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Abstract

In this paper, we examine the theory of motion-free
superresolution by formulating the problem in the Discrete
Time Fourier Transform (DTFT) and the Discrete Fourier
Transform (DFT) domain. Our approach provides some
new insights into how aliasing and blurring can effect ex-
act reconstruction of the superresolved image. For ease of
understanding, the analysis, is initially carried out in the
1-D domain and then extended to the 2-D domain.

1. Introduction
Superresolution reconstruction methods attempt to recover
a high resolution image from a set of low resolution ob-
servations. The idea of Superresolution from images with
relative motion was first presented by Tsay and Huang [4].
Based on spatial aliasing effect, they used frequency do-
main approach to demonstrate the ability to reconstruct a
high resolution image from several downsampled versions
of it. A spatial domain alternative based on Papoulis [1]
generalised sampling theorem was suggested by Ur and
Gross [2]. In [3], Elad and Feuer have addressed the in-
teresting problem of motion-free superresolution in which a
high resolution image is derived from a set of blurred and
downsampled versions of the original image.

A lower sampling rate implies a distortion of the image
especially at edges. Blurring by different point spread func-
tion results in loss high frequency detail The aim of super-
resolution(SR), for the motion-free case, is to undo the ef-
fects of blurring and aliasing, by making use of the infor-
mation in the given set of observations. Although different
algorithms have been proposed in the literature for motion-
free SR, a signal processing perspective of the problem is
lacking. Our effort in this paper is directed towards this end.
We assume that there is no relative motion among the dif-
ferent observations available. Specifically, we examine the
case of exact reconstruction. Our analysis leads to a set of
(natural) conditions whence motion-free SR is not possible.
It explains the appropriateness of choice of blur and impor-
tance of number of observations. For exact reconstruction,

for uniform downsampling by factor of M, we need atleast
M different observations. The blur kernels, which are low-
pass filters must span the entire frequency range of the orig-
inal image. Importantly, the effects of downsampling can
be reversed, only if the information lost is in the form of
aliasing , and not while blurring.

2. Formulation in the 1-D domain

Let the original sequence ��� ��� of length � have a DTFT�	��

�����
and a frequency spread

���������������
. Let there be

a set of M sequences, ��� � ��� , also of length � , with DTFT� � ��
 ��� � which vanishes outside
����� � ��� � � . The � ��! ob-

servation "#� � ��� is obtained by blurring ��� ��� with sequence�$� � ��� and then downsampling by a factor of M.

2.1. DTFT Analysis

The, DTFT of " � � ��� can then be expressed as
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The above equation can be interpreted as follows. The spec-
trums of ��� ��� and ��� � ��� are each scaled up by

*
. Then, M

versions (each shifted by HJI ) of their product, are added up
to generate the output

% � ��

���K� . Clearly, when there is no
aliasing of the shifted spectrums, the use of an appropri-
ate low pass filter would give us all the information needed
to reconstruct ��� ��� exactly, and just one observation would
suffice. This is, ofcourse, assuming that

�L��
M���K�
doesn’t

vanish in the range
����� � ��� � �

. However, when there
is aliasing in all the

*
observations (leading to loss of fre-

quency content) there is a need for multiple observations.
Using the matrix-vector notation, equation (1) can be rear-
ranged as % &N� �

(2)
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can be reconstructed only if the matrix
�

is non-
singular. It may be noted that each of the terms in the vector�

only gives a part of the entire frequency spectrum. For
example, for

�tsu��� I � I �5� the term
�	�3
F� 6989:<;5=> �

generates
the frequency spectrum, in the range

� ,�v , R v
0

+ � v , R v
0

+ �
.

Thus, each term only generates
.+ ��! of the entire frequency

spectrum of ��� ��� , and hence, there is the need of M
observations to obtain �w� ��� .

A completely trivial case, where the matrix
�

turns out
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to be singular is when 2 or more blur sequences are ex-

actly identical which renders motion-free SR impossible.
Hence, we need M independent observations. What may not
be entirely obvious is that SR reconstruction is not possible
if none of the blur sequences span any particular frequency
range of

�	�3

�����
. For example, take the case where� ��� � � ��� � s�� ( �k*��

Surely,
�

turns out to be singular. The above condition
translates to loss of frequency content during a low-pass
blurring operation. Exact reconstruction methods can only
reverse the effects of aliasing. If information is lost over
any interval within

���������������
, during blurring, the origi-

nal sequence ��� ��� cannot be regenerated. Ofcourse, the blur
kernels can take any values outside the interval

�����'���������
.

The problem is further analysed, using the Discrete
Fourier Transform (DFT) which would give further insight
into the problem and also, a practical method to check if
exact reconstruction is possible.

2.2. DFT Analysis
The DFT of a sequence of length N can be obtained from
its DTFT by sampling it at N points. Now, ��� ��� is an N-
length sequence which has been blurred and downsampled

by a factor of
*

, to get the observations. We sample the
DTFT of the � ��! observation "#� � ��� at

�+ points to obtain
from equation (1)
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The above equation relates the DFT of the � ��! observation to
the DFT of the original sequence and the DFT of the � ��! blur
kernel. Re-arranging the equation (3) in the matrix-vector
form, we get % � &N� � �

(4)
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(l = 1,2 ... M) the M equations obtained can be
stacked up as % &N� �
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Clearly, exact reconstruction is possible only if the ma-
trix

�
in equation (5) is invertible. Again, when any two

blur sequences are exactly identical, the matrix
�

becomes
singular which asserts the need for M independent observa-
tions.

Yet, another case where the matrix
�

turns out to be sin-
gular is easily identified as shown below.� � � B � ��� � � �* � � E
EFE � � � *G� ( �* � &�B
for any one of the M observations.

In earlier papers on motion-free SR, the relation be-
tween �w� ��� and the blurred and downsampled � ��! observa-
tion " � � ��� has been expressed in the spatial domain as" � &�� � � � �



where � and " � are lexicographically obtained from �w� ���
and "#� � ��� , � � is the downsampling matrix, while � � is the
blur matrix obtained from the blur sequence � � � ��� .

An analysis in the frequency domain would follow from
this equation by multiplying both sides by DFT matrices of
appropriate dimensions (note that the matrix

� � will not be
diagonalised by the DFT matrices). The resultant system of
equations will be identical to what we obtained in equations
(4) and (5). However, the process by which we arrive at
equation (5) throws much more light and gives new insights
into the motion-free SR problem.

3. Formulation in 2-D domain
The formulation in the 2-D domain follows in a rather
straight forward manner. Let �w� � � ��� be an image of size� � � with the Fourier Transform given by

�	��� . ����RM� .
Further, let there be

* R
blurring kernels, with point spread

function of the � ��! kernel being � � � � � ��� with the Fourier
Transform

������� . ����RF� . Then the � ��! observation " � � � � ��� is
obtained by blurring ��� � � ��� with � � � � � ��� and then down-
sampling the resultant image by a factor of M.

3.1. DTFT Analysis
The Fourier Transform

%$����� . ����RM� of the � ��! observation is
given by equation (6) Similar to the 1-D case,we observe
that these set of

* R
equations can be solved for obtaining

the entire frequency spectrum of
�	��� . ����RF� if we have

* R
independent observations. These equation can be arranged
in the matrix-vector notation to obtain% &C� �
where the
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So, the H matrix thus obtained, will have to be invertible for
Motion-Free SR to be possible. And, in the case where any
2 observations become exactly identical, this is clearly not
possible. The need for

* R
observations is hence justified.

3.2. DFT Analysis

Once again, using a similar analysis as in the 1-D case,
we sample the Fourier Transform of the �<��! observation
(while noting that it is an image of size � ¤5*­� � ¤
*��
appropriately to obtain equation (7). Equation (7) can be
rewritten to obtain the relation between the DFT of the" � � � � ��� and the DFTs of ��� � � ��� and � � � � � ��� as shown in
equation (8)

It is observable from equation (8) that each term in the
expression for

%S��� � . � � RF� comprises of
* R

terms from�	� � . � � R � . Each observation
% � � � . � � R � leads to

� :+ :
equations and hence, in case we have

* R
independent

observations, we can solve for the � R
DFT co-efficients

of
�X� � . � � R � and hence reconstruct the original image�w� � � ��� .



These equations can be re-arranged, using the matrix-
vector notation to obtain% � &N� � �
where
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And the
� �

matrix is defined using its
���k�e� � ��! element as

shown below. The elements of the
� ��! row contribute to the

formation of
%$� � � � ��� where,
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where �$��±h² � � � � " � gives the dft of the � ��! blur kernel. The* R

equations thus obtained are stacked up to obtain the
familiar equation % &N� �
As in the earlier case, when two observations are exactly
identical, the SR reconstruction is not possible. It is also
expected that, as the blur kernels become sufficiently iden-
tical to each other, the

�
matrix becomes more and more

ill-conditioned and hence, the quality of the reconstructed
image goes down.

4. Increase/Decrease in number of ob-
servations

It is interesting to analyse the case where there are more
than adequate number of observations available (more than* R

for the case of exact reconstruction). It is intutively ex-
pected that more number of observations would provide ad-
ditional information and hence there would be an improve-
ment in the quality of the image obtained. But this is not

the case always as we shall see shortly. A Least squares es-
timate of the image is obtained in case we have more than
adequate number of images. The equation giving the least
square estimate is ¶ � ·$¸r&C¹
where ¶ & �»ºw� and

¹ & �»ºK¼
So in this case the ill-condition-ness of R is to be discussed.
It can be seen that, in the worst case where two rows are
exactly identical in H, R would turn out to be singular. So in
the case where any two observations are sufficiently close to
each other, R turns out to be ill-conditioned and the quality
of image obtained goes down. So, the mere presence of an
extra observation does not help but it is rather how different
it is, is what matters.

Similarly we now analyse the case where we have less
than

* R
observations. Using, a min-norm solution for this

method, we recover the original image using the following
equations. � + � & �»º � �»�»º � ,K. ¼
Once again, as the observations come closer, the quality of
the reconstructed image becomes worse.

The common observation from all these cases, is that the
more than just the number of observations, the quality of
the various observations also matters and a judicious choice
of blur kernels is necessary for the extraction of a high res-
olution image.

5. Simulation Results
The blurring kernels used for this purpose are Gaussian fil-
ters with blur parameter ½

0
for the

� ��! kernel. The original
pictures are of size 32X32 and the observations have been
uniformly downsampled by a factor of 2. The simulations
are mainly directed at showing how the quality of the re-
constructed image goes down, as the observations become
more and more simialr to one another. The simulations also
show how the variation in the choice of blur kernels reflects
in the ill-condition-ness of the matrix to be inverted ( �
in the case of exact reconstruction , � º � in the case of
Least-squares estimate and �»� º in the case of Min-norm
solutions. )



5.1. Exact reconstruction
Since the downsampling factor is 2, a total of 4 images are
needed for exact reconstruction.

lena sky scene eye

Figure 1: Original Images used for simulations.

2.a

2.b

2.c

Figure 2: Observations and the reconstructed image
2.a ½ . &CB E H � ½ Rg&NB E ¾[¿ � ½$À &NB EÂÁ � ½®Ã &CB E Ä#¿
2.b ½ . &uB E H � ½ RÅ&NB E�¿ � ½DÀ &CB E Æ � ½DÃ & (9Ec(
2.c ½ . &CB E H � ½ R_&NB E Ç � ½DÀ & (#E BD� ½DÃ & (#E ¾

a b c

Figure 3: Reconstruction with 3 sets of ½ s described in 2a,
2b and 2c.

a b c

Figure 4: Reconstruction of ’scene’ with 3 sets of ½ s de-
scribed in 2a, 2b and 2c.

5.2. More Number of observations - Least
Squares Estimate

A test run with 5 observations is given below.The variances
for the 5 observations are controlled with a parameter È and

½ . &CB E H � ½ R_& Èw½ . � ½DÀ & È�½ R#� ½®Ã & È�½DÀ � ½DÉ & È�½®Ã

È & (9E H

È & (9E Ê

È & (9E�¿
Figure 5: Observations and the reconstructed image

È & (9E H È & (9E Ê È & (#E ¿
Figure 6: Reconstruction of ’sky’ with 5 observations.

È & (9E H È & (9E Ê È & (#E ¿
Figure 7: Reconstruction of ’eye’ with 5 observations.

5.3. Less Number of observations - Min-norm
Solution

A test run with 2 observations is given below.½ . &NB E ¾ � ½ RÅ&uB E ¿ for observation a½ . &NB E ¾ � ½ RÅ&uB E Ç for observation b½ . &NB E ¾ � ½ RÅ&uB E�Á for observation c

a

b

c

Figure 8: Observations and the reconstructed image



a b c

Figure 9: Reconstruction of ’sky’ with 2 observations.

a b c

Figure 10: Reconstruction of ’eye’ with 2 observations.

5.4. Reciprocal Condition Estimator

These graphs show how the ill-conditionness increases as
observations come closer. The matrices considered are �
for exact reconstruction, �ÌË'� for Least-squares estimate
and �»� Ë for Min-norm solution.

Figure 11: Plot of Reciprocal Condition Estimator with
varying È & � ¤ ( B (Exact Reconstruction)

� ½ . & È � ½ R &
H©È � ½ À & Ê È � ½ Ã & ¾ È �

Figure 12: Plot of Reciprocal Condition Estimator with
varying È & ( ´ � ¤ H B (Least Squares Estimate)

Figure 13: Plot of Reciprocal Condition Estimator with
varying È & ( ´ � ¤ H B (Min-norm solution

6. Conclusions
The case of Motion Free Superresolution has been explored
in this paper. An analysis was carried out in the DTFT
and the DFT domains and it was observed that exact re-
construction would be possible only when there are atleast* R

observations. It was also analysed that as the observa-
tions come “closer” to each other, the quality of the recon-
structed image deteriorates. A similar analysis was carried
out in the case where the number of observations was not
equal to

* R
. A Least Squares estimate was used for the

case of greater number of observations and a Min-norm so-
lution was used for the case with lesser number of observa-
tions. These too, when analysed, show that the quality of
the reconstructed image becomes worse as the observations
become sufficiently identical.
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