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Abstract 
 

Dimensionality reduction is one of the key data analysis 
steps. Besides increasing the speed of computation, 
eliminating insignificant attributes from data enhances the 
quality of knowledge extracted from the data. In this paper 
we have proposed an efficient, conditional probability based 
method for computing the significance of attributes. The 
algorithm is highly scalable and can simultaneously rank all 
the attributes. The proposed method can be used to analyze 
pre-classified data by exploiting the attribute-to-class and 
class-to-attribute co-relations. The effectiveness of the 
approach is established through the analysis of various 
large test data sets. The method can be extended to extract 
classificatory knowledge from the data. 
 
1. INTRODUCTION 

 
Analysis of past data for extracting classificatory 

knowledge often provide excellent insights which can pave 
the way for better decision making to be applied in the 
future. One of the central problems of classificatory 
knowledge extraction is that  of dimensionality or the 
selection of an appropriate subset of features which can 
preserve the classificatory knowledge. Feature selection 
aims at identifying a small set of significant subset of 
attributes from data that can produce good classification 
results at a reduced time. Presence of irrelevant, erroneous or 
redundant attributes in the data, also affect the quality of 
knowledge extracted. An attribute is redundant if it does not 
contribute anything new to the knowledge that is extracted 
without it. In such cases, normally the redundant attributes 
are co-related to other attributes. Pruning the feature set can 
also lead to simpler, more understandable models [2,3] for 
prediction.  

In this paper, we have proposed an efficient 
methodology for analyzing pre-classified data sets and  
determine the significant attributes in the set by ranking 
them. Unlike some of the classical models, which typically 
look at all possible subsets of attributes to decide on an 
appropriate set, our method works independently on each 
attribute and computes the significance as a function of its 
classificatory power.  

Knowledge engineering has traditionally looked at 
ranking of attributes and application of extracted 
classificatory knowledge for prediction as two different 
problems. We have however extended the task of attribute 
significance computation itself to classificatory knowledge 

extraction, which is then used for prediction. Unlike most of 
the algorithms for computation of significance of an attribute 
which vary exponentially with the data base size, the 
computation of significance using the proposed algorithms, 
varies linearly with the size of the data base. Hence the 
algorithm is highly scalable. 

In the next section, we have provided a brief 
overview of some of the related work in this area. Sections 3 
and 4 describe the design principles of the proposed 
algorithm followed by an analysis of its complexity. In 
section 5 we have presented performance evaluation 
measures obtained on some well known data sets. We have 
also provided some comparative measures on efficiency of 
the proposed scheme, wherever such data was available for 
other methods. 
 
2. FEATURE SELECTION AND PREDICTION:  A 
SURVEY  

 
Feature selection attempts to select a subset of 

relevant descriptive attributes from pre-classified data. The 
minimal subset of attributes for which the classification 
accuracy remains the same as that of the original set of 
attributes, is termed as a “reduct”.  If the feature set size is 
N then there are 2N possible subsets. Some feature selection 
methods perform a complete search over this state space for 
the optimal subset [3]. The Importance Score technique 
reported in [5] is an example of such a method which tests 
the predictive accuracy of each feature on the basis of 
positive examples classified correctly by the feature in a 
training set. The minimum number of significant features 
that can achieve good classification accuracy is then selected 
by repeatedly reducing the number of features and observing 
its effect on the classification result. Obviously, the 
complexity of these feature selection methods is very high. 
Besides, reducts may not exist for all data sets.   

Alternatively, heuristic methods are employed  to 
find subsets of attributes, which do not necessarily preserve 
the classification knowledge accurately, but also do not 
deteriorate it significantly [2, 3]. A well known alternative to 
the exhaustive search procedure is the Branch and Bound 
algorithm presented by Narendra and Fukunaga in [4]. This 
is a top-down algorithm with back-tracking. In this method a 
monotonic criterion function is associated to feature subsets. 
A search tree is constructed in which the leaves represent 
subsets of features while the root represents the set of all 
features. Principal Component Analysis is a well-established 
method, which is used to find the most significant attributes 



 
in a data set [5]. However, principal component analysis 
cannot be extended to symbolic attributes. 

Decision tree based classification methods like ID3 
algorithm uses an information theoretic based approach to 
compute the significance of attributes and use them to 
construct a decision tree which checks for attribute values, in 
the order of decreasing significance of attributes, for 
prediction of class decision. The problem with this approach 
lies in the fact that each time the most significant attribute is 
eliminated form the data set, the significance of the 
remaining attributes have to be recomputed with respect to 
the new scenario. Besides, the decision tree reflects the 
training data set accurately and does not necessarily perform 
well while used for prediction of new data.  Hence decision  
trees are pruned to make them practically applicable. The 
full complexity of decision tree induction then turns out to 
be O(mn log n) + O(n (log n)2), where m is the number of 
attributes and n is the number of samples. 

HCV [3] is a heuristic attribute-based induction 
algorithm that is based on the extension matrix approach. In 
this approach, the positive examples (PE) of a specific class 
in a given example set are divided into intersecting groups 
and then a set of strategies are adopted to find a heuristic 
conjunctive formula in each group which covers all of  the 
group's positive examples and none of the negative examples 
(NE). The covering formula is represented in the form of 
variable-valued logic for PE against NE. This is done in low-
order polynomial time. This algorithm being very efficient 
for prediction, we have used the time analysis of prediction 
results obtained by this algorithm as the basis for comparing 
our prediction results. 

Soft computing paradigms like neural networks and 
genetic algorithms have also been successfully applied for 
classificatory knowledge extraction [6]. Genetic algorithms 
help in accumulating information about an unknown search 
space to bias future search into promising subspaces. 
However, genetic algorithms can be designed only with a 
substantial amount of domain knowledge.  
 
3. DETERMINING SIGNIFICANCE OF ATTRIBUTES 

 
Ours is a conditional probability based approach 

originating from the following observations. If an attribute is 
significant, then there is a strong possibility that on changing 
the value of the attribute for an element, the categorization 
of the element would also change. Alternatively, given that 
the class decision for two elements in the data set is 
different, the values of a significant attribute should also be 
different for these two. We therefore compute the 
significance of an attribute as a two way function of its 
association to the class decision. For each attribute Ai, we 
compute Æ (Ai), which captures the cumulative effect of all 
its possible values and their effects on class decisions. Æ(Ai) 
represents the overall attribute-to-class association for Ai. 
Next, we take note of how an attribute’s values change with 
a change in the class decision. We capture this effect in the 
quantity Œ (Ai) for the attribute Ai. This represents the class-
to-attribute association for every attribute. An attribute is 

really significant if both attribute-to-class association and 
class-to-attribute association for the attribute are high. While 
most of the methods like those using a decision tree or 
principal component analysis do use the first kind of 
association , the second  type of association is not utilized by 
them.   
 
3.1. COMPUTING  Æ( ) FOR ALL ATTRIBUTES 

 
Let U be the collection of data  elements and let A1, 

A2,_ _ _ _  _ _Ag be the attributes which describe 
the elements of  this data set. We assume that the elements 
of U are members of m different classes 
denoted by natural numbers 1, 2, ….., m. Let  J represent the 
set of  all classes i.e. J={1,2,3_  _ _ m}. 
To compute the overall association of Ai to the different 
classes, let us assume that it can take k different symbolic 
values. We use the notation Ai

r  to denote the rth attribute 
value of Ai. The notation Ai

~r is used to denote a value of Ai 
which is not equal to Ai

r . This is a short hand notation for all 
values not equal to Ai

r , and can actually take (k-1) different 
values. 

 We introduce a set of notations which we will use 
hereafter. 
• w is a proper subset of J 
Pi

r (w) denotes the probability that elements of U with ith 

attribute value equal to Ai
r belong to classes contained in w. 

This can be computed from U using frequency counts. 
 Pi

~r (∼w) denotes the probability that elements not having 
the ith attribute value equal to Ai

r (i.e. elements with ith 

attribute value equal to anything other than Ai
r ) do not 

belong to classes contained in w. This can also be computed 
from U using frequency counts. 

Our first observation is that if an attribute value is very 
significant, then both Pi

r (w) and Pi
~r(∼w) are high. This 

implies that objects with ith attribute(Ai)  value equal to Ai
r 

and those with Ai
~r classify to different groups of 

complementary classes.  
We term the quantity Pi

r (w) + Pi
~r (∼w) as the 

separating power of Ai
r  with respect to w. This quantity 

reaches a maximum, when both the terms individually reach 
their maxima. Since there are (2m –1) possible values of w, 
we associate with each value Ai

r , the subset wi
r, which 

yields the maximum value for the summation  ( Pi
r (w) + Pi

~r 
(∼w)). Since wi

r yields the maximum value for the above 
quantity, this subset can be said to have the strongest 
association to the value Ai

r .  
Definition 3.1.1:   The subset w = wi

r that maximizes the 
term ( Pi

r (w) + Pi
~r (∼w)) is termed as the support set for the 

value Ai
r. 

 
Definition 3.1.2: The quantity (Pi

r (wi
r) +Pi

~r(∼wi
r)) 

is defined as the discriminating power of an attribute value 
Ai

r. We use the symbol ϑir to denote the discriminating 
power of an attribute value Ai

r.  
 

An attribute will be significant if all it’s values have 
high discriminating power.  

  



 
 

Definition 3.1.3: The attribute-to-class association of an 
attribute Ai, denoted by Æ(Ai), is a function of the mean of 
the discriminating powers of all possible values of an 
attribute Ai. We restrict its value between 0.0 and 1.0.  
  
To compute Pi

r (w) for any w, we note that 
 Pi

r (w) =  P
wn∈

∑  (n | Ai
r) ,  

      
since an element can belong to exactly one class contained in 
w. P(n | Ai

r) denotes the conditional probability that an 
element belongs to class n given that the value for its ith  
attribute is Ai

r
 . This can be directly computed for any given 

preclassified  data set.  
Now, for any i, for any r and for any w, we have 0≤ 

Pi
r(w)≤1, and 0≤ Pi

~r (∼w) ≤1. The value of 0 is obtained 
when none of the elements of U with ith attribute value Ai

r  
belong to any class contained in w. The value of 1 indicates 
that w contains all the classes that elements of U with ith  
attribute value Ai

r
 ,  belong to.  Hence, 0 <= (Pi

r (w) + Pi
~r 

(∼w)) <= 2.   
We use a linear incremental approach to find the 

support set wi
r  for each attribute value Ai

r of attribute Ai. Let 
n denote the total number of elements in the data set. For 
each class t ∈ J ,let N(t) denote the number of elements 
belonging to class t. Let Ti

r denote the total number of 
elements in the data set having Ai

r as the value for Ai. Let 
Mi

r(t) denote the number of elements that belong to class t 
and have attribute value Ai

r for Ai. Then P(t/Ai
r) is given by  

Mi
r(t)/ Ti

r.  
To find the subset wi

r, starting with an empty wi
r, 

we add  t to wi
r, if P(t/Ai

r) is greater than P(t/Ai
~r). It can be 

theoretically proved that this approach indeed gives the 
maximizing subset which is the support set for the attribute 
value Ai

r.  
The linear approach to finding the support set 

proceeds as follows. If the conditional probability of an 
element belonging to class t is higher with a given attribute 
value Ai

r  than with the values Ai
~r, then t will be included in 

wi
r, while it will be included in (~wi

r), if it is the other way 
round. Obviously,  no class can belong to both wi

r and (~wi
r). 

Thus, when all the classes t are taken care of, wi
r 

accumulates those classes which occur more frequently in 
association to the value Ai

r for Ai, while (~wi
r)  accumulates 

those classes which occur more frequently in association 
with Ai

~r.  
Now, to compute P(t/Ai

~r), we need the proportion 
of  elements which belong to class t but does not have 
attribute value Ai

r for Ai, out of all the elements of the data 
set . The quantity (N (t) - Mi

r(t)) denotes the number of 
elements which belong to class t but does not have attribute 
value Ai

r for Ai.  The total number of elements in the data set 
which does not have the attribute value Ai

r for Ai is given by  
(n - Ti

r ).Thus the required conditional probability P(t/Ai
~r) 

is given by  
 
P(t/Ai

~r) =(N (t)-Mi
r(t))/(n-Ti

r ). 

 
The entire data set has to be scanned only once to 

compute all the conditional probabilities that are required. 
Thus the computation of the support set is linear in terms of 
the number of training samples.   

 
We will now show that the value of (Pi

r (wi
r) + Pi

~r 
(∼wi

r)) will lie between 1.0 and 2.0. The maximum value of 
(Pi

r (wi
r) + Pi

~r (∼wi
r)) is obviously 2.0. Let w denote any 

proper subset of J and w′ its complement. Let the value of 
Pi

r(w)  be x. Then Pi
r(w′) has value (1 – x). Let Pi

~r(w) have 
value  y. Then Pi

~r(w′) has value (1-y). Now, the separating 
power of Ai

r with respect to w , is denoted  by (Pi
r (w) + Pi

~r 
(w′)) and is given by (x + 1- y), while the separating power 
of Ai

r with respect to w′, is given by (Pi
r (w′) + Pi

~r (w)) 
which is equal to (1-x + y).  
• If x > y, then (x+1-y) > 1.0 which implies that the 

separating power of Ai
r with respect to w will be greater 

than 1.0.  
• If y > x, then (1-x+y) > 1.0 which implies that the 

separating power of Ai
r with respect to w′ will be 

greater than 1.0.  
• If x=y, then both the above quantities are equal to 1.0.  

Thus, it is always possible to find a subset of J with 
respect to which the separating power of Ai

r is at least 1.0. 
Hence the separating power of Ai

r will lie between 1.0 and 
2.0. 
 We have already introduced the term Æ(Ai) in 
definition 3.1.2, which denotes the attribute-to-class 
association for attribute Ai. We now define Æ(Ai), for Ai 
with k different attribute values as follows: 

 Æ(Ai) = (1/k * ) – 1.0. 
k2,1r

r

i
−−−=

ϑ∑

The subtraction of 1.0 in the above formula ensures 
that the value Æ(Ai)  lies between 0 and 1.0.  

The following implementation realizes the steps 
discussed earlier. The function max_sep_probability() finds 
the maximizing set wi

r for a particular attribute value Ai
r . 

The algorithm A is used to compute Æ(Ai). 
 

 
Function max_sep_probability (Ai

r , D)  
begin  

Input – D – the data set and  Ai
r  - a specific 

attribute value 
Output  - wi

r and   ϑi
r =  Pi

r(wi
r ) + Pi

r(~ wi
r ) 

m - number of classes in D 
/*  P(t/Ai

r) – conditional probability of class t given Ai
r , as 

calculated form D 
   P(t/Ai

~r) – conditional probability of class t given Ai
~r , as 

calculated from D */ 
  ϑi

r = 0.0; 
 wi

r = φ;   
   for(t=1;t<=m;t++) 

  



 
    {      if (P(t/Ai

r) > P(t/Ai
~r))  /* A greater proportion of 

elements with value Ai
r  belong to class t  than those with 

values Ai
~r   so t ∈ wi

r */  
     {   wi

r = wi
r + { t }; 

           ϑi
r =  ϑi

r + P(t/Ai
r) ; 

  } 
    else 
 {     /*  t ∈ ~wi

r */  
      ϑi

r =  ϑi
r + P(t/Ai

~r); 
             }} 
 end; 
 
 
 Algorithm A for computing Æ(Ai) 
 
begin 
 Input : D  - the set of all pre-classified data elements 
described with attributes A1 , A2 , _ _ _ _  _ _ _ _ , Ag  where 
A1 , A2 , _ _ _ _  _ _ _ _ , Ag are symbolic attributes. 
Output : Æ(A1), Æ(A2), … , Æ(Ag)  
Step 1:  For each attribute Ai repeat steps 2 to 5 
Step 2 : Æ(Ai) = 0.0 (initialize) 
Step 3 : For each of the r values Ai

r of Ai,   
   Æ(Ai) = Æ(Ai)  +  max_sep_probability (Ai

r , D) 
Step 4: Æ(Ai) = Æ(Ai) / ξrξ;  /* ξrξ denotes the number of 
values Ai takes */ 
Step 5: Æ(Ai) = Æ(Ai) – 1.0; 
end; 
 
 
 
3.2. COMPUTING Œ( ) FOR ALL ATTRIBUTES  

 
Œ(Ai)  finds the association between the attribute Ai and 

various class decisions, by observing how a change in the 
class decision causes a change in the attribute’s value It is 
expected that objects belonging to different classes will tend 
to have different values for a really significant attribute. . 
The computation is very similar to the earlier one. 

 Let V be a subset of attribute values of Ai. As in section 
3.1, we introduce two quantities Pi

j(V) and  Pi
~j(~V).  

 
• Pi

j(V) denotes the probability that elements belonging to 
class j, have those attribute values of Ai which are 
contained in the set V. 

 
• Pi

~j(~V) denotes the probability that elements not 
belonging to class j, have those attribute values of Ai 
which are not contained in the set V. 

Obviously, if the attribute Ai and class j have a high 
degree of association then both the above probabilities will 
be high. 

Now, for each class Cj, we find the subset Vi
j
  

comprised  of values of Ai, that maximizes the quantity  
(Pi

j(V) + Pi
~j(~V)). Vi

j
 contains those attribute values which 

occur predominantly in association to class Cj. As noted 
earlier, when both  (Pi

j(Vi
j) and Pi

~j(~Vi
j
 ) are high, it 

indicates that the values contained in Vi
j have a high 

association factor with Cj and the remaining classes have 
high association with other values of attribute Ai.  
 
Definition 3.2.1: The quantity (Pi

j(Vi
j)+ Pi

~j(~Vi
j )) is 

denoted by Λi
j and is called the separability of the attribute 

values of Ai with respect to class Cj. 
  

We now define the quantity called Œ(Ai), which 
denotes the class-to-attribute association for the attribute Ai.  
We define Œ(Ai) to be the mean of the separability of its 
values. Further, we restrict Œ(Ai) to lie between 0.0 and 1.0 
and hence we define it as follows: 

Œ(Ai) = (1/m *( ) ) – 1.0, where  the 

database D has elements of m different classes. 
m2,1j

j

i
−−−=

Λ∑

Functions to find the separability and class-to-
attribute association are very similar to the ones described 
above for discriminating power and attribute-to-class 
associations and hence we skip them. 

Definition 3.2.2: The significance of an attribute Ai 
is computed as the average of Æ(Ai) and Œ (Ai) and is 
denoted by σ( Ai).  

 
3.3. ATTRIBUTES AND THEIR SUPPORT SETS -  
PHYSICAL SIGNIFICANCE 

 
In this section we will illustrate the practical use of 

ranking of attributes and also explain the physical 
significance of the support sets associated with the 
significant attributes. The above method of significance 
computation, when applied on Fisher’s IRIS data set showed 
that the attributes when ordered according to their 
significance are petal length, petal width, sepal length and 
sepal width respectively. This is in accordance with the 
results reported in literature [5].  
A more practical database that we experimented with is a 
heart patients data base obtained from the  site 
www.niaad.liacc.up.pt/statlog/datasets.html This set 
contained samples classified into two categories – patients 
with and without heart disease. The set contained 13 
attributes. Table 3.3.1 shows the ranking of the most 
significant attributes obtained by our method along with the 
attribute values in their respective support sets for  the class 
of patients with heart disease. Thus it can be concluded that 
people with heart disease will have chest pain of type 3 and 
4 mostly, indicating high and very high values for it. 
Similarly, low values for maximum heart rate achieved also 
indicate likelihood of heart disease.   

We now present some interesting insights that we 
get from image segmentation data also obtained from the 
same site. This data set contains pixels classified into 
categories BRICKFACE, SKY, FOLIAGE, CEMENT, 
WINDOW, PATH and GRASS. Each pixel is described with 
19 attributes, of which we find the seven most significant 
ones are intensity, rawred-mean, rawgreen-mean, rawblue-
mean, value-mean, saturation-mean and  hue-mean 
respectively. The other attributes convey positional 

  



 
information only and is correctly identified as insignificant 
by our approach.  On  analysis of support sets for the 
significant attributes, we can extract the following 
classificatory knowledge for image segmentation: 
• The class SKY can be always distinguished from all 

other classes due to high values of all the attributes 
intensity, rawred-mean, rawgreen-mean, rawblue-
mean, value-mean. 

• Hue-mean  can alone distinguish correctly between 
classes GRASS, BRICKFACE and WINDOW with 
high values for GRASS, low for BRICKFACE and 
medium for WINDOW. 

• Classes CEMENT and PATH have substantial 
overlapping values for all the significant attributes. 

 
   
 
Table 3.3.1 – Significant attributes and their support sets 
for the heart disease data 
Rank Attribute Name Support set 
1. Tal {fixed defect, 

reversible defect} 
2. Number of major blood 

vessels colored by 
fluoroscopy 

{1,2,3} 

3. Chest pain type {high, very high} 
4. Exercise induced angina {Yes} 
5.  Slope of peak exercise ST 

segment 
{Medium, High} 

6. oldpeak = ST depression 
induced by exercise relative 
to rest 

 
{2.06 – 6.2} 

7.  maximum heart rate achieved  
{71.0 – 136.0} 

8. Sex   1 
 
 

3.4. COMPLEXITY OF PROPOSED ALGORITHM 
 
The above algorithms to compute the attribute-to-

class and class-to-attribute associations are linear in terms 
of the number of elements in data set. Given a database of n 
objects, the computation of conditional probabilities needs 
one scan of the database and take O(n) time. Computation of 
ϑi

r considers for each value of an attribute, the proportion of 
elements which have that value and belong to different 
classes. If an attribute Ai has k different values and there are 
m different classes, then this of order O(n+ km). For a total 
of g  attributes, the total time taken to compute the 
attribute-to-class or class-to-attribute associations for all 
attributes is O( gn + gkm  ). Normally, in any real data set, n 
>> km, so the complexity of the proposed algorithms are 
effectively linear in terms of n and the order ≈ O(gn).    

 
4. PREDICTION USING SIGNIFICANCE OF 
ATTRIBUTES VALUES 

 

In this section we propose a prediction 
methodology which uses the discriminating and 
separability powers of the significant attribute values along 
with their support sets, to predict the class of a new data 
element.  

If the given attribute value Ai
r of the data element 

belongs to the support set of a class, we compute the 
likelihood of the class as follows: 
Likelihood (t) =  (Λi

j -1.0)* P( Ai
r/ t), if Ai

r ∈ vi
j, 

Likelihood (t) = 0.0 otherwise. 
The total likelihood of each class is then given by the total 
combined contribution of all the significant attribute values. 
This computation is also of the order of O(g΄m), where g΄ is 
the number of significant attributes chosen. The class that 
receives the maximum total contribution is predicted as the 
actual class of the data element.  
 
 
5. PERFORMANCE EVALUATION 

 
We validated the entire approach with several 

standard databases. The results reported in this section were 
obtained with a 10-fold cross validation over each data set. 
All the databases were obtained from the site 
www.niaad.liacc.up.pt/statlog/datasets.html. Each database 
was randomly divided into training and testing sets by a 
70:30 split of the instances. The training set was used to 
compute the significance of the attributes. The prediction 
results obtained with the significant attributes only were 
validated against the original classes of the test instances and 
the error percentages are also reported.  

Table 5.1 shows that the classification results are 
comparable with those algorithms which use all the 
attributes, though our algorithm uses fewer attributes and 
hence use less time. The reduction in the number of 
attributes is very  significant for the Australian credit card 
database. The table shows that our algorithm uses only 2 out 
of all the 16 attributes and gives better classification results. 
Substantial computational reduction is also obtained for the 
diabetes patient data set.  

The data sets picked up were of varied nature and 
there was no assumption about the shapes of class volumes 
in the training data set. It is observed that the classification 
results for test data are not so good for the Diabetes data set 
and the Hayes-Roth data set. We observed that for both of 
the above data sets, none of the features had high class-to-
attribute or attribute-to-class correlation. The maximally 
significant attribute in case of the Diabetes data set was 0.37 
and only three attributes had values greater than 0.22.  While 
for the Australian Credit Card data base, the maximum 
significance value was obtained as 0.71.   

 One of the implementation issues for this algorithm 
would be to decide on a threshold value for discarding the 
non-significant attributes. Our empirical observation is that 
if the most significant attribute has a significance value less 
than 0.8 then all attributes which have their significance 
values within 60% of the most significant value, are to be 
selected. While, if the most significant value is greater than 

  



rediction 
after 
selecting 
significant 
ones 

sed for 
Attributes 

 
0.8, then all attributes which have their significance values 
within 80% of the most significant value, are to be selected. 
However, this is just an empirical observation and we are yet 
to provide a theory for the selection of the appropriate 
threshold value.  
 
6. CONCLUSIONS 
 
In this paper, we have presented an efficient methodology to 
compute significance of attributes. We have also shown how 
the computation of significance of attributes can be linked to 
the problem of prediction for classification. Results show 
that the performance of this algorithm is comparable to some 
of the well-known algorithms though we use fewer  
attributes. The complexity of computing the significance of 
attributes is linear in number of training samples. In future, 
we plan to exploit the support sets for classes to generate 
classificatory knowledge which can be encoded as 
classification rules with degrees of accuracy associated to 
them. On applying the same approach for unsupervized 
learning or clustering of data sets, we have obtained 
encouraging results. 
 
REFERENCES     
 
 [1] Davis L. [ed.], Handbook of Genetic Algorithms ,Van 
Nostrand Reinhold, 1991 

 [2] Xindong Wu, D. Urpani, “Induction By Attribute 
Elimination”, IEEE Transaction on Knowledge and Data 
Engineering, vol. 11, No. 5, pp 805-812, Sept./Oct. 1999 
[3] J. Hong, “AE1: An Extension Matrix Approximate 

Method for the General Covering Problem”, Int’l Journal if 
Computer and Information Sciences, Vol 14, No. 6, Pg. 421 
– 437, 1985. 
 [4] Narendra P.M. and Fukunaga K., “A Branch and Bound 
Algorithm for Feature Subset Selection”, IEEE Transactions 
on Computers, vol c-26, no. 9, pp 917-922, 1977. 
[5] Ian H. Witten and Eibe Frank, “Data Mining – Practical 
Machine Learning Tools and Techniques with Java 
Implementations”, Morgan Kaufmann Publishers, San 
Francisco, California, 2000. 
[6] Vafaie H. and Ibrahim F.G. Imam, “Feature Election 
Methods: Genetic Algorithms vs. greedy-like search”, 
Proceedings of the International Conference on Fuzzy and 
Intelligent Control Systems, 1994. 
http://citeseer.nj.nec.com/vafaie94feature.html  
 
 
 
 
 
 
 
 

 
Table 5.1: Prediction Results – a comparison with other algorithms 

 

algorithms 

(these use all attributes) 

Database Total   

Number of 
attributes 

u
p

Total 
prediction 
error  with 
our 
proposed 
algorithm  

(In %) 

Error 

With 

C4.5 

(In %) 
using all 
attributes 

Name of 
algorithm 

 

Error 

(In %) 

IRIS 4 2 4.1 6.7 CBA 5.3 

Australian-Credit 
Card 

14 2 14.4 15.5 Cal5 13.1 

Diabetes 8 3 20.7 27.0 LogDisc 22.3 

Hayes-Roth 4 3 18.1 14.4 HCV 14.3 

Vote 16 2 3.9 3.0 HCV 2.2 

Wine 13 9 5.8 1.9 HCV 9.6 
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