
Advancing Fan-front: An Efficient Connectivity Compression Technique
for Large 3D Triangle Meshes

S. P. Mudur S. Venkata Babji Dinesh Shikhare
Department of Computer Science Graphics & CAD Division

Concordia University National Centre for Software Technology
Montreal, Quebec, Canada. Juhu, Mumbai, India.
mudur@cs.concordia.ca

�
babji,dinesh � @ncst.ernet.in

Abstract

In this paper we present a new algorithm for compressing
large 3D triangle meshes through the successive conquest
of triangle fans. In this algorithm, a triangle fan is the se-
quence of adjacent triangles incident on a start vertex of a
boundary edge called as the “gate.” As each fan is con-
quered, the current mesh boundary is advanced by the fan-
front and the gate(s) for conquering the rest of the mesh
is(are) identified. The process is continued till the entire
mesh is traversed. The mesh is then compactly encoded
as a sequence of fan configuration codes. In the earlier
reported techniques, the conquest is usually a triangle, a
vertex or an edge at a time, and the number of symbols in
the resulting encoding is of the order of the total number
of triangles, vertices or edges respectively. On the other
hand, the number of fans is typically one fourth of the total
number of triangles and the number of fan configurations
is bounded by the vertex valence variation. While the num-
ber of distinct fan configurations depends on the variation
in the degree of fans, only a few of these fan configurations
occur with high frequency, enabling very high connectivity
information compression using range encoding. A simple
implementation shows considerable improvements, on the
average, in bit-rate per vertex, compared to earlier reported
techniques.

1. Introduction
Polygon meshes, in particular triangle meshes, are increas-
ingly being used as the primary geometric modeling repre-
sentation for interoperability in a large number of applica-
tions in diverse fields such as engineering, manufacturing,
entertainment, education, cultural heritage, etc. Hardware
accelerators for 3D graphics also provide extensive capa-
bilities for high speed rendering of triangle meshes. With
recent advances in technologies for acquisition of accurate
and highly detailed digital representations of complex 3D
shapes, many large and complex 3D polygonal models are
being generated. In order to capture very fine shape details,

these meshes are captured at high resolution and modeled
with a large number of triangles, resulting in huge storage
requirements and long transmission times. Consequently,
compression of triangle meshes has gained much interest in
the recent years. In this paper we present a new 3D trian-
gle mesh connectivity compression algorithm that achieves
higher compression ratios than earlier reported techniques,
basically using a larger chunk of the mesh, namely a fan, as
the unit of encoding.

A polygon mesh consists of a set � of vertices, a set �
of edges and a set � of polygons. Each vertex is associated
with a geometric point position in the 3D Euclidean space,
say, ���	��
����������� . An edge is represented as a pair �������	�����
and a polygon as a sequence ����������� �"!#!$!#��� % � of vertices. A
triangle mesh is a special case with all polygons being tri-
angles.

A mesh having & faces, ' edges and � vertices satisfies
the equation, &)(*',+-�/.10 (Euler’s relation [8]). When all
the faces have at least 3 sides, we can show that &�230��4(65
and '7298��:(<; , with equality if and only if all faces are
triangles. For meshes with = handles (genus =) the relation
becomes &)(�'�+-�).>0?(*0�= and the bounds on the number
of faces and edges increase correspondingly.

A common scheme for representing and storing polygon
meshes is to use a list of vertex geometry coordinates to
store the geometry and a list of vertex indices for each face
to store mesh connectivity. Edges are implied and not ex-
plicitly stored. For a triangle mesh having � vertices and @
triangles, this requires approximately 8�� space to store the
vertex coordinates and 8 @�A$BDC � � space to store connectivity
among the vertices, where @FEG0�� for most triangle meshes.
The storage and transmission costs increase non-linearly as
the number of vertices increase. Typical large models con-
sist of several hundred thousand triangles and occupy many
mega-bytes of storage space. The complexity of these 3D
models far exceeds the limits of what can be quickly down-
loaded at popular connection speeds and what can be ren-
dered for interactive exploration on personal desktops even
with graphics acceleration hardware.

Most connectivity compression techniques consider

meshes as undirected graphs and cleverly encode the traver-
sals in the graphs so that vertex references are implied, thus
avoiding repeated vertex referencing and achieving com-
pression [6, 3, 7, 9, 11, 5]. These traversals not only mini-
mize repeated references to vertices, but also ensure correct
reconstruction of the original connectivity. The algorithms
differ in the way they span the graphs using connectivity
among vertices, edges and faces.

Earlier techniques can be broadly categorized into three
classes [4], viz. face-based, edge-based and vertex-based
traversals. Rossignac’s Edgebreaker [9] and the Cut-border
machine of Gumhold and Strasser [6] are face-based, the
FaceFixer algorithm of Isenburg and Snoeyink [7] is edge-
based and vertex based techniques have been proposed by
Touma and Gotsman [11] and Alliez and Desbrun [2]. In
these techniques, the number of symbols in the compressed
encoding is approximately equal to number of faces, edges
and vertices respectively. There could be some additional
operators to take care of exceptional situations during the
course of the traversal, which may require explicit vertex
references. Alliez and Desbrun [2] have argued that such
exceptions are sub-linear in order. They also show that a
valence-based encoding scheme gets closest to the theoret-
ical limit of 3.245 bits per vertex proved by Tutte [12] and
outperforms face-based and edge-based techniques. This is
explained by noting that the size of the compressed repre-
sentation is proportional to the number of operators encoded
and the fact that for polygon meshes representing closed
manifold surfaces the relation ��� &�� ' holds.

The Advancing Fan-front (AFF) algorithm presented in
this paper proposes and uses a fan-based traversal of trian-
gle meshes. In almost all the triangle meshes, the number
of fans is approximately half the number of vertices and
one-fourth the number of triangles (as can be seen from the
results). The traversal of the mesh is then represented as a
sequence of operators describing, on the average, ����0 or @�� 5
fans. While the number of distinct fan configuration codes
depends on the variation in the degree of fans, only a few
of these fan configurations occur with high frequency, en-
abling a very compact representation using range encoding.

The rest of this paper is organized as follows: Section 2
describes the Advancing Fan-front (AFF) algorithm includ-
ing details for handling meshes having complex boundary
interactions. The connectivity compression results of our
implementation are presented in Section 3. We summarize
the contributions and conclude the paper in Section 4.

2. Advancing Fan-front Algorithm
2.1. Some Definitions
In a mesh representing a manifold, each edge is either
shared by two polygons, called as an interior edge, or be-
longs to a single polygon, called a boundary edge. A closed

loop formed by linking up such boundary edges forms a
boundary of the mesh. The boundary may have an orienta-
tion, in which case, every boundary edge is a directed edge,
with a start and end vertex. Note that a mesh may have
multiple boundaries.

We call two polygons as adjacent polygons if they share
an edge. There exists a path between polygons � � and ���
if there is a sequence of adjacent polygons � � ��� � �	� � ��!$!#!#���
� .
A maximal subset �� of the mesh model � is called a con-
nected component if there exists a path between every pair
of polygons in � � . Note that a given mesh model may have
multiple connected components.

v0

v1

v2

v3
v4

v5

interior

b o u n d a r y

fan-center: v0
gate: (v0, v1)

fan-front: (v1,v2,v3,v4,v5)
vertex bit pattern: � 10001 �
Edge bit pattern: � 0000 �

Figure 1: Fan description.

A fan is a polygon that admits a triangulation in which all
triangles have a common vertex, called as fan center. The
other vertices of the polygon are called as front-vertices.
The front-vertices and the edges between them form a fan-
front. The number of front-vertices is the degree of the fan.
In AFF, fans are always constructed such that all the trian-
gles of the fan are incident on the start vertex of a boundary
edge called as the gate. Criteria for the selection of gates
are described in the following subsection.

The following notation is used in the illustrations
throughout this paper. We denote an unvisited vertex by a
small hollow circle, a visited vertex by a small filled circle.
A gate is denoted as an edge with an arrow. The orientation
of the fan is shown with a curved arrow around its fan cen-
ter. Also, we assume that the orientation for mesh boundary
and the fans is always counter clockwise.

2.2. Overview of the Algorithm
For the purpose of quickly understanding the AFF algo-
rithm, we first consider the simple input of a consistently
oriented triangle mesh forming a single connected compo-
nent of genus 0, that represents a manifold with at most one
boundary. Multiple boundaries can be handled with a lit-
tle additional effort, closed meshes may be trivially handled
by removing one initial triangle to create a boundary, and
meshes of higher genus can be handled as described in [1].

The algorithm starts the conquest of a mesh by arbitrar-
ily choosing an edge on the mesh boundary as the initial
gate. A fan is formed with the selected gate. Each newly
constructed fan has its two extreme fan-front vertices on the
boundary and includes all the triangles incident on the start
vertex of the gate. The conquest of the fan removes the fan

a b

c
d

e

f g h i

j
k

a b

c
d

e

f g h i

j
k

a b

c
d

e

f g h i

j
k

b

c
d e

f g h i

j
k

c

f
g

h
i

j
k

c

f g

k

(i) (ii)

(iii) (iv)

(v) (vi)

d

hg

a b

c e

f i

j
k

a b

c e

f i

j
k

a

g

c

f g

k

b

c
d

e

f i

j
k

c

f i

j
k

b

d e

h

c

f

k

h
i

j

(i) (ii)

(iii) (iv)

(v) (vi)

(a) (b)

Figure 2: Advancing Fan-front algorithm – a simple exam-
ple : (a) encoding and (b) reconstruction.

triangles from the mesh, identifies the gate(s) on this fan-
front and modifies the mesh boundary by suitably inserting
the interior edges on the fan-front. Thus the fan-front is ad-
vanced into the mesh. This process is recursively continued
until the entire mesh is conquered.

During this conquest, AFF algorithm records the follow-
ing information for subsequent reconstruction of the mesh
connectivity: (a) vertex coordinate list re-ordered to implic-
itly reflect the sequence of fan-based conquest, (b) number
of vertices on the mesh boundary at start, (c) the start vertex
of the starting gate, and (d) a sequence of fan descriptions
as given below.

A fan description takes the following form:

� degree � � VertexBitPattern � � EdgeBitPattern �

where, VertexBitPattern is the sequence of binary flags, one
for each front-vertex – the flag is 1 if the vertex is on bound-
ary, 0 otherwise; and EdgeBitPattern is a sequence of binary
flags, one for each edge on the front – the flag is 1 if the edge
is on boundary, 0 otherwise (see Figure 1).

Reconstruction of the mesh connectivity proceeds in the
same sequence as the conquest of fans in the mesh connec-
tivity.

In the course of advancing the fan-front into the mesh
boundary, the process may split the mesh into multiple con-
nected components. In such cases, multiple gates are iden-
tified on the front to continue the recursive conquest. A
“gate” is identified as the first interior edge on the fan-front
with respect to each connected component adjacent to the
currently conquered fan. When more than one gate is iden-
tified on the fan-front, the gates are pushed on a stack and
processed recursively. The algorithm carries on its conquest
from each of the gates until all the connected components
are conquered.

2.3. A Simple Example
We have chosen the simple triangle mesh of Figure 2(a)(i) to
illustrate how AFF spans the mesh with successive conquest
of fans.

Encoding: Initially, AFF declares all the vertices on
mesh boundary (a, b, e, i, j, k, f, c) as visited (see Fig-
ure 2(a)(i)). Let (a,b) be the starting gate. (see Fig-
ure 2(a)(ii)). Starting with this boundary and the gate, AFF
then recursively decomposes the mesh into fans. The fan
with the fan-center a and fan-front b, d, c is spanned in
counter-clockwise direction (Figure 2(a)(iii)). After this
step, the fan description (� 3 � � 101 � � 00 �) is written to
the output and vertex d is appended to the vertex stream.
Next, we advance the fan-front (b, d, c) and the new mesh-
boundary now becomes (b, e, i, j, k, f, c, d). With the earlier
mentioned condition for gate, we identify edge (d, b) as the
next gate. The next fan is conquered using this gate. Further
steps in the conquest are illustrated in Figure 2(a).

During this process AFF writes to the output stream the
reordered vertex stream as (a, b, e, i, j, k, f, c, d, h, g), the
number of mesh boundary vertices, 8, the initial fan-center
a and a sequence of fan descriptions
� 3 � � 101 � � 00 � ,
� 5 � � 11101 � � 1100 � ,
� 5 � � 11101 � � 1100 � ,
� 3 � � 111 � � 11 � .

Note that in the VertexBitPattern, the first and last bit
will always be 1, since they correspond to extreme bound-
ary vertices on the fan. In this discussion, we retain this
redundant representation only for the clarity of expression.

Reconstruction: The reconstruction algorithm restores
the initial boundary (a, b, e, i, j, k, f, c) of the mesh (see
Figure 2(b)(i)), and initial fan-center a (see Figure 2(b)(ii)).
Now from the first fan description � 3 � � 101 � � 00 � , the
degree of the fan is 3. So the first 8 (30-.�� vertices are
to be restored and assigned to the fan-front, which results
in fetching of vertex d from the vertex stream. First and
last of the fan-front vertices are the next and the previous to
the fan-center on the mesh-boundary – so, the fan front is
(b,d,c). Thus the first fan has been reconstructed. Construc-
tion of the fan results in a modified new boundary (d, b, e, i,
k, j, f, c) (see Figure 2(b)(iii)). The fan description indicates
that the next gate is (d, b). This successive reconstruction of
fans continues till the entire mesh is reconstructed as shown
in Figure 2(b).

2.4. An Example with Splits
In the simple example above, advancing the fan-front al-
ways resulted in the unconquered part of the mesh remain-
ing as a single connected component. However in more
complex situations, as mentioned earlier, advancing of the
fan-front into the mesh may result in the fan-front intersect-

a b

c
d

e
f

g
hi

a b

c e
f

g
hi

d

c

f

hi

d b

e

g
d

f

hi

d

a b

c
d

e

g
hi

b

c e

g
hi

d

a

c

f

hi

d

e

g
d

b

f

hi

d

(a) (b)

Figure 3: Advancing Fan-Front algorithm – an example
with splits: (a) encoding and (b) reconstruction.

ing with the original mesh boundary in such a way as to
split the mesh boundary into multiple loops, and as a con-
sequence splitting the unconquered parts of the mesh into
multiple connected components. We now examine an ex-
ample to illustrate how the conquest of fans can result in
splits in the boundary and the selection of multiple gates on
a fan front.

Encoding: AFF’s depth-first traversal of fans is shown in
Figure 3(a). Note that the removal of the first fan from the
mesh results in creation of two boundaries, (b, e, g, d) and
(d, h, i, c), along with corresponding gates (d, b) and (c, d).
During this conquest, AFF writes to the vertex stream (a, b,
e, g, d, h, i, c, f), the initial boundary length as 8, the initial
fan-center a, and for every fan it gives a fan description:
� 3 � � 111 � � 00 �
� 3 � � 101 � � 00 �
� 3 � � 111 � � 11 �
� 3 � � 111 � � 11 �
and an explicit reference to vertex d for the first fan as it is
being revisited.

Reconstruction: The reconstruction algorithm restores
the initial boundary (a, b, e, g, d, h, i, c) of the mesh, and
the initial fan-center a (see Figure 3(b)). The first fan de-
scription denotes that the degree of the fan is 3. So we need
8/(30 . � vertices. From the visited bit pattern we note
that this vertex is already visited and hence we get it from
the explicitly referenced list, (that is d)1. Having got the
reference to d, we construct the fan front as (b, d, c). The
addition of this fan results in splitting of the boundary giv-
ing two new boundaries: (b, e, g, d) and (d, h, i, c). From

1As we shall see later, we do not need explicit re-referencing of earlier
visited vertices in all the cases. In most of the cases we can automatically
derive the reference to an earlier visited vertex. However, in this example
vertex d is one of the cases which require explicit referencing. We discuss
these cases in greater detail in the next subsection.

a

a

a

s

s

s

b

b

b

c

c

c

d

d

d

e

e

e

f

f

g

g
h

i

(a)

(b)

(c)

Figure 4: Different interactions between fan-fronts and
mesh-boundaries.

the fan-definition, we have edge (d, b) as gate for the bound-
ary (b, e, g, d) and edge (c, d) as gate for boundary (d, h,
i, c). Recursive application of the procedure is carried out
for each boundary, with corresponding gate until all the fan
descriptions are added and the original mesh is completely
reconstructed.

The AFF algorithm terminates in finite time and com-
pletely conquers any given triangle mesh with a single con-
nected boundary. This can be deduced from the following
observations. Let

�
be the mesh, & the currently conquered

fan and �)� � � the number of triangles.
(1) In order to show that no triangle of the mesh is left un-
conquered, we consider the two situations of the algorithm
discussed earlier. First, when conquering & leaves

���
, such

that either
���

remains a single connected component or is
empty. In case

� �
is not empty, then the fan conquest pro-

cess continues until
� �

becomes empty. Clearly, in this
case, no triangle is left unconquered. Second, when con-
quering fan & splits the remaining mesh into multiple con-
nected components

� � ���-. �D� 0 ��!$!#! . For each
� � , AFF

selects a gate on the boundary and thus AFF leaves no tri-
angle unconquered.
(2) Since a fan is by definition non-empty, � � � (>& � �
�)� � � . Hence AFF terminates in at most �)� � � conquest
operations.

2.5. Boundary Interactions and Vertex Re-
references

For large meshes, most of the fans conquered by our algo-
rithm have all but the first fan-front edge as interior edges.
Hence the second edge on the fan-front usually becomes the
gate. Thus, the most common pattern that the VertexBitPat-
tern takes is: � � �	��
 � � and correspondingly EdgeBitPat-
tern: � �	��
 � .

When encoding such fans, the boundary vertices/edges
are implicitly referred to as a connected sequence on the
boundary. The other interior vertices on the fan-front are
placed on the vertex buffer in an order implied by the ori-
entation of the fans. Thus most of the vertex referencing is
implicitly recorded in the fan descriptions.

Figure 5: Distribution of fan description patterns.

However, as already mentioned earlier, in certain situ-
ations, the fan-front can interact with the mesh boundary
in various ways as illustrated in Figure 4. When a vertex
is common in both mesh-boundary and fan-front and both
of its neighbors on fan-front are not on boundary then we
say the mesh-boundary is “touching” the fan-front. For ex-
ample, in Figure 4(a), mesh boundary touches the fan-front
at vertex c and in Figure 4(c) at vertex f. When the fan
front and mesh boundary have common edges, we say they
are “overlapping” along the common adjacent edges. For
example, the mesh boundary and fan-front are overlapping
along (��� � �	') in Figure 4 (b). Similarly in Figure 4 (c) along
(��� �) and (� ���). If the fan front is not completely interior to
the mesh, the mesh boundary and fan-front can interact only
by touching, overlapping or as a combination of these two.

When fan-front overlaps with or touches the mesh
boundary, there exist some common edges, or vertices
on fan-front and mesh boundary. For example, in Fig-
ure 4(a) fan-front (�������"!#!$!#����� � ��!$!#!#�	') touches the mesh
boundary (�D�����"!#!$!#�����"!#!$!#�	') at vertex c. In Figure 4(b) fan-
front (�������"!#!$!#����� � ��!$!#!#�	') overlaps with the mesh boundary
(�D������!$!#!$����� � �	'���!$!#!$���) along (��� � �	').

In the AFF algorithm, at any time the vertices on the
mesh boundary are visited vertices. Hence the vertices oc-
curring in configurations where the fan-front and the bound-
aries interact by either touching or overlapping are previ-
ously visited vertices and may need to be re-referenced.
However, not all boundary interactions of vertices demand
vertex re-referencing. For example, a sequence of ver-
tices representing an overlap between the fan-front and the
boundary needs only one re-reference to the start of the se-
quence and the remaining overlapping sequence can be au-
tomatically derived from the order in the list of boundary
vertices. As a further illustration of this point, consider the
configuration in Figure 4(b). If we know the reference to
vertex c then we can derive the reference to the vertices d
and e. However whenever a fan-front touches the mesh-
boundary at a vertex, a re-reference to that vertex must be
recorded. This situation is illustrated by vertex c in Fig-
ure 4(a). This was also the case in our second example dis-
cussed earlier in subsection 2.4 and illustrated in Figure 3.

In our implementation, the explicit references to the pre-
viously visited vertices involved in boundary interactions
are recorded as integer offsets of those vertices from the cur-

rent fan-center on the boundary along its orientation. The
number of bits needed to represent these offsets are dynam-
ically determined depending on the length of the boundary.
These vertex re-references are similar to those in [2], and
hence sub-linear in number, by the same arguments.

2.6. Complexity
Each triangle is visited exactly once during the conquest
of fans in AFF’s encoding as well as reconstruction algo-
rithms. The queries to determine adjacency information for
vertices, edges and faces are satisfied in constant time by
using the half-edge data-structure [8]. Thus the time com-
plexity of both the algorithms is linear in the number of tri-
angles in the input mesh.

Model #vertices #fans #fan #rerefs bpv A&D
types [2]

Bunny 34839 17884 83 472 1.62 1.98
Dinosaur 56194 29680 133 1488 2.21 2.25
Horse 48485 25080 109 813 1.91 N.A.
Igea 134245 68905 90 1691 1.63 2.71
Isis 187644 95562 105 1688 1.50 N.A.
Knee 37890 18945 7 0 0.05 N.A.
Sphere 1026 515 9 2 1.14 N.A.
Vase 68098 33795 7 0 0.03 N.A.

Table 1: Connectivity compression results (Since we could
not get the exact models as used by others, we are giving the
best earlier bit-rates reported in [2] for the corresponding
models by name; others are not avaliable (N.A.)).

3. Implementation Results
In the final compressed representation the fans spanning the
mesh are encoded using a vertex stream, the number of ver-
tices in the boundary, the starting gate, a sequence of fan
descriptions and the sequence of vertex re-references. The
structure of a fan description seems to suggest that even for
a fixed degree of fan, a large number of fan configurations
are possible. However, our experiments show that only a
few of the fan description patterns dominate the distribution
(see Figure 5), thus enabling very high compression using
techniques such as range encoding [10] of these patterns.

Table 1 summarizes the application of AFF connectivity
compression to a number of mesh models (see Figure 6) that
are freely available on the net. Note that in all these mod-
els, as expected, the total number of fans constructed in the

Figure 6: 3D Triangle mesh models used for measurements.

conquest is roughly half the number of vertices in the mesh
models. While the total number of fan description patterns
(denoted “fan types” in Table 1) is many in number, vari-
able length coding of these fan types yields a very low cost
in terms of bits per vertex (bpv), lower than the previously
reported encoding costs.

In order to get an intuitive idea of why this compression
scheme works so well, consider the performance of AFF
for model called Dinosaur in Table 1, which has the largest
number of distinct fan types in the table, i.e., 133. At most
8 bits would be required to represent each fan type with-
out any kind of special variable length encoding. The total
number of fans is half the number of vertices, hence the
cost per vertex would be 4 bits and hence 2 bits per triangle.
Clearly, for all the other models listed in Table 1, the cost
would be less than this even without any special variable
length encoding scheme.

It could be argued that since the fans can easily be de-
composed further into triangles, edges or vertices, the AFF
algorithm is merely forcing a specific traversal path and
hence the mesh could be encoded by detecting repeating
subsequences of earlier symbols encountered in the course
of this traversal. While this is indeed possible, it is impor-
tant to note that the special traversal of the triangles induced
by AFF lowers the storage cost, on the average, for large
meshes which are not highly irregular.

4. Conclusions and Future Directions
In this paper we have presented a new algorithm for very
efficient compression of large triangle meshes. While ear-
lier algorithms have used an edge, a face or a vertex as the
unit of encoding, our algorithm uses a larger unit, namely
a fan of triangles, thus reducing the total number of sym-
bols in the resulting encoding. In large meshes, major parts
of the mesh can be spanned by using a very small number
of distinct fan types. As a result, our technique provides

better compression than earlier known techniques. This is
amply illustrated with the help of a simple implementation
and tests carried out on a number of large 3D models.

While we have worked out the algorithm for triangle
meshes, the algorithm can be extended to cover general
polygon meshes, by suitably redefining a fan to include gen-
eral polygons incident on a single vertex. We also believe
that the spatial coherence present in adjacent triangles form-
ing the fan can be exploited to enable very good vertex ge-
ometry data compression using simple geometry prediction
techniques.

It is worth noting here that decomposing of triangle
meshes in terms of fans has the added advantage that it is
also well suited for improved performance using graphics
acceleration hardware and standard graphics software APIs,
which usually have special primitives to handle fans.

Acknowledgment: (a) Dinosaur, Igea, Isis, Knee and
Vase – http://www.cyberware.com/samples/, (b) Bunny and
Horse – http://www.cc.gatech.edu/projects/large models/
and (c) the tessellated Sphere was created by the authors.

References

[1] L. Aleksandrov and H. Djidjev. Linear algorithms for parti-
tioning embedded graphs of bounded genus. SIAM Journal
of Discrete Mathematics, 9:129–150, 1996.

[2] P. Alliez and M. Desbrun. Valence-driven connectivity en-
coding of 3D meshes. In Eurographics’01, 2001.

[3] C. Bajaj, V. Pascucci, and G. Zhuang. Progressive compres-
sion and transmission of arbitrary triangular meshes. In In
Proceedings of IEEE Visualization 1999 Conference, pages
307–316, October 1999.

[4] C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification
and compression of 3D meshes. In Proceedings of the Eu-
ropean Summer School on Principles of Multiresolution in
Geometric Modelling (PRIMUS), Munich, August 2001.

[5] A. Guiziec, F. Bossen, G. Taubin, and C. Silva. Efficient
Compression of Non-manifold Polygonal Meshes. In IEEE
Visualization 1999, pages 73–80, 1999.

[6] S. Gumhold and W. Strasser. Real-time Compression of Tri-
angle Mesh Connectivity. In SIGGRAPH 98, pages 133–
140, 1998.

[7] M. Isenbueg and J. Snoeyink. Face Fixer: Compressing
Polygon Meshes with Properties. In SIGGRAPH 2000,
pages 263–270, 2000.

[8] M. Mantyla. An Introduction to Solid Modeling. Computer
Science Press, Rockville, MD, 1988.

[9] J. Rossignac. Edgebreaker: Connectivity Compression for
Triangle Meshes. IEEE Transactions on Visualization and
Computer Graphics, 5(1):47–61, January-March 1998.

[10] M. Schindler. A fast renormalization for arithmetic cod-
ing. In Proceedings of IEEE Data Compression Conference,
Snowbird, UT, 1998.

[11] C. Touma and C. Gotsman. Triangle Mesh Compression. In
Proceeding of Graphics Interface 98, June 1998.

[12] W. T. Tutte. A census of planar triangulations. Canad. J.
Math., 14:21–38, 1962.

	Back

