 	 | is as given in Eqn. 4. However, the
probability thatwe areinterestedin is * ��f#|��hgP|�+ H}� . Thus
we transform the probability distribution from 	>| to that



of ��fU|F�.gP|8� by means of the Jacobianof the transforma-
tion betweenthe two variables, i. e. + �o+ between	t| and��f | �hg | + H}� . Now to expresstherequired probability asan
integral, we concatenatethe affine transformationand the
noisetermsinto asinglevector, � �K� J��W	 _ �W	 ` �.	 e � . There-
fore,

* ��f | �hg | + H}�<�l1 3 56^� V�1 3 5687�� 3 ;��8�b=@?BAD�4E 5 7X� 3 ;��8�b= + �o+ $4�
(6)

where � is therequiredJacobianmatrix and � is a constant
term.FromEqn.4 we seethat� 	 |� f]| �K� HK`m&nH�_W��Jw��	D`t&n	]_t�l�,� �� 	D|� g | �K� HKe�&jH�_���Jw��	Dem&j	U_����<� �
where �m� and �o� areappropriatematrices.Sincetheabove
partialderivativescanbeexpressedaslinearconstraintsin� , theentireJacobiancanberepresentedasa quadraticex-
pressionin � , i. e. + �o+4�}+ �D�o�y� + . But wehave   &¢¡ affine
co-ordinatesthat arebeingtransformed,makingthe effec-
tive transformation + �o+:£ 3 e . Therefore, the resultantform
for theprobability function * ��f,�hg#+ H}� is

1 3 56a� V�1 3 5647X� 3 ;��8�a=�?PAD�dE 5 7X� 3 ;r�8�a= + � � �y� + £ 3 e $Z� (7)

where ��f,�hgD� representsthe affine co-ordinates for the
observedpoints. This formulation is similar to thatof [3].
However, theaffine transformationprior is alsoincluded in
ouranalysis.

In our solution to Eqn. 7 adopted from [3], the absolute
value is droppedtherebyproviding anapproximation when  is even sincethen   &'¡ is odd. This approximation
is reasonable only when the covariances S�¤ and S�¥ are
small. However for oddpowersof   this solutionis exact.
Thereaderis referredto [3] for details.

Also we would like to addressthe issueof non-Gaussian
priors for the affine transformation,a situationthat arises
in real life. Often we canreasonablyapproximate * �����
asa mixtureof Gaussians,i. e. * ���¦�>�¨§�©�ª ©�« �@� © ��� © �
where ª © is the relative mixing proportion and

« �@�U�T�m�
denotesa Gaussian.As can be easily seenfrom Eqns.2
and5, we canincorporatethis non-Gaussianprior into the
analysisdueto thelinearityof theintegral operator. We are
unable to presentresultson this aspectof the problem in
thispaperdueto spaceconstraints.
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Figure1: Therelativeerrorratesof eachmethod.

Finally, in the standardleast squares method, the model

with thesmallestresidualerror, ��¬��+�+ ��&q®�)�l+�+ ` � is se-
lected.Here ®� is thelinearestimateof � .

4. Experiments
In this sectionwe will describe experimentswith synthetic
andrealdatathatdemonstratethepowerof explicitly incor-
poratingpriors into thegenerative model for objectrecog-
nition andimagecomparison.

4.1. RecognitionAccuracy
In this subsection, we will describethe performanceof
the different algorithms for object recognition. We will
briefly describethe experimentalprotocol usedandshow
theresultsthancanelucidatethebehaviour of thedifferent
recognition methods.

For our experimentswe usedpoint setsthat range from ¯
to �b° points in eachdataset. For eachcasewe generated
two modelsand performed recognition using the various
algorithms. Our experimentsaresymmetric, i. e. for each
pair of modelsgenerated,we testfor recognition accuracy
with one instanceof each model generating a data set.
Theerror ratesareaveragedover �b°Z°4° trials (i. e. theav-
eraging is over ���b°]&¢¡Z� � �b°Z°4° �"
 �K� ¯ �W°4°Z° experiments).

In ourexperiments,notonly dowe look at theperformance
of the different algorithms but we are also interested
in looking at the effect of incorporating the priors into
our models. Theseis of importance since we want to
demonstratethe power of usingsuchpriors in recognition
andcomparison. Themodels � _ and � ` aregenerated by
picking �±&�¡ affine co-ordinates(theother3 pointsbeing
the canonical basis)using a Gaussiandistribution with a
mean ° andvarianceof ² . Now for eachinstance,we do



not simply pick an affine transformation � and noise 	
from fixeddistributions. Insteadwe first pick priors for the
transformation and noiseand then usethem to randomly
pick instancesof thetransformationandnoise.Theranges
for thetransformationprior andnoiseare � °�� ² � and � °��.°�³ ² �
respectively. Therefore for each instance,we first pick
the quantities ´  and ´ � uniformly from theseranges.
Thus we now construct two priors §  � ´  `aµT¶8·F¶ and§ � � ´ � `bµ ¥ · ¥ where

µ ¥ · ¥ is an n-dimensionalidentity
matrix. Thereafterwe draw anaffine transformation � and
noisevalues	 from §  and § � respectively andgenerate
datapoints �����)� © �k	 where ¸>¹0º �Z� 
�» , i. e. eachof
thetwo modelsareusedonce.

Since the error rate for the Bayesianmethod is always
the lowest, we use this as a lower bound and show the
relative errors by dividing eachof the error ratesby the
Bayesianerror rate. This allows usto focuson therelative
performance of eachmethodwithout having to account
for the actual error rates which will vary according to
the dimensionality of the problem (i. e. with the number
of points). In Fig. 1 we show the relative error ratesfor
the different methods that are appropriately labeled. The
method dueto Leungetal [3] is alsoshown for comparison.
Obviously therelative Bayesianerror rateis always � . The
plot labeled“naive invariant” is one where the invariant
for the dataset is computed and comparedwith the two
models to find theclosestonein theEuclidean sense.This
is of coursethe standardmethod of using an invariant
for recognition without using any prior information and
expectedlydoesthe worst amongst the different methods
(as indicatedby its high value of relative error). It can
alsobe clearly seenthat our probabilistic invariant (“prob
invariant”)doessignificantlybetterthan“Leung’s method”
dueto thefactthatourgenerativemodelandthesubsequent
analysis in Sec.3.3 explicitly incorporatespriors for both
theaffinetransformation � andthenoise	 .

It bearsrepeating that just the way we use a Gaussian
prior for data noise the knowledge that certain affine
transformations are lesslikely thanotherswill have to be
explicitly accounted for in our model. This is obviously
important sincein the processof computing the invariant
the data is scaledby an estimatedaffine transformation
implying that the scaleof the affine transformation will
determine the impact of noise on the accuracy of the
invariantcomputed. Thusin a truly probabilistic analysis,
we will needto accountfor the transformation prior as
is the casewith our probabilistic invariant. In contrast,
Leung’s method cannot use the prior information of the
affine transformationandis limited to usingtheknowledge
of thenoiseprior. It is alsoworth noting thata simpleleast
squares estimationmethod(that doesnot useany priors)

doesbetteror aswell astheprobabilistic invariantmethod.
Thiscouldprobablybeattributedto thelossof information
thatresultswhenwe compressthe � pointdatainto �±&�¡
affine co-ordinates(ie. the invariant). There is no such
compressionof information in the full Bayesianmethod
resultingin the highest accuracy. However, in the event
we are interestedin computing an invariant and using
it for object recognition, our experiments demonstrate
that we shoulduseall the prior information availableand
incorporateit into ourprobabilistic analysis.

The resultsin Fig. 1 show the error ratesthat usesa fixed
prior which is the average of the priors used, since in
real-life we do not always have full knowledge of the
underlying prior. It is interestingto note that Leung’s
method’s performanceis similar to thatof thenaive invari-
antwhile ourprobabilisticmethodhasbetterperformance.

4.2. Lik elihoodRatios for matching sets
Tousetheprobabilitiesdefinedearlierfor hypothesistesting
we will have to compare themwith a threshold. Hencewe
needto “normalise”theprobabilitiesfor meaningful thresh-
oldstobedefined.In thecaseof theBayesmethodof Eqn.2
we have a conditional probability which can be extended
to a likelihood. Thus,given two point sets �m_ and ��` we
candefinetheirBayeslikelihoodas ¼G½ ���i_d�.�!`^�<��¾ 7:9 5p¿ 9 6 =¾ 7:9 6 ¿ 9 6 = .
However a symmetricBayesianLikelihood canbedefined
as

¼ ½ �@� _ �h� ` �<�}À * ��� _ + � ` � * �@� ` + � _ �* ���i_8+ �i_a� * �@�!`F+ �!`~� (8)

This ratio is symmetric( ¼�½ ���i_d�.�!`^��� ¼,½ �@�!`Z�h�i_b� ) andis
normalisedto lie in the range � °��a�p� . The likelihood for
the probabilistic invariant canbe similarly defined. These
likelihood ratioscanbeusedto measuretheconfidencewe
have thattwo givenpoint setsarisefrom thesameunderly-
ing model. It mustbeemphasisedthatthis likelihoodmea-
suredoesnot depend on knowing the underlying modelat
all, ratherit simply definesa probability-lik e measurethat
two observed datasetsarefrom thesamegenerativemodel.
A high likelihood value impliesa high “match” confidence
which lendsitself to the following methodfor finding cor-
respondences.

4.3. Corr espondencesin multi-sensor images
One commonmethodfor image registration is to match
featurespoints andcomputetherelative transformationbe-
tweenthe two images[1]. In general, computing feature
correspondencesis a hardtaskandis further compounded
for imagesfrom different sensorsas there is no obvious



(a) SPOT image (b) TM image (c) RegisteredImages

Figure2: Registrationof multi-sensor imagesusinglikelihoodto derivecorrespondences.

radiometric relationshipbetweenthe images(SeeFig. 2).
Herewe have to rely on thegeometry of the imagesto es-
tablishcorrespondences.

In thisexample,wedemonstratetheuseof thelikelihoodsto
establishcorrespondencesbetweenfeaturepointsin thetwo
images. Usinga simplecornerdetectorwe extract 300“in-
terestpoints” from eachimage.We manually select¡ cor-
respondences for a basissetfor theaffine invariants. Sub-
sequently weautomate theprocessof deriving morefeature
correspondences.For points º^Á _ » and ºbÁ ` » in thetwo im-
ages,every tuplein theset º^Á _ ��Á ` » is a potential corre-
spondencebut thissetcanbepruned usingthebasesto limit
thesearchspace(saywithin d pixels after transformation).
For every Â _ in thefirst image,we compute thelikelihoods
of its possiblematchesin thesecondsetandselecttheone
with the highestlikelihoodvalueandfinally disambiguate
multiple matchesin the correspondence set. This is sig-
nificantly fastersincenow our searchcomplexity is Ã ���Ä�
insteadof Ã ��� ` � for � interestpointsin eachimage.The
resultsof the registrationobtainedusing ¯ZÅ “discovered”
correspondencesareshown in Fig. 2(c) andcanbeseento
be very accurate.The root meansquareregistrationerror
is °�³ Æ ² pixels 3, As a control test,we usedthebasispoints
to warp onepoint set onto the otherandpicked the clos-
estmatchto selectcorrespondenceswhich resultedin in ¯ZÅ
correspondenceswith a slightly higher error of °�³ Æ Å pix-
els. This erroris higher sincesomeof thecorrespondences
obtainedherewerewrong. In contrast,ourmodelmore ac-
curately capturesthenotionof likelihood of pointmatches.
It is significantthat our processis automatic sinceobtain-
ing featurecorrespondencesin amulti-sensorscenario(esp.
with large scalechanges)is difficult.

3Theresults for bothdefinitionsof likelihoodareidentical in this case.
Also, we usethesamedata setto derive the transformationandthe noise
priors. In a casewith many imagesetstheunderlying priorscanbelearnt.

4.4. Measuring coplanarity

While in Sec.4.1we consideredrecognition accuracy, here
we focus on using the likelihood measures for another
task, i. e. verifying if a point set is affine transformed.
Whenthe points lie on a planeandthe camerais roughly
weak-perspective, we expect the points to behave in an
“affine” manner, i. e. their relative transformationswill be
sufficiently capturedby anaffine transformation. Thusthe
goodnessof affine fit of thedatais a measureof how close
thedatais to beingplanarandcanbeusedto guideimage
segmentation. In [7], planar invariants are used(albeit
in a non-probabilistic sense)to group coplanar points for
groundplanedetection.

We will illustrateour resultsusingtwo sequencesfrom the
familiarCOIL databasefrom Columbia University, (Fig. 3)
whichwecall “Anacin” and“Piggybank” respectively. The
Anacin imagesconsistof planesandthe the Piggybank is
a non-planarsurface. In both theseexamples, the objects
were placedon a turntable and rotatedby one complete
revolution in fixed steps. For our purposeswe use 13
imagesfrom eachsequence sincethe areasbeingviewed
disappear beyond the rangeof theseimages. We use a
conventional image-matchingschemeto matchand track
feature points over the entire sequence.In Fig. 3(b) we
show the Bayesianlikelihood ratio of thesepoints for the
entiresequence(continuousblueplot with thelegend“two
planes”). In the samefigure, we alsoshow the likelihood
ratio when we consider only thosepoints that lie on the
vertical planeof the Anacin box (in red andmarked with
diamondswith the legend“single plane”). The likelihood
ratio shown in the experimentsof this subsectionare the
Bayesianlikelihood of each point set compared to the
points in the first image,implying that the likelihood for
thefirst imageis � .



(a) Anacin image
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Figure3: Likelihoods for sequencesfrom theCOIL database.

As maybeobserved,boththelikelihood valuesstaycloseto� for mostof thesequenceandtaperoff towardstheendof
thesequencesinceheretheverticalplaneis almostparallel
to thez-axisof thecamera(i. e. viewingdirection) resulting
in pronouncedperspective effects. The relative behaviour
of the two plots is alsointeresting.As would beexpected,
in thecasewhereall the feature pointsareconfinedto the
sameplane(asthe basispoints)we get a betterlikelihood
ratio thanwhensomeof the pointshappen to lie on a dif-
ferent plane. In Fig. 3(d), we show the likelihoodratio of
thePiggybanksequenceusingits owncorrectpriors(shown
in blackdashedline). For thesake of comparison,we have
alsoincludedthe likelihood plots for theAnacinsequence
from Fig. 3(b) in this plot. As canbeeasilyobserved,since
thepointson thePiggybankarenot coplanar, theeffect of
the rotationof theobjectis pronounced. As the object ro-
tates,thetransformationbetweenthetrackedpointsandthe
points in the first imageareless“affine” like asthe effect
of thenon-planaritygetsmorepronounced. Thusthelikeli-
hood ratiofallsoff significantly. Thus,Fig.3(d)tellsusthat
thePiggybankis nota planarobjectwhile thepointsin one
setof the Anacin sequence arecoplanar. It alsosuggests
thatthesecondsetof pointsin theAnacinsequencedeviate
lessfrom coplanarity ascomparedto thatof thePiggybank,
thusconfirming ournotionof “affineness”.While we show
theBayesianlikelihood here,thesameresultsareobtained
with theprobabilistic invariant likelihood.

5. Conclusions

In this paperwe have considered the generative model for
affine transformationson imagepoints. We have describe
how theincorporation of appropriatepriors of thetransfor-
mationandnoiseinto the generative modelleadsto better
estimators.The useof theseestimatorsaredemonstrated
on the problems of object recognition, imageregistration

andcomparison. It is observed that the Bayesianmethod
outperforms all othermethods andour formulation of the
probabilisticinvariantis preferableoverothers.
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