Task Directed Imaging in Unstructured Environments by Cooperating Robots

Vivek A. Sujan
Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139
{vasujan@mit.edu} 617-253-5095

Abstract

In field environments, due to model and sensor
uncertainties, it is not usually possible to provide robotic
systems with optimum sensing strategies for their tasks.
The robot or robot teams will need to utilize available
models and sensory data to find task based optimum
sensing poses. Here, an algorithm based on iterative
sensor planning and sensor redundancy is proposed to
enable them to efficiently position their cameras with
respect to the task/target. Simulations show the
effectiveness of this algorithm.

1. Introduction

An important goal of robotics research is to develop
mobile robot teams that can work cooperatively in
unstructured field environments, such as shown
conceptually in Figure 1 [2, 8]. Potential tasks include
explosive ordinance removal, de-mining and hazardous
waste handling, exploration/development of space,
environment restoration, and construction [2, 8, 14].

Figure 1: Representative physical system

The planning and control of such systems typically
requires models of the environment and task. In
unstructured field environments it is often not possible to
have such a-priori models. The robot needs to construct
these from available sensory information [16]. Once these
models are created, the robots need to position their
sensors in a task directed optimal way. A number of
problems can make this non-trivial. These include the
uncertainty of the task in the environment, location and
orientation uncertainty in the individual robots, and
occlusions (due to obstacles, work piece, other robots). If
the systems are equipped with cameras mounted on
articulated mounts, intelligent planning of the camera

motion can alleviate some of the problems of the
occlusions. If the system consists of more than one robot,
planning the behavior of these multi-information sharing
systems can further improve the system performance.

Previous work in planning of visual sensing strategies
can be divided into two areas [13, 17]. One of these is
concerned with sensor positioning—placing a sensor so
that it can best observe some feature and selecting a
sensing operation which will prove the most useful in
object identification and localization. Researchers have
limited their work to model-based approaches, requiring
previously known environments [4, 5, 7, 9]. Target
motions (if any) are assumed to be known [11]. Brute
force search methods divide the entire view volume into
grids, octrees, constraint sets, and search algorithms for
optimum sensor location, are applied [6, 7, 13].
Additionally, they require a-priori knowledge of
object/target models [5, 17]. Such methods can be
effective but are computationally expensive and not
practical for many real field environments, where
occlusions and measurement uncertainties are present.

The other direction of research in planning of sensors
is sensor data fusion—combining complementary data
from either different sensors or different sensor poses to
get an improved net measurement [15, 17]. The main
advantage of multi-sensor fusion is the exploitation of data
redundancy and complementary information. For
environment and target model building both areas play key
roles. However, little work has been done in effectively
combining the capabilities of sensor placement planning
and sensory fusion, to develop a sensing strategy for
model building to be used by robots and robot teams in
unstructured environments.
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Figure 2: Cooperative sensing by robots
An algorithm for efficient environment and task
model building based on an information theoretic
approach is developed and described in [16]. Using the
environment/task model created by this algorithm, the



individual robots are positioned “optimally” with respect
to the target. This process is described in this paper. It is
assumed that the system consists of two (or more) mobile
robots working in an unknown environment (such as
constructing a planetary structure—see Figure 2). The
target is static. Each robot has a 3D-vision system
mounted on an articulated arm. Sensing and sensor
placement is limited, resulting in occlusions and
uncertainties. The objective is to efficiently find poses for
each camera system to view the target in a task directed
optimal way. The algorithm iterates on the known
environment model, accounting for object motions,
occlusions, and vision system characteristics.

2. Algorithm Description

2.1. Overview

Figure 3 outlines the map building and camera placement
algorithm. The algorithm consists of two major parts. In
the first part, the articulated cameras cooperatively scan
the region around a target generating a 3D geometric
model, so that the robots can locate themselves and the
obstacles in the target reference frame [16]. The second
stage consists of using this model to find an optimum pose
for the multiple camera systems to view the target(s). The
3D map is modeled as a probabilistic discretized
occupancy grid. Every voxel in the map has a value for
probability-of-occupancy that ranges from 0 (empty) to 1
(occupied). A value of 0.5 indicates maximum uncertainty
in occupancy of the voxel. The process is initialized by
visually finding the target and robots in a common
reference frame and repeated for all robots sequentially.
Inter-robot collision is avoided through communication of
pose solutions.
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Figure 3: Outline of model building and placement algorithm

2.2. Algorithm initialization
The first step of the model building and camera placement

algorithm in an unstructured environment is to identify the
targets. This establishes a common reference frame for all

further environment mapping and camera placement
operations. For the purposes of this paper simple circular
holes in a work-piece were used as targets. These targets
are detected using template matching techniques by first
filtering the image using a LOG operator. For the purposes
of this research, variations due to illumination conditions
are neglected.

2.3. Optimum Camera Pose Identification

Given the geometric environment model with its
uncertainties [16], an optimum pose for a camera to view a
given target can now be developed. Based on the
probabilistic geometric world map, (x,y,z) locations with
Pxyz < 0.05 are considered as unoccupied. Such points
form candidate configuration space camera pose
coordinates. A rating function (RF) is defined and
optimized over the known configuration space for the new
camera pose. This rating function is defined as:
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where DOFgg, ReSge, TFVgpe and TAVge are the
contributions to the rating function due to the depth of
field, resolution of the target, target field visibility and
target angular visibility respectively, from the camera
position (x,y,z). These contributions are defined in the
following sections. a, 3, Y, 0 are weighting constants (set
to unity for the experiments conducted in this paper). It is
assumed that the camera normal vector points directly to
the target. Camera position improves as the rating
function value increases.

2.3.1. Depth of field (DOF)

The DOF constraint of a camera system is defined as the
maximum and minimum distance from the camera-lens
system between which all feature points will be
sufficiently in focus. This tolerance is based on the lens
aperture effects as well as the flexibility allowed by the
image processing algorithms (such as range finding,
feature identification, etc.). The value of DOFg=0 if the
feature point is outside the depth of field, and DOFge=1 if
the feature point is inside the depth of field. More complex
non-binary functions may be used here that quantify how
much a given feature point is in focus. However, this
simple binary function gives good solutions.

2.3.2. Resolution of target

The resolution of the target along an axis from the given
position of the camera is simply:

R =72d tan(a/Z) and Resg =% @)
n

RF(x,y,z) = DOFZ. [Res’ [TFVY, (TAV/, (fl-P

where d is the distance of the camera from the target, a is
the camera field of view and n is the number of pixels
along the detector axis. The contribution to the rating
function from the resolution is given by Resgr.

2.3.3. Target field visibility

The target field visibility (TFVgg) at any point in space, is



defined as the largest angle of excursion the camera can
traverse around a circle centered about the target, before
the target is occluded. The target field visibility must
account for the occlusions in the workspace and the finite
size of the target. Finding the target field visibility (for
finite sized targets) in a 3-D space while accounting for
the occlusions can be very difficult and time consuming,
growing exponentially with the number of occlusions. To
reduce this difficulty, a method of occlusion expansion
using convex hulls is proposed. This process consists of
three steps:
(i) Occluding object expansion and target reduction
The finite sized target is reduced to a single point while
the occlusions are expanded. Determining the field
visibility of the target from any given point is thus
simplified. Figure 4 outlines the idea of object expansion
in 2-D. A coordinate frame is attached to the target at a
reference point. This point is now placed at every vertex
of the occluding object and the target projected
accordingly. The new vertices of the target/feature are
computed. This new set of vertices forms the expanded
object.
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Figure 4: Target reduction and occlusion expansion

(ii) Convex hulls of the expanded objects
The expanded object is simplified to occlusion region
defined by the convex hull of the expanded occlusion. See
Figure 4(b).
(iii) Projection of expanded object
The convex hull of the expanded occlusion is now
projected to a sphere centered on the reduced target. The
radius of the sphere is defined as the distance of the
camera position to the target. This projection is seen in
Figure 5. The TFVgr can be directly computed from these
projections.
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(a) Projection in 2D (b) Projection in 3D
Figure 5: Projection of expanded object
2.3.4. Target Angular Visibility
Target angular visibility is defined as the dot product of
camera image normal vector and the target normal vector,
or the cosine of the inter-normal angle, B. Additionally,

for most practical cases, the target may only be visible
from one side. In such a situation, the contribution to the
rating function due to target angular visibility is given by:
(cosﬁ forgzﬁzj (3)
TAV,, =/ 2 2
(
2.3.5. Alternate/secondary targets
In the representative scenario presented in section 1,
motion of the cooperating robotic systems leads to
occlusions of the target. Even with placement
optimization it is possible that the target would not be
visible sufficiently well to perform the task. One way to
resolve such problems, is to identify additional targets and
the rating function evaluated for these secondary targets.
A secondary target may be a feature whose geometric
relationship to the original or primary target is well known
within defined tolerances. The above rating function is
modified to evaluate all known secondary targets. This
rating function reflects the uncertainty in the geometric
relationship between the secondary and primary targets
(STeror) With modification to RESkg:

R= 2dtan{a/2) tan(a)2) +ST, and Resg. :% (4)
n
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2.4. Camera motion correction

Once an optimum pose for the vision system is obtained
the physical motion of the cameras to the desired pose is
achieved by manipulator motion. However, due to
positioning errors, the true camera pose needs to be
identified. This process eliminates manipulator positioning
errors and vehicle suspension motions, and allows for
accurate data fusion. A single spatial point in the base

frame, I, is related to the image point (u;, vi) by the 4x4
transformation matrix go; (see Figure 6).
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Figure 6: Relationship of camera and target frames

For motion calibration we need to identify go::

kiui rIX—|

kv, |_ [R01]3x3 Xsa r’ ()
=0 =g, 0 =|

k; f 0 1 r’

1 1

where Rg; is the rotational matrix, X is the translation



vector, f is the camera focal length, and k; is a scaling
constant. For computational reasons it is more convenient
to treat the 9 rotational components of Ry, as independent,
rather than a transcedental relation of 3 independent
parameters.  Each spatial point gives 3 algebraic
equations, but also introduces a new variable, ki—
multiplicative constant to extend the i" image point vector
(u,v,f)i to the i"™ spatial point in the camera coordinate
frame. k; may be found from the disparity pair of the
stereo images. Equation 5 may be generalized for n points
resulting in a set of linear equations that can be readily
solved using conventional techniques. A least mean
square error solution is given by:

Oo = u(rTr)_lrT (6)
The rotation matrix, Ro;, and the translation vector, X, of
the camera frame with respect to the base frame are
extracted directly from this solution of go;. However, for
real measured data and associated uncertainty, a larger
number of spatial points are required to more correctly
identify the geometric transformation matrix, go;. Given
the (i+1)™ spatial and image point and its uncertainty, from
Equation 6 Rj,; and Xy and their associated
uncertainties can be obtained. A recursive method is used
to determine the mean and covariance of X and Ry; based
on the previous i measurements as follows:
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This essentially maintains a measure on how certain the
camera motion is w.r.t. its original configuration
(assuming the original configuration is known very
precisely w.r.t. the common reference frame).

If the vision system is unable to maintain an original
set of spatial markers within its field of view (known w.r.t.
the target reference frame), then a new set of markers must
be selected and the appropriate uncertainties must be
accounted for. The issue of obtaining appropriate spatial
points is now addressed. Spatial points are a visible set of
fiducials that are tracked during camera motion. As the
camera moves, the fiducials move relative to the camera,
possibly moving out of the camera view. This requires
methods to identify and track new fiducials. Fiducials are
selected from the environment model [16] and the vision
system view based on three criteria: the degree of certainty
with which a sampled point is known, the visual contrast
of the sampled point with its surroundings, and depth
contrast of the sampled point with its surroundings. These
are combined into a single fiducial evaluation function;

F.E.F. = f(P(x))+g(C(u,v))+h(H(x)) (8)

(i) Fiducial certainty: f(P(x)) ~ P(x)/r, where r is the radius
of a sphere centered at the potential fiducial within which
neighboring voxels have decending certainty levels.
Outside this sphere voxel certainty levels increase. Lower
values for r suggest that the region surrounding a potential
fiducial is well known—a desirable property.

(if) Fiducial visual contrast: g(C(u,v)) ~ contrast (C) *
window size (w). Contrast is defined as:

C(u,v) :l()(%J 9)

w

where 1(x) is the 2D image intensity value of the potential
fiducial at x, |,is the average intensity of a window

centered at the potential fiducial in the 2D image, and w is
the maximum window size after which the contrast starts
to decrease.

(iii) Fiducial depth contrast: h(H(x)) ~ H(x) * window size
(w), where H(x) is the maximum spatial frequency (from a
3D Fourier transform) at the potential fiducial within a
window, and w is the maximum window size after which
the power spectrum (of the 3D Fourier transform) starts
shifting to higher frequencies.

Additionally, a penalty is added if a potential fiducial
is too close to other identified fiducials. Using the
identified fiducials, camera motion can be identified.
Fiducials can be tracked with simple methods such as
region growing or image disparity correspondence.

To obtain an estimate on the absolute position and the
uncertainty of a fiducial in the environment, the camera
pose uncertainty must be accounted for when the fiducial
is measured. Let the measurement Z be related to the state
vector (actual point position) X by a non-linear function,
h(X). The measurement vector is corrupted by a random
noise vector V of known covariance matrix, R.

Z =h(X)+V (10)
Assume that the measurement of the state vector X is
done multiple times. In terms of the current measurement,
a Jacobian matrix of the measurement relationship
evaluated at the current state estimate is defined as:
_ oh(x)

ox X=X,

The state (or positition of a fiducial) may then be
estimated as follows:

K = PkaT[HkPkaT + Rk]_l
§k+l = ik + Kk[zk _h(Yk)] (12)
P = [1_ Kka]Pk
This estimate is also known as the Extended Kalman
Filter.

3. Simulation Results

H, (11)

Results using the RF to define an optimal camera pose
given the probabilistic geometric world map are shown



here. Regions where the probability of occlusion < 0.05
are considered empty, and form candidates for optimal
camera placement locations. The rating function (RF)
cannot be optimized analytically. In practice, finding an
optimum value for RF requires exhaustive searching
though the known configuration space—a process that
takes 0(n) time, where n is the number of discrete points in
the configuration space. Methods to reduce the search time
include: (i) increasing the environment grid “coarseness”,
(if) bounding the evaluation of RF by distance to the
target, (iii) employ a finite random selection of goal
configurations to evaluate. Thus, while the best goal
configuration would be the one maximizing RF, any
configuration with a high value for RF will suffice. Such
a configuration can be found with reasonable effort.

In the first simulation study, a planar environment is
set up (see Figure 7a). The primary target center is located
at world coordinate (50,50). A secondary target is located
at world coordinate (50,75). Figure 7b shows the
evaluation of the RF (Equation 1) over the entire
environment, for two positions of a potential occlusion. It
is assumed that the environment is known in both
instances. Accounting for actual motions of objects will be
demonstrated later. Note that the RF value increases as the
pixel intensity increases i.e. the darker the intensity the
better the camera location. In the first instance, the
optimum location is found by viewing the primary target.
However, in the second instance, the optimum location is
found by viewing the secondary target.
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Figure 7: Optimal camera placement
For most practical situations, it is expected that there
would be movement of some objects in the environment,
since often the task would involve motions by one or more

of the cooperating robots. For example, the cooperative

assembly of a panel into a mating slot. Clearly, the

optimum camera location would change as a function of
the panel position. This is analogous to a human mounting

a clock or picture frame on a wall. As the object is brought

toward the target (e.g. a hook), the human repositions his

or her head to continue monitoring the approach of the
object to the target.

The optimal positioning of a vision system in the
presence of moving objects is addressed in the second
simulation study. For cooperative robots, it is assumed that
moving objects are well known (e.g. CAD models are
given). However, the measured uncertainty associated
with their position must be accounted for. As mentioned
earlier, every measured environment point has an
associated uncertainty. Rather than remap the environment
every time an object (with a known model) moves, the
algorithm simply updates the enrionment model using the
object CAD model. This is achieved as follows.

1. Grid points/voxels in the environment model
belonging to the moving object are identified. This is
achieved using conventional image processing
approaches such as template matching, Hough
transforms, etc. The CAD model of the object is fit to
the mapped points. These grid points are removed
from the environment model and assumed to be
unoccupied space.

2. Points in the current field of view of the vision system
corresponding to the moving object are identified. The
identified points are fit to the object CAD model (as
in step 1).

3. The current position of the moving object is
identified. This is achieved using the known vision
system pose and the identified object pose relative to
the vision system.

4. Measurements from step 2 and the object CAD model
are used to update the environment model.

Table 1 presents the results of simulating a similar

scenario. However, here the task has been modified from

before. The vision system is used to guide the object to the
goal (insertion site). Hence, the target is the displacement
from the object to the goal. The task is successful if the
object can be visually guided to the goal within the
defined tolerances. Several different task scenarios were
considered where the task difficulty and the occlusion
density were varied. Task difficulty is measured as the
tolerance (as a function of object size) permitted in the
task that still allows for success. Occlusion density is
measured as the percentage of the angular projection from
the target onto a target centered circle that results in an
occlusion (where the maximum circle radius is given by
the vision system depth of field). The simulation is carried
out 300 times for each different combination of task
difficulty and occlusion density, and compares the
approach developed in this paper with another heuristic



method: biased random placement—vision system
position is selected randomly with some heuristic
constraints (bounded region of placement, bounded target
angular view, etc.). Note that as the task difficulty
increases for low occlusion density (5%), the optimal
camera placement algorithm still performs well. For the
same change, the heuristic algorithm starts to decay

significantly in performance. However, for high occlusion
densities, both algorithms yield significant performance
decay. This may suggest the need to re-evaluate the field
scenario for task execution when occlusion density is high.
Finally, the influence of secondary targets is seen as task
difficulty or occlusion density increases.

Table 1: Results of changing task difficulty, occlusion density and task execution success
300 tests per scenario Occlusion Density 1 (5%) | Occlusion Density 2 (20%) | Occlusion density (35%)
Without With sec. Without With sec. Without With sec.
sec. target | target sec. target | target sec. target | target
Task difficulty: Optimal camera 100 100 76 95 13 25
easy —»20% placement success (%)
tolerance
Random camera 45 58 16 28 5 9
placement success (%)
Task difficulty: Optimal camera 99 100 63 86 10 18
medium - placement success (%)
10% tolerance
Random camera 23 30 8 15 3 4
placement success (%)
Task difficulty: Optimal camera 97 99 30 52 3 7
hard - 1% placement success (%)
tolerance
Random camera 1 1 <<1 <<1 <<1 <<1
placement success (%)

4. Conclusions

In field environments it is often not possible to provide
robotic teams with detailed a priori environment and task
models. In such unstructured environments, cooperating
robots will need to create a dimensionally accurate 3-D
geometric model by performing appropriate sensor actions
and position their sensors in a task directed optimal way.
A new algorithm based on iterative sensor planning and
sensor redundancy is proposed to overcome the camera
occlusion from fixed poses, to build the 3-D environment
model, and to position sensors to observe a task. The
environment modeling stage of the algorithm was
developed in detail in a previous paper [16]. This paper
addresses the process of task directed optimal camera
placement, given the developed environment model. This
algorithm is based on iterative sensor planning and
exploiting the sensor redundancy of cooperative robotic
systems. A rating function is developed and optimized to
find the most suitable pose to view the target. Simulations
show promising results.
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