Structure and motion estimation from complex featuresin three views
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Abstract

In this paper we introduce the notion of a quiver, which is
a feature based on a point and a number of directions. We
investigate the constraints different kinds of quivers poseon
the camera geometry. In particular we study three types
of quivers, having one, two and three directions respec-
tively. For these quivers we investigate structure and mo-
tion estimation for two minimal cases. For 1-quivers, three
such features seen in three affine views yields a (unique)
linear solution. For three 3-quivers in three uncalibrated
projective views we get up to twelve solutions, but simula-
tions show that in most cases we get a unique solution. We
also study two-quivers seen in three views, where simula-
tions show that such features give more stable estimation of
the trifocal tensor, as opposed to only using line or point
information.

1. Introduction

tion of the geometry. Correspondences between quivers is
somewhat more difficult than for just points or lines. When
we have correspondence between two quivers we assume
that the correspondences between the directions in the quiv-
ers are also known. This means, for example, that for two
quivers with three directions, there are six possible ways of
correspondence. However in many instances one can elimi-
nate many of these. In the case of a corner on a solid build-
ing these six possible ways reduce to three.

In this paper we investigate two minimal cases for recon-
struction using quiver features. By a minimal case we mean
that omission of some data would give an infinite number of
solutions. Solving minimal cases to perform 3D reconstruc-
tion is of both theoretical and practical importance. Alge-
braic solutions obtained from the minimal cases can be used
to bootstrap robust estimation algorithms such as RANSAC
or LMS schema [5, 8, 10].

2. Preliminaries

When one considers an urban scene there are in generaft POINt in space, represented in homogeneous coordinates
many buildings and structures. These structures often con-PY X, is projected onto the image plane according to the
tain corners. In this paper we propose the use of features€duation

consisting of a point and a number of directions from this

point. We will call such featureguivers. A quiver with

Ax = PX. @
Herex are the homogeneous coordinates of the image point,

three directions is essentially what we would call a corner. P is the camera matrix and is a scalar. The camera
Quivers with one or two directions can be used if not the matrix is defined up to scale and can be decomposed as
whole of the corner is visible in all images or if the corner P = K R[I | —t], whereK is a right triangulas x 3 matrix

is located on a planar surface.

representing the calibration of the camekais a orthogo-

Often when one extract points from an image one gets nal matrix representing the orientation of the cameratand
gradient information in a neighborhood of the points. This is the focal point. In the projective camera model, the cam-
information can be used to extend a point feature to a quiver. era matrix? may be any3 x 4 matrix. If K is known the

An accurate way of estimating the position of a point is camera is said to be calibrated.Rfhas the form

to intersect a number of lines that cross in that point in the
image. If these lines correspond over images, one might as
well use the line information and consider the point and the

lines as a quiver.

P11 P12 P13 Pi4
P=| px pe2 D23 P2 |,
0 0 0 pa

In this paper we will study structure and motion estima- then the affine camera model is used. This correspondsto a
tion from only image quiver features. One difficult step in projective camera model in the case when the focal length
the reconstruction process is finding correspondences beis infinite.

tween features in different views. We will assume that these

A common problem in computer vision is to estimate

correspondences are known and concentrate on the estimathe structure of a scene and the motion of the cameras using



only image information. Consider a line in 3D space. The
line is projected to an image line. A line in a plane may
be represented in dual form in homogeneous coordinates a
1 = [a b ]T. The equation of the line iE'u = 0, where
u = [z y 1]7 denote points on the line.
The problem of determining the 3D line from its image
lines1?, with known camera matriceB; can be solved by Figure 1: Quivers with one, two and three directions.
intersecting the planeBT'1¢. A necessary condition for the
planes to meetin a line is that

rank[PT1! ... PT1I™] = 2, @) feature 3images| 4 images
line 2 4
i.e. each3 x 3 minor of the4 x m matrix above van- point 3 5
ishes. These constraints may be formulated in terms of point+ direction | 4 7
elements of the trifocal and quadrifocal tensors. Consider point+ 2 directions| 5 9
three camera§P;, P>, P3} and three corresponding lines  point + 3 directions| 6 11

{I},12,13}. Using Einsteins’ summation convention the

constraints from (2) may be written as Table 1: The number of constraints different corresponding

features give.
P~ TR0 & P x T/ =o.

order to understand how much information is needed in or-
der to solve the structure and motion problem for different
camera models using different kinds of features, the total

Here ~ denotes equality up to scale aﬁtﬁk denotes ele-
ments in the trifocal tensor, defined as

P/ number of degrees of freedom for different camera model

it pli” systems is shown in table 2. The degrees of freedom are

T7" = €irindet pJ ) calculated as the number of cameras multiplied with the

P;k number of unknowns in the current camera model minus

the degrees of freedom in the solution parameter space,

wheree;;, denotes the permutation symbol, iQs; = cf. [6]. Comparing the number of constraints and degrees

€231 = €312 = 1, €321 = €213 = €132 = —Ll ande;;, = 0 if of freedom a number of minimal cases were found, i.e.
two indices are equal. cases where the image data exactly constrains the geome-
In a similar way the four constraints from three corre- try. We have concentrated on two of these problems, that
sponding points{p1, p2, ps } may be expressed as are of most practical use. The first case is three 1-quiversin
o three affine views and the second is three 3-quivers in three

PiT/ R =0, projective views.

wherely, > are chosen as lines passing through the corre- . . . .
sponding point in views one and two. Different choices of 3. A pol nt with one direction

these lines give in total four linearly independent constraints In this section the feature defined by a point and one di-

on the tensor. . . , rection is considered. A correspondence between such fea-
The necessary and sufficient conditions for the trifocal v, a5 gives four and seven constraints on the geometry for
tensor for projective cameras are given in e.g. [4, 3, 7]and y, 00 ‘and four images respectively according to Table 2.
for an affine camera in [1]. The same analysis can be per-gne cage of such features is particularly interesting, namely
formed on four images. three such quivers seen in three affine views. This is a min-

We define a new feature;quiver, as a point and di- imal case, and it turns out that it can be solved linearly with
rections from this point, cf. Figure 1. Counting the degrees

of freedom and the image information, we get that corre-
sponding points in three images give three constraints on camera mode| 3images | 4 images

the geometry and five constraints in four images. Corre- projective 3*11-15=18| 4*11-15=29
sponding lines give two and four constraints in three and affine 3*8-12=12 | 4*8-12=20
four views respectively. However when the point is on the calibrated 3*6-7=11 4*6-7=17

line the constraints are dependent.
In Table 2 the number of constraints different corre- Table 2: The total number of degrees of freedom for differ-

sponding features give on three and four images is given. In €nt camera model systems.



a unigue solution.

3.1. Problem formulation and solution

A quiver with one direction seen in three affine views gives
four constraints on the camera geometry. And since three
affine cameras have twelve degrees of freedom according
to Table 2 this is a minimal case. A point in three views
gives essentially three constraints on the camera geometry
but gives four constraints on the trifocal tensor, cf. [6]. Sim-
ilarly it turns out that a 1-quiver gives five constraints on the
affine trifocal tensor.

The necessary and sufficient conditions for the trifocal
tensor for projective cameras are given in [4, 3, 7]. For a
trifocal tensor to be affine there are 11 linear of these con-
straints turn linear,

T113 =0, T123 =0, T133 =0, T132 =0,
TP =0, T,° =0, T3 =0, T3° = 0, ©)
T3 =0,T3' =0, T3® = 0.

These 11 constraints plus the 15 linear constraints given by
the quivers is enough to linearly estimate the trifocal tensor, ;
since the trifocal tensor has 27 entries and is determined up %
to scale.

3.2. An experiment with real data

In Figure 3.2 three views with three 1-quivers are shown.
The quivers were extracted from the images manually. The
affine trifocal tensor was then estimated linearly according | /4
to the description in the previous section. In Figure 3.2 one

can also see a number of points that were extracted from
the images to test the estimated solution. The trifocal tensor
was used to intersect the extracted points to estimate the
structure of the points. These points were then projected in
the images using the estimated tensor. The original points
are shown as asterisks and the reprojected points as circles.
Most errors are on the order of a pixel. Points further away
from the used quivers are more poorly estimated.

4. A point plustwo directions

In this section the 2-quiver is considered. From Table 2
we see that corresponding 2-quivers give five and nine con-
straints respectively on the geometry of three and four im-
ages. There are no minimal cases for any of the camera
models in Table 2. However, the 2-quiver case is partic-
ularly interesting since many algorithms for finding point Figure 2: Three images with three extracted quivers shown
correspondences in images also give information about twoin each image. Also shown are a number of points used to
directions in every point. For example, to find corner points test the estimated solution. Original points are shown as ™'
with high precision the intersection of two lines correspond- and reprojected points as 'o’.

ing to the edges around the corner is estimated.




4.1. An almost minimal case

The information in four 2-quivers viewed by three projec-
tive cameras gives a system that is slightly over determined. =
There are 20 equations and 18 unknowns. One 2-quiver ..
gives six linear constraints on the trifocal tensor, so we will ¢
have a26 — 6 x 4 = 2 parameter solution. We can use the

necessary constraints on the tensor given in [7] to solve the
parameters. These constraints are all of total degree three *
in the two parameters. If two of these non-linear constraints
are used, we g& = 9 solutions. These solutions can then

be verified using the other non-linear constraints to find the
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unique solution. Figure 3: Reprojection error for motion estimated using
points (solid), lines (dashed) and 2-quivers (dotted) for 15
4.2. Comparing reprojection errors features to the left and 25 features to the right.

A simulation was conducted to compare the accuracy in the

trifocal tensor estimation using point-, line- and 2-quiver- feature would then give seven linear constraints on the ten-
correspondences in three images. In this simulation we en-sor which would give the tensor up to a five parameter fam-
vision a scenario where points are extracted from the imagesily of solutions. The necessary constraints on the tensor
as intersection of lines. may then be used to solve for the parameters. However,
A number of lines that intersects pairwise were randomly choosing a specific parameterization of the cameras leads

placed in 3D and projected into three images. Then noiseto a polynomial system of lower degree than the one given
was added to the image lines. First the trifocal tensor was by the necessary constraints on the tensor.

computed using only point correspondences. The points

were given as the intersections of the pair of lines. Then 51 The problem statement
the trifocal tensor was computed using only line correspon-
dences, and finally the trifocal tensor was computed using
the 2-quivers given by the point of intersection and two di-
rections on the line. To compare the different tensors the
reprojection error of a lattice was calculated using the true
motion and the motions derived from the estimated tensors.
The reprojection error for the tensors with different amount
of noise on the image lines is shown in Figure 3 for 15
and 25 features. From the figure it is clear that the per- X1 Xz X3] =
formance is best for the 2-quivers. This is perhaps not so

surprising since we have more information in this case, but

it shows that if both point and line information is available and the correspondirfjimage points in each image are as-
one should use quiver features to stabilize the estimation. Itsigned to

We will solve for the camera geometry by a special parame-
terization of the cameras. We will fix the coordinate system
in space by the three quivers. Introduce a projective coordi-
nate system such that tBepoints in space are assigned to
the projective coordinates

(4)

OO O =
-0 O O
—

can also be seen from the two figures that 15 quivers seem 1 0 0
to give better results than 25 points or lines (that give about [xl X Xg] =0 1 0 (5)
the same number of constraints on tensor as 15 quivers do). 0 01

. . . . We have fixed nine degrees of the projective structure using
5. A poi nt with three directions the three points. The six remaining degrees of freedom in
space are determined by specifying one of the directions in
each quiver. These are given by specifying the following
three points on each line,

In this section we concentrate our efforts on the case of fea-
tures consisting of a point with three directions. We will
in particular study the minimal case of three such features
viewed in three projective images.

0 0 1
A feature with one point and three directions gives in _
; X X Il et 10 -1
three images six constraints on the camera geometry, cf. Ta- [Xl Xy Xs] =lo 1 1|- (6)
ble 2. Given three such features we have 18 constraints, 00 —1

which is exactly the same as the freedom in three uncali-
brated projective cameras. One could try to solve the prob- Only two degrees of freedom remain in each image, so we
lem using the trifocal tensor as in the previous section. Eachcan only specify two of the three corresponding lines. The



three corresponding lines in each image are chosen as:

|'0 1 lgc]
=11 0 If.
%8
Using this choice of coordinates we get a special form of
camera matrices

()

|-ly/lm —a —l/l; a 0 -|
P= 0 b -1 1-b{. (8)
|_ 0 b a 0 J

with (a, b) unknown.

Each camera is how parameterized with two unknowns.

Figure 4: To the left a histogram over the number of solu-
tions with the right orientationa and to the right a histogram
over the number of real solutions for about 1800 simulated

We have used the point and one of the directions in each 3-.55eg.

quiver in our parameterization. The remainihg3 feature
lines are used to solve for the six parameter®, ¢, d, e, f).

Using the rank constraints, cf. (2), we get one polynomial proceeds by constructing a more easily solved system with
constraint from each line. Due to our special choice of co- the same structure as the original problem. It solves this
ordinate systems in the images, these turn out to be of totalsystem and the 42 solutions are propagated to the solution
degree three for the lines in quiver one and two, and of de- to the original system by a homotopy continuation method.
gree two for the lines in quiver three. The polynomials have Some of these solutions go out to infinity and are not solu-
the following structure: tions to the original problem.

In order to study the number of solutions of our case we
simulated around 1800 cases with three 3-quivers in three
images. We then used PHC to solve the simulated cases.
The solver found 12 solutions in each case, of which some
were complex. We assume that we have the directions in
each image. Up til now we have not used this information,
but have only considered the lines. The information about
the directions can be used to remove solutions with wrong
orientation. It turns out that in most cases there was only
one true solution to our problem! To the left in Figure 4 a
histogram of the number of solutions with the right orienta-
tion is given and to the right of the number of real solutions.

xbde + xadf + xbcf + xaf + xcf + *df + xde + ...
...+ *xad + xbf + xbc + xbe + xbd = 0

xbde + xadf + xbcf + *xaf + xcf + xdf + xde + ...
...+ *xad + xbf + xbc + xbe + xbd = 0

xbce + xade + xacf + xaf + xcf + *ce + xde + . ..
...+ *xad + *xae + xbc + xbe + xac =0

xbce + *ade + xacf + xaf + xcf + xce + xde + ...
...+ *ad + *ae + xbc + *be + *xac = 0

xaf + xcf + *de + xad + xbc + xbe + xa + *b+ . ..
oot xct+xd+xe+xf =0

xaf + xcf + xde + xad + xbc + xbe + xa + *xb+ . ..
oot xct+xd+xe+xf =0

\
9)
Herex denotes a known coefficient depending only on im-

age data. 5.3. A real image example

. In Figure 5, three images of a scene with three quivers is

5.2. The solution shown. The quivers were manually extracted. We then used
We have to solve a system of six polynomials in six vari- our parameterization and the solver to solve for the camera
ables of which four are of total degree three, and two are geometry. In this case there were ten real solutions but only
of total degree two. A system of this type may have up to one of them had the right orientation. To test this solution
3%.22 = 324 solutions according to the theorem of Bezout, we extracted a number of points in the scene. Using our
cf. [2]. This bound is true in the case of a dense system with calculated cameras we then intersected the structure of the
general coefficients. A better bound on the number of so- points and reprojected them in the images. The result is
lutions is given by the so calledlixed volume of a system, ~ shown in Figure 5. One can see that the reprojection errors
cf. [2]. Calculating this bound for the system in (9) gives a are quite small. The original points are shown as asterisks
mixed volume equal to 42, so we have at most 42 solutions and the reprojected points as circles. The largest errors are
to our system. for points furthest from the quivers as would be expected.

In order to solve our equations we have used a polyno-
mial solver called PHC, which is described in [9]. Thispro- 6. Conclusions
gram starts with calculating the mixed volume of the sys-
tem. After the calculation of the mixed volume the solver In this paper we have introduced the notion of a quiver.



Figure 5: The three images used with three quivers. The re-
projected points using the solution obtained from the quiv-
ers is also shown with original points as ™' and reprojected
points as '0’.

We have studied three types of quivers, with one, two
and three directions respectively. For these types of quiv-
ers there are two minimal cases. For 1-quivers, three such
features seen in three affine views gives a unique linear so-
lution. For three 3-quivers in three uncalibrated projective
views we get up to twelve solutions, but simulations show
that in most cases we get a unique solution. Experiments on
real data shows that the solutions obtained from the minimal
data gives good estimates on the camera geometry.

We have also investigated 2-quivers seen in three views,
where simulations show that such features give more stable
estimation of the trifocal tensor as opposed to only using
line or point information.
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