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Abstract 
 

*** baL  is a  perceptually uniform color space and 
HSV approximately perceptually uniform space for 
representing color. But commonly used color space 
is RGB, which is not perceptually uniform. In this 
work we compare these three-color spaces for 
rotation invariant color texture classification. The 
inclusion of color aspects of texture in image 
processing is increasing rapidly. Gabor wavelets are 
used to obtain features. We compare the color 
spaces by using two strategies. One is based on 
quadratic Bayesian classifer. The other is classifier 
independent based on Bhattacharyya distance 
figure of merit. Perceptually uniform color spaces 
gave better results. 
 
1. Introduction 
 
Texture and color are two very important attributes in 
image analysis. Many different methods are proposed 
for texture analysis. Most of the work was focused on 
gray level representation. The need to include color 
aspect in texture analysis is being felt increasingly. The 
important aspect of the combined problem is how 
chromatic information is involved in the formation and 
description of a texture. First order image properties 
can be successfully determined using color 
information. Texture generally describes second  
(possibly third) order property of surfaces and scenes, 
measured over image intensities. The use of RGB space 
for representing image data is very general in image 
processing. This is because of the availability of data 
produced by   the camera apparatus. RGB is not 
perceptually uniform color space. Euclidean distances 
in 3D RGB space do not correspond to color 
differences as perceived by human beings. The 
international committee on colorimetry (CIE) has 
defined two color spaces, which are perceptually 
uniform. These are *** baL and L*u*v*. The L*C*H* 
(Lightness, chroma, Hue) and HVC (Hue, Value, 
Chroma) color apaces have been formed as derivatives 
of L*u*v* [22, 23].  Another, approximately uniform 
color space is HSV. Main justification for using 

perceptually uniform spaces is their appeal to humans 
and their provision for isolating the luminance 
component [22]. These are used in [12, 22, 23].  
In this paper, we present a comparative study that 
compares *** baL  and HSV with RGB for their 
effectiveness in rotation invariant color texture 
analysis. A color texture is a spatio-chromatic pattern 
and may be defined as the “distribution of colors over a 
surface”.  Color aspects of textured images are studied 
in [2-4, 11, 16 19-21]. It is obvious to note that 
incorporating color into texture analysis is very 
beneficial. Gabor filters are extensively used for 
texture analysis [5,7-10,15,17]. We use a set of Gabor 
filters, which extract local orientation and scale 
information from different color bands. Gabor filters 
are shown to be good fits for the simple cells in visual 
striate cortex of human visual system. The comparison 
is based on the classifier performance as well as on 
classification independent measures.  Classification is 
based on k nearest neighbor and quadratic Bayesian 
classifier. Non-classification based comparison is done 
using the Bhattacharyya distance figure of merit. 
Results show superior performance of perpetually 
uniform spaces over RGB color space. Section 2 gives 
information regarding perceptually uniform color 
spaces. Section 3 introduces Gabor wavelets and 
obtains the rotation invariant textures features. The 
scheme to compare the performance of features in 
color spaces is outlined in section 4. Section 5 gives the 
experimental results. Section 6 gives the conclusion. 
 
2. Perceptually uniform color spaces 
 
Generally image data is given in RGB space. The 
definition of *** baL  is based on an intermediate 
system, known as the CIE XYZ space (ITU-Rec 709). 
This space is derived from RGB as given below [1]: 
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*** baL  color space is defined as follows [1]. 
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nX , nY and nZ  represent a reference white as defined 

by a CIE standard illuminant, 65D  in this case. This is 
obtained by setting  
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is an approximately uniform color space, is defined 
directly on RGB. Given ]1,0[,, ∈BGR , the 
corresponding ]1,0[,, ∈VSH ; the algorithm is given 
in [21]. 
 

3. Gabor wavelets 
 

Gabor Elementary Functions are Gaussians modulated 
by complex sinusoids. In two dimensions they are 
represented by [8,15] 
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The Fourier transform of ),( yxG  is 
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For localized frequency analysis it is desirable to have 
a Gaussian envelope whose width adjusts with the 
frequency of the complex sinusoids. Let ),( yxG  be 
the mother Gabor wavelet, then a filter set is obtained 
by appropriate dilations and rotations of mother 
wavelet using: 
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where K
nπθ =  and K  is the total number of 

orientations. The scale factor ma −  in equation (5) 
ensures that the energy is independent of scale.  
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 The non-orthogonality of Gabor wavelets implies 
redundant information in the filtered images, and the 
following strategy is used to reduce this redundancy. 
Let hl UU ,  denote the lower and upper center 
frequencies of interest respectively. Let K be the 
number of orientations and S be the number of scales in 
the decomposition. Then the design strategy is to 
ensure that the half peak magnitude cross-sections of 
the filter responses in the frequency spectrum touch 
each other. This results in the following formulas for 
computing the filter parameters σu and σv (and thus σx 
and σy). 
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Here m is scale.  To eliminate sensitivity of the filter 
response to absolute intensity values, the real (even) 
components of the 2-D Gabor filters are biased by 
adding a constant to make them zero mean.   Each 
channel is formed by a pair of real Gabor filters. Let 
the output of each channel is given by 
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where ),(1 yxG  is 2D Gaussian and  * denotes 2-D 

linear convolution.. The channel output ( )yxC ,  is 
computed as 

( ) )9(,;, 22
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Filters are implemented in frequency domain for better 
computational efficiency. The mean value ( )θ,UM  
of a channel is computed by 
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where 21NN  is the area of ( )θ,;, UyxC . This value 
depends on the filter center frequency U  and 
orientation θ . The mean values provide powerful 
features for texture classification. These features are 
rotation dependant since ( )iUM θ, ≠ ( )jUM θ,  for 

ji ≠ . Since rotation of input image ( )yxi ,  

corresponds to the translation of ( )θ,UM , DFT of 

( )θ,UM  would be rotation invariant feature [9,15]. 
The redundant data after DFT is removed. 
 
4. Scheme for comparing the color spaces 
 
The rotation invariant color texture features are 
extracted using a set of Gabor filters. In this 
experimentation we have chosen 4 scales and 8 
orientations. Thus the orientations are 0, 22.5°, 45°, 
67.5°, 90°, 112.5°, and 135°, 157.5°. The highest 

spatial frequency chosen is ( )2tan1
5.0

θB+ ; here 

orientation bandwidth is 05.22=θB . The frequency 
bandwidth is 1 octave. The comparison is divided in 
two parts. In the first part we compute the features for 
each texture sample. Since the aim here is to compare 
the effectiveness of color spaces we use Bhattacharyya 
figure of merit [13, 14] for a classifier independent 
comparison. For two classes j and k with means 

kj µµ ,  and covariance matrices ∑∑ kj , , as 
measured in a color space, the Bhattaxharya distance of 
merit is defined as [14]: 
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where ⋅  is matrix determinant. B measures pair wise 
separability without performing classification. The 
average B distance in a color space may be taken as 
measure of effectiveness of features for classification. 
In second part classification is performed based on the 
features. The total number of features per texture 
sample is 48 (i.e.16 for each color component, this is 
because the redundant features are not used after DFT 
operation).  Quadratic Bayesian classifier (qbc) is used 
for classification. For 15-texture class k nearest 
neighbor classifier is also used.  
 
 
 

5. Experimental Results 
 
All texture images are rotated in steps of 15 degrees 
from 0 to 165 degrees to form the training and test 
images. 80 texture images from Vistex database are 
chosen for experimentation.  For rotating the texture 
images  “imrotate” command of Matlab is used with 
bicubic interpolation option and central 256256×  
image is used for the experiments.  An  256256×  
image is divided in 16 subimages of 6464×  size, half 
the samples are used for training and other half for 
testing the performance of the classifier. The images 
per texture for training and test phase are 96. Table 1 
gives the average Bhattacharyya distance for 15-class 
problem in the three color spaces. In the first 
experiment a subset of 15 textures is used. Table 2 
gives the results of this experiment. In the second 
experiments the classification is done for all 80 
textures using quadratic Bayesian classifier and the 
results are given in Table 3. 
 
From Table 1 it is clear that the classifier independent 
Bhattacharya distance figure of merit is superior for 
perceptually uniform color spaces compared to RGB 
color space. The classifier results in Table 2 support 
the same conclusion. The performance difference 
between the two perceptually uniform color spaces is 
not very significant though the Bhattacharyya distance 
of merit is better for HSV compared to *** baL .  For 
the 80-texture problem, the results of which are given 
in table 3, the performance of perceptually uniform 
color spaces for classification has significant advantage 
over RGB color space. 
 
6. Conclusion 
 
A comparative experiment was designed to study the 
effect of different perceptually uniform color spaces for 
rotation invariant color texture classification. The 
perceptually uniform color spaces used are *** baL  and 
HSV.  Performance of these color spaces is superior to 
RGB color space (this is the most common color space 
used). We conclude from the comparison study that 
HVS and *** baL  are better color spaces for rotation 
invariant color texture characterization for practical 
applications.  
 

Table 1: Average Bhattacharyya distance for 15-
class problem. 

Color space RGB *** baL  HSV 
B average 19.85 24.7 31.38 

 
 
 



 
Table 2: Percentage correct classification for 15-

texture problem 

Texture RGB 
(knn) 

RGB 
(qbc) 

HSV 
(knn) 

HSV 
(qbc) 

*** baL
(knn) 

*** baL
(qbc) 

V2 97.92 95.83 91.67 95.83 98.96 97.92 

V9 95.83 86.46 100 95.83 98.96 92.71 

V10 72.92 75 94.79 95.83 96.88 88.54 

V11 100 100 98.96 100 100 100 

V27 8229 72.92 97.92 97.92 100 97.92 

V32 100 100 100 100 100 100 

V37 98.96 100 98.96 100 100 100 

V39 97.92 98.96 100 100 100 100 

V47 80.21 94.79 100 100 100 100 

V52 100 100 100 100 100 100 

V54 97.92 91.67 100 100 100 100 

V59 97.92 100 100 100 92.71 100 

V71 91.67 100 96.88 100 96.88 95.83 

V75 100 96.88 100 100 97.92 97.92 

V80 100 100 100 100 100 100 

Overall % 94.24 94.17 98.61 99.03 98.82 98.06 
 

Table 3: Percentage correct classification for 80-
texture problem 

Texture RGB *** baL  HSV 

V1 92.7083 96.875 100 

V2 85.4167 100 97.9167 

V3 94.7917 98.9583 100 

V4 97.9167 100 100 

V5 79.1667 89.5833 100 

V6 79.1667 100 95.8333 

V7 68.75 95.8333 98.9583 

V8 96.875 100 100 

V9 68.75 100 97.9167 

V10 87.5 96.875 100 

V11 92.7083 100 96.875 

V12 97.9167 100 84.375 

V13 97.9167 98.9583 98.9583 

V14 85.4167 90.625 100 

V15 71.875 93.75 94.7917 

V16 91.6667 100 100 

V17 90.625 95.8333 98.9583 

V18 83.3333 90.625 96.875 

V19 86.4583 87.5 100 

V20 98.9583 100 100 

V21 96.875 98.9583 94.7917 

V22 83.3333 98.9583 96.875 

V23 91.6667 97.9167 98.9583 

V24 89.5833 95.8333 95.8333 

V25 97.9167 97.9167 97.9167 

V26 97.9167 96.875 98.9583 

V27 91.6667 100 100 

V28 90.625 100 100 

V29 96.875 100 98.9583 

V30 100 100 100 

V31 86.4583 92.7083 96.875 

V32 97.9167 94.7917 97.9167 

V33 93.75 96.875 94.7917 

V34 98.9583 100 96.875 

V35 93.75 98.9583 100 

V36 90.625 97.9167 100 

V37 89.5833 95.8333 97.9167 

V38 87.5 94.7917 91.6667 

V39 90.625 93.75 100 

V40 100 100 100 

V41 96.875 98.9583 100 

V42 92.7083 97.9167 100 

V43 92.7083 100 100 

V44 82.2917 100 100 

V45 96.875 100 100 

V46 98.9583 98.9583 92.7083 

V47 98.9583 100 100 

V48 82.2917 96.875 100 

V49 93.75 100 96.875 

V50 96.875 100 96.875 

V51 72.9167 86.4583 89.5833 

V52 100 100 100 

V53 91.6667 92.7083 91.6667 

V54 97.9167 100 100 

V55 100 100 100 

V56 98.9583 98.9583 100 

V57 97.9167 100 100 

V58 92.7083 100 98.9583 

V59 95.8333 100 100 

V60 93.75 94.7917 95.8333 

V61 72.9167 95.8333 94.7917 

V62 82.2917 98.9583 92.7083 

V63 82.2917 92.7083 100 

V64 77.0833 100 98.9583 

V65 67.7083 100 97.9167 



V66 87.5 100 100 

V67 89.5833 100 100 

V68 95.8333 100 100 

V69 86.4583 100 96.875 

V70 96.875 97.9167 100 

V71 98.9583 100 100 

V72 100 100 100 

V73 65.625 92.7083 100 

V74 96.875 100 100 

V75 97.9167 100 100 

V76 97.9167 98.9583 98.9583 

V77 100 100 100 

V78 100 100 100 

V79 85.4167 98.9583 86.4583 

V80 100 100 100 

Overall % 90.86 97.86 98.11 
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Figure 1: Textures used for rotation invariant color texture classification 
Experiment from left to right and top to bottom Row1: V1=V10; 
 Row 2:V11-V20; Row 3: V21-V30; Row 4: V31-V40; Row 5: V41-V50; 
 Row 6:V51-V60; Row 7: V61-V70; Row 8 V71-V80. 
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