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Abstract

This paper presents a regularization method for surface
reconstruction from noisy gradient vector fields. The
algorithm takes as its input a discrete gradient vector
field, obtained by applying a Shape from Shading or
Photometric Stereo method. To derive this algorithm,
we combine the integrability constraint and the surface
curvature and area constraints into a single functional,
which is then minimized. Therefore, value changes
in the height or depth map will be more regular. To
solve the minimization problem, we employ the Fourier
transform theory rather than the Variational Princi-
ple. The Fourier transform of the unknown surface is
expressed as a function of the given gradient’s Fourier
transforms. The relative depth values can be obtained
by an inverse Fourier Transform and by choosing asso-
ciated weighting parameters. The method is evaluated
on gradient data delivered by a shape-from-shading al-
gorithm.

1. Introduction

Recovering 3D surface shape of objects,classified as
shape-from-X techniques, is a classic and important
research areas of computer vision. Many of the ex-
isting methods, e.g. shape from shading (SFS) and
photometric stereo method (PSM), normally provide
gradient values (i.e the discrete gradient vector field)
or surface normals for a discrete set of visible points
on object surfaces. However, in order to achieve the
relative height or depth values of the surface, these dis-
crete surface gradients must to be integrated by using
gradient integration techniques. In practice, the gra-
dient vector fields are normally contaminated by noise
because each captured image is influenced by the pres-
ence of camera noise and further measurement errors.

In this paper, we suppose that the surface function
Z(x, y) of a scene object is formed by an orthographic
(parallel) projection of the surface into the xy-image
plane, and defined in the image plane over a compact

region Ω. The gradient values of this surface at discrete
points (x, y) ∈ Ω

p(x, y) =
∂Z(x, y)

∂x
= Zx

and

q(x, y) =
∂Z(x, y)

∂y
= Zy

are only available as input data and contaminated by
noise, for instance, in the form of a given imperfect
needle diagram.

Essentially there are two main classes of integra-
tion techniques for finding surface height Z(x, y) from
discrete gradients p(x, y) and q(x, y): local integra-
tion techniques and global integration techniques (for
a review, see Klette and Schlüns [7]). Local integra-
tion methods such as two-point method[1] and eight-
point[3] are conceptually simple. The surface height
can be recovered by considering the surface normal
vectors at the two or eight adjacent points of a given
point, computing the average tangent through the
given point, and interpolating the height and the sur-
face normals. Wu and Li [12] proposed a method based
on the following curve integrals:

Z(x, y) = Z(x0, y0) +
∫

γ

p(x, y)dx + q(x, y)dy, (1)

where γ is an arbitrarily specified integration path from
(x0, y0) to (x, y) ∈ Ω. Starting with initial height val-
ues, the methods propagate height values according
to a local approximation rule (e.g., based on the 4-
neighborhood) using the given gradient data. Such a
calculation of relative height values can be repeated
by using different scan algorithms. Finally, resulting
height values can be determined by averaging opera-
tions. However, initial height values have to be pro-
vided. The locality of the computations propagates
errors along the integration path, i.e. this approach
strongly depends on data accuracy. Therefore, local



integration techniques perform badly when the data
are noisy.

The equations linking the surface height and gra-
dients are p = Zx and q = Zy, so global integration
techniques (Horn and Brooks [4], Frankot and Chel-
lappa [2], Horn [5], Wei and Klette [10, 11]) are based
on minimizing the following functional (cost function):

W =
∫∫

Ω

[|Zx − p|2 + |Zy − q|2]dxdy. (2)

Comparing with the local methods, the Frankot-
Chellappa algorithm, based on the results of the paper
[2] and presented in Klette et. al [8], leads to better
results for the task of calculating surface height from
gradients. At each iteration of the algorithm, the non-
integrable surface is converted into the integrable sur-
face by orthogonal projection in the frequency domain.
Nevertheless, the errors of the algorithm are high for
the imperfect estimate of the surface gradient or noisy
gradient vector fields. Also,the algorithm is very sen-
sitive to the abrupt changes in orientation, i.e. there
are large errors at the object boundary. Noakes, Koz-
era and Klette [9] proposed a Lawn-Mowing algorithm
for enforcing the integrability condition of a given non-
integrable vector field, but there are no experimental
results reported for real images.

The organization of the rest of the paper is as fol-
lows. In Section 2 we present our new algorithm for
height from gradient. The experimental results with
noise added synthetic data, and with real data are
shown in Section 3. Finally, conclusions are given in
Section 4

2. Height from Gradient

In the following, we apply the Fourier transform the-
ory to derive a new algorithm for solving the height
from gradients. In order to improve the accuracy and
robustness, and to strengthen the relation between the
estimated surface and the original image, the functional
to be minimized is as follows:

W =
∫∫

Ω

[|Zx − p|2 + |Zy − q|2] dxdy

+λ

∫∫

Ω

(|Zx|2 + |Zy|2
)
dxdy

+µ

∫∫

Ω

(|Zxx|2 + 2|Zxy|2 + |Zyy|2
)
dxdy,(3)

where the subscripts indicate partial derivatives. In
the above cost function, the second term of the right-
hand is a small deflection approximation of the surface
area, and the third term is a small deflection approxi-
mation of the surface curvature (i.e it is a measure of

quadratic variation in the surface slopes). The non-
negative regularization parameters λ and µ establish
a trade-off between the constraints, i.e it is used to
adjust the weighting between them. The above new
cost function reflects the relations among the surface
heightZ(x, y), surface gradient p(x, y) and q(x, y) more
effectively, and make the best use of the information
provided by the surface gradient.

The following objective is to solve the unknown
Z(x, y) subject to an optimization process which min-
imizes the cost function W . To find the minimum of
the functional W , most of the algorithms used in com-
puter vision use calculus of variations to produce the
Euler-Lagrange equations. Then a discrete version of
the Euler-Lagrange equations can be obtained by dis-
creting or differenciating. Instead of using variational
calculus, we use the Fourier transform theory. Sup-
pose that the Fourier transform of the surface function
Z(x, y) is

ZF (u, v) =
∫∫

Ω

Z(x, y)e−j(ux+vy)dxdy, (4)

and the inverse Fourier transform is

Z(x, y) =
1
2π

∫∫

Ω

ZF (u, v)ej(ux+vy)dudv, (5)

where j is the imaginary unit. According to the differ-
entiation properties of the Fourier transform, we have

Zx(x, y) ↔ juZF (u, v),
Zy(x, y) ↔ jvZF (u, v),
Zxx(x, y) ↔ −u2ZF (u, v),
Zyy(x, y) ↔ −v2ZF (u, v),
Zxy(x, y) ↔ −uvZF (u, v).

Let P (u, v) and Q(u, v) be the Fourier transforms
of p(x, y) and q(x, y), respectively. Taking the Fourier
transform in (3) and using the above differentiation
properties and the following Parseval’s formula

∫∫

Ω

|Z(x, y)|2dxdy =
1
2π

∫∫

Ω

|ZF (u, v)|2dudv,

we obtain

1
2π

∫∫

Ω

[
|juZF (u, v)− P (u, v)|2 +

+ |jvZF (u, v)−Q(u, v)|2
]
dudv +

+
λ

2π

∫∫

Ω

[
|juZF (u, v)|2 + |jvZF (u, v)|2

]
dudv

+
µ

2π

∫∫

Ω

[∣∣−u2ZF (u, v)
∣∣2 + 2 |−uvZF (u, v)|2 +

+
∣∣−v2ZF (u, v)

∣∣2
]
dudv → minimum,
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Figure 1: Results of a synthetic image. (a) Intensity image. (b) Gradient vector field. (c) Reconstructed surface
with λ = 0, µ = 0. (d)Reconstructed surface with λ = 0.1, µ = 10. (e) z − y plane sliced at x=64, where solid line
for real surface, dashed line for λ = 0, µ = 0, and dotted line for λ = 0.1, µ = 10

The left side of the above expression can be expanded
as

1
2π

∫∫

Ω

[
u2ZF Z∗F − juZF P ∗ + juZ∗F P + PP ∗

+v2ZF Z∗F − jvZF Q∗ + jvZ∗F Q + QQ∗
]
dudv

+
λ

2π

∫∫

Ω

(
u2 + v2

)
ZF Z∗F dudv

+
µ

2π

∫∫

Ω

(
u4 + 2u2v2 + v4

)
ZF Z∗F dudv,

where ∗ denotes the conjugate. Differentiating the
above expression with respect to ZF and Z∗F , we can
deduce the following minimal conditions for the cost
function (3)

CuvZF + juP + jvQ = 0,

CuvZ∗F − juP ∗ − jvQ∗ = 0.

where Cuv = (1+λ)(u2+v2)+µ(u2+v2)2. Adding the
above two equations together, then subtracting the first
one from the second one, this results in the following
equations

Cuv(ZF + Z∗F ) + ju(P − P ∗) + jv(Q−Q∗) = 0,

and

Cuv(ZF − Z∗F ) + ju(P + P ∗) + jv(Q + Q∗) = 0.

Solving the above equations except for (u, v) 6= (0, 0),
we obtain

ZF (u, v) =
−juP (u, v)− jvQ(u, v)

(1 + λ)(u2 + v2) + µ(u2 + v2)2
(6)

where (u, v) 6= (0, 0). Therefore, the Fourier transform
of the surface is expressed as a function of the Fourier
transforms of given gradients p(x, y) and q(x, y). The
main result is summarized in the following theorem.

Theorem 1 The cost function (3) is minimized by
taking the Fourier transform of surface Z(x, y) as in
the formula (6).

The Frankot-Chellappa algorithm [2] as formulated
in [8], is a special case when parameter λ = 0 and µ = 0
in (3). Therefore, let λ = 0 and µ = 0 in (6), we obtain
that the objective functional (2) is minimized by taking
the Fourier transform of the surface Z(x, y) as

ZF (u, v) =
−1

u2 + v2
[juP (u, v) + jvQ(u, v)] , (7)



Algorithm 1 New algorithm for height from gradient
1: input gradients p(x, y), q(x, y), λ and µ
2: for 0 ≤ x, y ≤ N − 1 do
3: if (|p(x, y)| < maxpq & |q(x, y)| < maxpq) then
4: P1(x,y)=p(x,y); P2(x,y)=0;
5: Q1(x,y)=q(x,y); Q2(x,y)=0;
6: else
7: P1(x,y)=0; P2(x,y)=0;
8: Q1(x,y)=0; Q2(x,y)=0;
9: end if

10: end for
11: Calculate the Fourier transforms of P1(x,y) and

P2(x,y): P1(u,v), P2(u,v);
12: Calculate the Fourier transforms of Q1(x,y) and

Q2(x,y): Q1(u,v), Q2(u,v);
13: for 0 ≤ u, v ≤ N − 1 do
14: if (u 6= 0 & v 6= 0) then
15: Λ = (1 + λ)(u2 + v2) + µ(u2 + v2)2;
16: ∆1 = uP2(u, v) + vQ2(u, v);
17: ∆2 = −uP1(u, v)− vQ1(u, v);
18: H1(u, v) = ∆1/Λ;
19: H2(u, v) = ∆2/Λ;
20: else
21: H1(0, 0) = average height; H2(0, 0) = 0;
22: end if
23: end for
24: Calculate the inverse Fourier transforms of H1(u,v)

and H2(u,v): H1(x,y), H2(x,y);
25: for 0 ≤ x, y ≤ N − 1 do
26: Z(x, y) = H1(x, y);
27: end for

where (u, v) 6= (0, 0). The formula (7) can also be
derived using the above process directly. If so, the pro-
cess deriving (7) is much simpler than the one used by
Frankot-Chellappa in [2]. On the other hand, our new
algorithm is capable of dealing with additional con-
straints.

The Algorithm 1 shows our proposed method for the
task of calculating depth from gradients, which use the
transformation as specified in Theorem 1 after having
the Fourier transforms of the given gradient field. Then
an inverse Fourier transform leads to the desired depth
map, which allows us to reconstruct object surfaces in
3D space within a subsequent computation step of a
general back projection approach.

If the gradient vectors of any length are used as in-
put to the algorithm, then the reconstructed surface
is distorted. To avoid this, the value maxpq = 4 was
used in the experiments that are described in the next
section.

3. Experimental Results

For an analysis of depth from noisy gradient vector
fields, the algorithm described earlier was implemented
with one synthetic image and two real images. The dis-
crete gradients were generated using a shape from shad-
ing algorithm proposed by Ikeuchi and Horn [6]. The
Gaussian noise (with a mean set zero and a standard
deviation set to 0.01) was subsequently added to the
gradient vector fields obtained from the corresponding
surfaces.

Figure 1 shows the reconstructed surfaces for a syn-
thetic image with λ = 0, µ = 0 and λ = 0.1, µ = 10,
and the z−y plane sliced at x = 64, where the solid line
represents the real surface, dashed line represents the
reconstructed surface with λ = 0, µ = 0 , and dotted
line for λ = 0.1, µ = 10.

Figure 2 illustrates the reconstructed surfaces for a
torus object with λ = 0, µ = 0 and λ = 0.1, µ = 15 and
the z − y plane sliced at x = 100, where the solid line
represents the object surface, dashed line represents the
reconstructed surface with λ = 0, µ = 0 , and dotted
line for λ = 0.1, µ = 15.

Figure 3 shows the reconstructed surfaces for a vase
object with λ = 0, µ = 0 and λ = 0.1, µ = 10 and
the z − y plane sliced at x = 100, where the solid line
represents the object surface, dashed line represents the
reconstructed surface with λ = 0, µ = 0 , and dotted
line for λ = 0.1, µ = 10.

Our evaluation is also done by providing quantita-
tive measures on how well the reconstructed surface
matches the original by looking at the Mean Square Er-
ror (MSE). The errors for the three images are shown
in Table 1.

Surfaces Parameters MSE
Peaks λ = 0, µ = 0 15.5
Peaks λ = 0.1, µ = 10 5.8
Torus λ = 0, µ = 0 32.5
Torus λ = 0.1, µ = 15 2.7
Vase λ = 0, µ = 0 22.4
Vase λ = 0.1, µ = 10 4.0

Table 1: Mean Square Error for the reconstructed sur-
faces

From the reconstructed surfaces, we can see that the
depth recovery is improved by choosing corresponding
regularization parameters. The mean square errors are
also much smaller. Therefore, the experimental results
showed the proposed algorithm is a robust method for
surface height recovery from surface gradients.
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Figure 2: Results of a torus object. (a) Intensity image. (b) Gradient vector field. (c) Reconstructed surface with
λ = 0, µ = 0. (d)Reconstructed surface with λ = 0.1, µ = 15. (e) z − y plane sliced at x=100, where solid line for
real surface, dashed line for λ = 0, µ = 0, and dotted line for λ = 0.1, µ = 15
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Figure 3: Results of a vase object. (a) Intensity image. (b) Gradient vector field. (c) Reconstructed surface with
λ = 0, µ = 0. (d) Reconstructed surface with λ = 0.1, µ = 10. (e) z − y plane sliced at x=100, where solid line for
real surface, dashed line for λ = 0, µ = 0, and dotted line for λ = 0.1, µ = 10

4. Conclusions

We designed a new algorithm for depth from gradi-
ent vector fields. The new cost function reflects the

relations among surface height and surface gradients
more effectively. The new algorithm is capable of deal-



ing with additional constraints. The choose of regu-
larization parameters heavily affects the surface recon-
struction from noisy gradients. The relation between
the parameters and noise should be the future research
topic. The appropriateness of the approach has been
illustrated through experiments using synthetic image
and real objects.
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