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Abstract
Conventional techniques for image sharpening tend to
introduce artifacts around edges producing a ringing
effect. In this paper we propose a technique based on local
derivatives to produce signature preserving sharpening.
The performance of the technique is evaluated on synthetic
imagery and remote sensing imagery. It is found that
applying the technique in an iterative manner on zoomed
imagery produces corner preserving sharpening to sub-
pixel accuracy.

1. Introduction

The techniques for image enhancement can be classified
into two types – point operations which are global, and
spatial neighborhood techniques which are local [2].
Typical techniques for enhancement attempt to increase
the contrast. The global techniques usually based on
histogram analysis attempt to extend the dynamic range of
gray values and also try to emphasize the brighter or
darker portions of the image. However, there are many
applications especially in the analysis of remote sensing
imagery where the basic signature needs to be preserved
for performing quantitative analysis.
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Figure 1: (a) Original ramp profile, (b) Step edge profile,

(c) Effect of Contrast enhancement, (d) Effect of
conventional sharpening.

The signature denotes the reflectance properties of the
land cover represented by the pixel. The requirement in
such images is to sharpen the edges, that is, reduce the

spatial width of edges without modifying the intensity of
homogeneous regions.
A typical profile of a blurred edge (without noise) is
shown in figure 1(a), and the objective of sharpening is to
achieve the profile shown in figure 1(b). The conventional
contrast enhancement techniques only increase the
dynamic range of gray value but leave the width of the
edges untouched Fig.1 (c). The conventional technique for
sharpening involves either a Fourier analysis, where the
high frequency components are emphasized or they
involve spatial convolution masks attempting to do the
same. However, such techniques introduce over-shoots
and undershoots around the edges as seen in Fig.1 (d).
Recently there was an attempt to perform the sharpening
by local analysis of gradients (Leu [3]). However the steps
in his approach involved certain heuristics. In this paper
we use the same basic philosophy of Leu, and develop a
robust method for sharpening.
In the following section we describe our technique. This is
followed by application of the technique on synthetic and
real data. The results of the analysis are presented in
section 3. Finally we conclude with directions for further
work in automatic sharpening.

Figure 2: Process flow of Sharpening

2. The technique
The basic image model assumed is the flat facet region
model, with edges at region boundaries having a ramp
profile (figure 1(a)). Under this model, the sharpening
process attempts to convert ramp edges into step edges
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(figure 1(b)). The process can be decomposed into three
sub processes. For each pixel, the first step is to decide
whether it is part of a flat facet or not (i.e., it is part of a
ramp edge). If not, the next step is to detect which part
(low, mid or high) of the edge it lies on. If it lies on the
lower or higher part, the next step is to decide the
sharpened value to be assigned to the pixel. The process
flow is shown in figure 2.

2.1 Ramp pixel detection

The first step called ‘ramp detection’ can be performed
using a suitable gradient estimation technique. As per the
image model, the flat facet pixels should have zero (or
low) gradient magnitude. Since we are dealing with a
variable width edges, we propose using the Differential of
Gaussian (DOG) operator for estimating the gradient.
Such an operator has the advantages of a scale parameter,
as also tolerance to noise due to its gaussian smoothing
(see Canny [1]). Leu [3] had used the ‘Sobel operator’
which is of limited spatial extent. It is highly noise
sensitive and unable to handle wide edges as will be
shown in the next section. The DOG pair can also be used
to find a reliable estimate of the direction of the edge. In
this direction we expect to find a ramp profile (figure 1(a))
which we want to sharpen to a step edge profile (figure
1(b)).

2.2 Identification of pixel’s position on ramp

 The domain of a ramp can be divided into three regions –
low, mid and high. The second step is to determine which
part a given pixel belongs to. An analysis of second
derivatives in the ramp direction shows that the lower part
has positive 2nd derivative, and the higher part has
negative 2nd derivative, with a zero crossing at the middle
(figure 3).

Figure 3: Derivatives of Ramp function; the extent of the Mid
portion is only one pixel.

The zero-crossing of 2nd derivative is one of the well
known techniques for unique edge detection (see Canny
[1]). We use this property of second derivative to detect
the region of the ramp that a pixel belongs to.
The directional 2nd derivatives can easily be obtained
using masks for 2nd derivatives of Gaussian (Steger[4]).
Let Rx, Ry be the first derivatives of image function
obtained by convolving the pixel neighborhood by
corresponding gaussian masks. A unit vector in gradient
direction can be expressed as:

n = n x *i + n y *j  where

n x =   
22 RyRx

Rx

+
   and n y = 

22 RyRx

Ry

+
The second derivatives Rxx, Ryy, Rxy can also be obtained
by convolving pixel neighborhood with corresponding
gaussian 2nd derivative masks. The directional 2nd

derivative in the gradient direction is given by

 f’’ = Rxx*n x
 2 + Ryy*n y

 2 + 2*Rxy*n x*n y

The zero-crossing may not occur in the middle of a pixel.
To detect if there is a zero-crossing within a pixel’s
domain, we assume a 3rd order polynomial local behavior.
The location of zero-crossing under this assumption is
estimated as follows. Let p(t) be the gray level function in
the gradient direction, with t=0 being the pixel centre

p(t)   =  a0 + a1*t + a2*t2 + a3*t3  

p’(t)  = a1 + 2a2*t + 3a3*t2

p”(t)  = 2a2 + 6a3*t
p”’(t) = 6a3

Let the zero crossing of 2nd derivative occur at t= t0:
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If  |t0| < 0.5, the ramp centre lies within the domain of the
pixel. In such case, we decide that the pixel is part of the
middle portion of the ramp.  Otherwise, the sign of the 2nd

derivative indicates whether it belongs to the lower or
higher part. By this approach, we ensure that the middle
portion is only one pixel wide whatever be the width of
the ramp. This is a necessary condition for converging to a
step edge.

2.3 Estimating sharpened value

The sharpened value for a pixel is ideally the value of the
flat facet on the corresponding side (lower or higher) of
the ramp. A reliable estimate of this value can be obtained
by interpolating from suitable neighbors. The suitable
neighbors are those pixels lying on the same side of the
ramp, and, the interpolation is to be obtained for one unit
away from the pixel in the direction opposite to the ramp
centre (figure 4)
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Figure 4:  3x3 pixel neighborhood and possible locations of edge front

In figure 4, we have considered a 3x3 pixel neighborhood
of a pixel having an acute angle gradient direction. Each
neighbor is identified by a number ranging between 1 and
8. The edge front (center of ramp) may lie on any of the
bold lines 1,2,3,4. Lines 1,2 indicate that center of ramp
lies in the pixel’s domain, therefore the pixel is considered
as central case and its intensity is left unchanged. If edge
center lies on line 3 or 4, the pixel is considered to be of
lower case, and its intensity is interpolated. For very small
angle theta (i.e., theta almost equal to zero, the edge may
pass through pixels 3,8 ,1,2  and  for very large theta (i.e.,
theta very near to 90 degree), edge may pass through
4,3,1,2. We are absolutely sure that pixels 5,6,7 are on the
lower side of the ramp since the edge will never pass
through them. Hence these are the suitable pixels for
calculating sharpened value. The location of the one-pixel
away point is indicated by four-corner star. It can be
shown that this point will always lie inside the triangle
formed by centres of pixels 5,6, and 7. The choice of
suitable neighbors from the knowledge of ramp direction
is shown in table 1

Table 1: Choice of neighbors for  interpolation

Theta

(in degrees)

Zone Pixels used for
Interpolation

0-90 1 5,6,7
90-180 2 1,7,8

180-270 3 1,2,3
270-360 4 3,4,5

The parameters for the surface passing through these
pixels is calculated, and used to obtain the value for the
required location (one pixel away from centre). There are
various options for the model of the surface passing
through these points. We have attempted a simple linear
model:

G(x,y) = a + b*x + c*y.
Since we assure that the suitable neighbors are not
collinear, we can always find unique values for a, b and c.

We then substitute the value for (x,y) for the required
location to get the sharpened estimate. Other models that
may be considered are the exponential decay models.
Since the one pixel away point may not be a flat facet, and
may still be a ramp pixel, the technique may have to be
applied iteratively till it becomes a non-ramp pixel. In
practice, however, the number of such pixels do not
converge to zero, since we are not handling corners (edge
crossings). This also leads to rounding of corners as will
be shown in the data analysis. To circumvent this problem,
one simple solution we propose is to zoom the image and
apply the technique so that we are able to achieve sub-
pixel sharpening, and simultaneously reduce the rounding
effect.

3. Data Analysis

We analyze the performance of the technique on synthetic
imagery and real remote sensing imagery.

3.1 Synthetic data

We consider two synthetic images – one a circle and the
other a right angled isosceles triangle. The circle image is
of size 64x64 with a circle of radius 16. The circle is filled
with gray level of 192 and the background with gray level
64. We also consider the same image in opposite contrast,
that is fill circle with 64 and background with 192. The
triangle has legs of size 32. It is also considered in the two
contrasts – bright in dark and dark in bright. Each image is
blurred by convolving with a ‘gaussian filter mask’ of
varying scale parameter sigma. These input images are
shown in the top rows of figures 5 and 6. The result of
applying our technique on these images is also shown in
these figures as difference image. The difference is
between the original (unblurred) image and sharpened
images. The sharpening has been attempted by both Leu’s
technique and our technique with different values of
sigma. The difference images only show locations where
the sharpened image is different from the original. The
number of different pixels, and the RMS of the error are
summarized in table 2.
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Figure 5: Blurred circle images and difference images
after restoration

Figure 6: Blurred triangle images and difference images
after restoration

Table 2A: Restoration error analysis for Circle images

Blur = 0.8 Blur = 1.6 Blur = 2.4 Blur = 3.2
RMSE NDIFF RMSE NDIFF RMSE NDIFF RMSE NDIFF
5.8512 868 8.6273 1720 10.6157 2564 12.2715 3428
7.4186 1284 8.5618 1796 8.9161 2484 7.7824 3416
4.2182 136 5.3006 184 6.2668 732 6.4603 1524
4.2855 152 5.4576 180 6.2616 188 6.4542 864

4.4201 188 5.7510 196 6.0852 188 6.2525 852
4.5532 196 5.3333 188 5.9110 204 6.6561 852

Table 2B:Restoration error analysis for Triangle images

Blur = 0.8 Blur = 1.6 Blur = 2.4 Blur = 3.2
RMSE NDIFF RMSE NDIFF RMSE NDIFF RMSE NDIFF
5.8680 888 8.8685 1743 10.9995 2574 12.7606 3484
8.8101 1965 10.0913 1744 10.3749 2470 10.1531 3341
4.0079 128 5.2134 212 6.2759 754 8.1834 2232
4.5710 139 6.1829 172 7.9406 418 8.6630 2015

6.2511 135 8.1157 230 9.1642 416 9.9125 2015
7.8385 193 9.9838 211 10.7540 403 11.2271 2013

DOG sig=1.6

LEU
DOG sig=0.8

Blurred Image

DOG sig = 2.4

DOG sig = 3.2

Blurred Image
LEU
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An inspection of the images show that except for very
high blurring (3.2) our technique is able to restore the
images with corresponding and lower scale parameters.
However, Leu’s technique fails to restore perhaps due to
improper choice of neighbors during the interpolation
phase. The interesting patterns of the difference images for
high sigma (3.2) can be attributed to the fact that the
kernel size of the gaussian operators is very large in
comparison to the feature size.
The top most rows of tables 2A,2B show the number of
differing pixels and RMS error in the blurred image and
original unblurred image. We attempt to reduce these
numbers. The second row shows that Leu’s method does
not result in significant improvement in these numbers,
and in some cases results in an increase in both RMSE and
ndiff. Subsequent rows show that upto blur=2.4 (i.e when
the feature size is comparable to convolving kernel size)
wherever blur matches scale parameter used for
sharpening, ndiff and RMSE are lowest. Some variations
are seen in the triangle (table 2B) due to the corner
rounding effect as seen in the patterns of the last column
of figure 6.

3.2 Real remote sensing data

For real data we consider a remote sensing image of size
256x256 over a semi-urban area (figure 9a). The image is
part of a scene obtained from the PAN sensor of IRS-1D,
and has a ground resolution of 5.8 m. The portion of the
image chosen shows a wide variety of features ranging
from dense urban, large buildings, vegetation, and canal.

Figure 7: Effect of scale parameter; (left top) original,
(right top) sharpening by Leu’s method, (left and
right bottom) sharpening with sigma = 0.8 and
1.6.

Scale Parameter: We have experimented with different
values of sigma, the scale parameter, and the results are
shown in figure 7 comparing with Leu’s method which
uses the Sobel mask. This mask can be thought of as
equivalent to a sigma of 0.4. The use of large sigma is able

to sharpen wide edges. However, it also tends to round the
corners.

Iterative application: In figure 8 we show the iterative
application of the technique for one and three iterations.
Table 3 summarizes the number of pixels detected as
either non-ramp or as different parts of ramp for 16
iterations. As expected, the number of mid-ramp pixels
stabilize after a few iterations, and the number of high and
low ramp pixels decrease as they are converted to non-
ramp pixels. Further, there is no perceptible difference in
the image after 3-4 iterations. While initially 35% of the
image was either high or low ramp, within 4 iterations it
has come down to 5%. However, here too we observe that
the corners tend to get rounded.

Table 3: Ramp statistics for iterative processing

Non-ramp   Low High Middle

25873 10656 10252 12755

33977 6630 6570 12358

39089 3979 4278 12190

42593 2268 2565 12109

44591 1332 1572 12041

45850 754 951 11981

46553 475 570 11938

46992 284 326 11934

47224 175 209 11928

47414 87 119 11916

47487 57 85 11907

47547 32 56 11901

47566 22 41 11907

47588 12 32 11904

47610 7 14 11905

47616 4 9 11907

Processing on zoomed image: To avoid the rounding of
corners, we suggest zooming the image and applying the
sharpening. The image was zoomed twice using the bi-
cubic kernel and sharpened. The results are again shown in
the same scale as the original in figure 8(d). It can be
clearly seen that the rounding effect is reduced when we
analyze the zoomed image. Figure 9(b) shows the result of
zooming the image 4 times, using scale parameter 1.6, and
iterative application of the sharpening technique after 4
iterations.

4. Conclusions
We have proposed a robust method for sharpening of
images under the assumption of flat facet image model.
The technique is based on the behavior of the first and
second directional derivatives of the gray level function.
The derivatives are estimated by convolving the discrete
image with gaussian derivative masks so as to handle
noise tolerance and variable width edges without resorting
to a parametric model for the image function. The analysis



of results on synthetic images show that the technique is
robust. We suggest applying the technique in an iterative
manner and show the results on real remote sensing
panchromatic images.
Further investigations have to be carried out to
dynamically determine the appropriate scale parameter for
use in the sharpening process. Further, model for detecting
and sharpening of corners has to be developed.

   
       (a)                  (b)                  (c)                  (d)
Figure 8: Effect of iteration and zooming; (a) original, (b)
after 1 iteration, (c) after 3 iterations, and (d) zoomed
twice and sharpened after 3 iterations. Sigma = 1.6.
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Figure 9: (a) Original 256x256 image and (b) final
sharpened result after zooming 4 times and sharpening
after 4 iterations, with sigma = 1.6

____________________________________________________________________________________________________


	Back



