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Abstract

In this paper we introduce the notion of a quiver, which is
a feature based on a point and a number of directions. We
investigate the constraints different kinds of quivers pose on
the camera geometry. In particular we study three types
of quivers, having one, two and three directions respec-
tively. For these quivers we investigate structure and mo-
tion estimation for two minimal cases. For 1-quivers, three
such features seen in three affine views yields a (unique)
linear solution. For three 3-quivers in three uncalibrated
projective views we get up to twelve solutions, but simula-
tions show that in most cases we get a unique solution. We
also study two-quivers seen in three views, where simula-
tions show that such features give more stable estimation of
the trifocal tensor, as opposed to only using line or point
information.

1. Introduction
When one considers an urban scene there are in general
many buildings and structures. These structures often con-
tain corners. In this paper we propose the use of features
consisting of a point and a number of directions from this
point. We will call such featuresquivers. A quiver with
three directions is essentially what we would call a corner.
Quivers with one or two directions can be used if not the
whole of the corner is visible in all images or if the corner
is located on a planar surface.

Often when one extract points from an image one gets
gradient information in a neighborhood of the points. This
information can be used to extend a point feature to a quiver.

An accurate way of estimating the position of a point is
to intersect a number of lines that cross in that point in the
image. If these lines correspond over images, one might as
well use the line information and consider the point and the
lines as a quiver.

In this paper we will study structure and motion estima-
tion from only image quiver features. One difficult step in
the reconstruction process is finding correspondences be-
tween features in different views. We will assume that these
correspondences are known and concentrate on the estima-

tion of the geometry. Correspondences between quivers is
somewhat more difficult than for just points or lines. When
we have correspondence between two quivers we assume
that the correspondences between the directions in the quiv-
ers are also known. This means, for example, that for two
quivers with three directions, there are six possible ways of
correspondence. However in many instances one can elimi-
nate many of these. In the case of a corner on a solid build-
ing these six possible ways reduce to three.

In this paper we investigate two minimal cases for recon-
struction using quiver features. By a minimal case we mean
that omission of some data would give an infinite number of
solutions. Solving minimal cases to perform 3D reconstruc-
tion is of both theoretical and practical importance. Alge-
braic solutions obtained from the minimal cases can be used
to bootstrap robust estimation algorithms such as RANSAC
or LMS schema [5, 8, 10].

2. Preliminaries
A point in space, represented in homogeneous coordinates
by �, is projected onto the image plane according to the
equation

�� � ��� (1)

Here� are the homogeneous coordinates of the image point,
� is the camera matrix and� is a scalar. The camera
matrix is defined up to scale and can be decomposed as
� � ���� ����, where� is a right triangular��� matrix
representing the calibration of the camera,� is a orthogo-
nal matrix representing the orientation of the camera and�

is the focal point. In the projective camera model, the cam-
era matrix� may be any� � � matrix. If � is known the
camera is said to be calibrated. If� has the form
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then the affine camera model is used. This corresponds to a
projective camera model in the case when the focal length
is infinite.

A common problem in computer vision is to estimate
the structure of a scene and the motion of the cameras using



only image information. Consider a line in 3D space. The
line is projected to an image line. A line in a plane may
be represented in dual form in homogeneous coordinates as
� � �	 
 ��� . The equation of the line is��� � �, where
� � ��  ��� denote points on the line.

The problem of determining the 3D line from its image
lines ��, with known camera matrices�� can be solved by
intersecting the planes� �

� �
�. A necessary condition for the

planes to meet in a line is that

�	
��� �
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��

�� � �� (2)

i.e. each� � � minor of the � � � matrix above van-
ishes. These constraints may be formulated in terms of
elements of the trifocal and quadrifocal tensors. Consider
three cameras���� ��� ��� and three corresponding lines
���� ��� ���. Using Einsteins’ summation convention the
constraints from (2) may be written as
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Here� denotes equality up to scale and� ��
� denotes ele-

ments in the trifocal tensor, defined as
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where ���� denotes the permutation symbol, i.e.���� �
���� � ���� � �, ���� � ���� � ���� � �� and���� � � if
two indices are equal.

In a similar way the four constraints from three corre-
sponding points,���� ��� ��� may be expressed as
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where��� �� are chosen as lines passing through the corre-
sponding point in views one and two. Different choices of
these lines give in total four linearly independent constraints
on the tensor.

The necessary and sufficient conditions for the trifocal
tensor for projective cameras are given in e.g. [4, 3, 7] and
for an affine camera in [1]. The same analysis can be per-
formed on four images.

We define a new feature,�-quiver, as a point and� di-
rections from this point, cf. Figure 1. Counting the degrees
of freedom and the image information, we get that corre-
sponding points in three images give three constraints on
the geometry and five constraints in four images. Corre-
sponding lines give two and four constraints in three and
four views respectively. However when the point is on the
line the constraints are dependent.

In Table 2 the number of constraints different corre-
sponding features give on three and four images is given. In

Figure 1: Quivers with one, two and three directions.

feature 3 images 4 images
line 2 4
point 3 5
point + direction 4 7
point + 2 directions 5 9
point + 3 directions 6 11

Table 1: The number of constraints different corresponding
features give.

order to understand how much information is needed in or-
der to solve the structure and motion problem for different
camera models using different kinds of features, the total
number of degrees of freedom for different camera model
systems is shown in table 2. The degrees of freedom are
calculated as the number of cameras multiplied with the
number of unknowns in the current camera model minus
the degrees of freedom in the solution parameter space,
cf. [6]. Comparing the number of constraints and degrees
of freedom a number of minimal cases were found, i.e.
cases where the image data exactly constrains the geome-
try. We have concentrated on two of these problems, that
are of most practical use. The first case is three 1-quivers in
three affine views and the second is three 3-quivers in three
projective views.

3. A point with one direction
In this section the feature defined by a point and one di-
rection is considered. A correspondence between such fea-
tures gives four and seven constraints on the geometry for
three and four images respectively according to Table 2.
One case of such features is particularly interesting, namely
three such quivers seen in three affine views. This is a min-
imal case, and it turns out that it can be solved linearly with

camera model 3 images 4 images
projective 3*11-15=18 4*11-15=29
affine 3*8-12=12 4*8-12=20
calibrated 3*6-7=11 4*6-7=17

Table 2: The total number of degrees of freedom for differ-
ent camera model systems.



a unique solution.

3.1. Problem formulation and solution
A quiver with one direction seen in three affine views gives
four constraints on the camera geometry. And since three
affine cameras have twelve degrees of freedom according
to Table 2 this is a minimal case. A point in three views
gives essentially three constraints on the camera geometry
but gives four constraints on the trifocal tensor, cf. [6]. Sim-
ilarly it turns out that a 1-quiver gives five constraints on the
affine trifocal tensor.

The necessary and sufficient conditions for the trifocal
tensor for projective cameras are given in [4, 3, 7]. For a
trifocal tensor to be affine there are 11 linear of these con-
straints turn linear,
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(3)

These 11 constraints plus the 15 linear constraints given by
the quivers is enough to linearly estimate the trifocal tensor,
since the trifocal tensor has 27 entries and is determined up
to scale.

3.2. An experiment with real data

In Figure 3.2 three views with three 1-quivers are shown.
The quivers were extracted from the images manually. The
affine trifocal tensor was then estimated linearly according
to the description in the previous section. In Figure 3.2 one
can also see a number of points that were extracted from
the images to test the estimated solution. The trifocal tensor
was used to intersect the extracted points to estimate the
structure of the points. These points were then projected in
the images using the estimated tensor. The original points
are shown as asterisks and the reprojected points as circles.
Most errors are on the order of a pixel. Points further away
from the used quivers are more poorly estimated.

4. A point plus two directions

In this section the 2-quiver is considered. From Table 2
we see that corresponding 2-quivers give five and nine con-
straints respectively on the geometry of three and four im-
ages. There are no minimal cases for any of the camera
models in Table 2. However, the 2-quiver case is partic-
ularly interesting since many algorithms for finding point
correspondences in images also give information about two
directions in every point. For example, to find corner points
with high precision the intersection of two lines correspond-
ing to the edges around the corner is estimated.

Figure 2: Three images with three extracted quivers shown
in each image. Also shown are a number of points used to
test the estimated solution. Original points are shown as ’*’
and reprojected points as ’o’.



4.1. An almost minimal case
The information in four 2-quivers viewed by three projec-
tive cameras gives a system that is slightly over determined.
There are 20 equations and 18 unknowns. One 2-quiver
gives six linear constraints on the trifocal tensor, so we will
have a�� � � � � � � parameter solution. We can use the
necessary constraints on the tensor given in [7] to solve the
parameters. These constraints are all of total degree three
in the two parameters. If two of these non-linear constraints
are used, we get�� � � solutions. These solutions can then
be verified using the other non-linear constraints to find the
unique solution.

4.2. Comparing reprojection errors
A simulation was conducted to compare the accuracy in the
trifocal tensor estimation using point-, line- and 2-quiver-
correspondences in three images. In this simulation we en-
vision a scenario where points are extracted from the images
as intersection of lines.

A number of lines that intersects pairwise were randomly
placed in 3D and projected into three images. Then noise
was added to the image lines. First the trifocal tensor was
computed using only point correspondences. The points
were given as the intersections of the pair of lines. Then
the trifocal tensor was computed using only line correspon-
dences, and finally the trifocal tensor was computed using
the 2-quivers given by the point of intersection and two di-
rections on the line. To compare the different tensors the
reprojection error of a lattice was calculated using the true
motion and the motions derived from the estimated tensors.
The reprojection error for the tensors with different amount
of noise on the image lines is shown in Figure 3 for 15
and 25 features. From the figure it is clear that the per-
formance is best for the 2-quivers. This is perhaps not so
surprising since we have more information in this case, but
it shows that if both point and line information is available
one should use quiver features to stabilize the estimation. It
can also be seen from the two figures that 15 quivers seem
to give better results than 25 points or lines (that give about
the same number of constraints on tensor as 15 quivers do).

5. A point with three directions
In this section we concentrate our efforts on the case of fea-
tures consisting of a point with three directions. We will
in particular study the minimal case of three such features
viewed in three projective images.

A feature with one point and three directions gives in
three images six constraints on the camera geometry, cf. Ta-
ble 2. Given three such features we have 18 constraints,
which is exactly the same as the freedom in three uncali-
brated projective cameras. One could try to solve the prob-
lem using the trifocal tensor as in the previous section. Each
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Figure 3: Reprojection error for motion estimated using
points (solid), lines (dashed) and 2-quivers (dotted) for 15
features to the left and 25 features to the right.

feature would then give seven linear constraints on the ten-
sor which would give the tensor up to a five parameter fam-
ily of solutions. The necessary constraints on the tensor
may then be used to solve for the parameters. However,
choosing a specific parameterization of the cameras leads
to a polynomial system of lower degree than the one given
by the necessary constraints on the tensor.

5.1. The problem statement
We will solve for the camera geometry by a special parame-
terization of the cameras. We will fix the coordinate system
in space by the three quivers. Introduce a projective coordi-
nate system such that the� points in space are assigned to
the projective coordinates
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and the corresponding� image points in each image are as-
signed to
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We have fixed nine degrees of the projective structure using
the three points. The six remaining degrees of freedom in
space are determined by specifying one of the directions in
each quiver. These are given by specifying the following
three points on each line,
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Only two degrees of freedom remain in each image, so we
can only specify two of the three corresponding lines. The



three corresponding lines in each image are chosen as:
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Using this choice of coordinates we get a special form of
camera matrices

P �
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with �	� 
� unknown.
Each camera is now parameterized with two unknowns.

We have used the point and one of the directions in each 3-
quiver in our parameterization. The remaining� 	 � feature
lines are used to solve for the six parameters�	� 
� �� �� �� ��.
Using the rank constraints, cf. (2), we get one polynomial
constraint from each line. Due to our special choice of co-
ordinate systems in the images, these turn out to be of total
degree three for the lines in quiver one and two, and of de-
gree two for the lines in quiver three. The polynomials have
the following structure:
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(9)
Here� denotes a known coefficient depending only on im-
age data.

5.2. The solution
We have to solve a system of six polynomials in six vari-
ables of which four are of total degree three, and two are
of total degree two. A system of this type may have up to
�� 	 �� � ��� solutions according to the theorem of Bezout,
cf. [2]. This bound is true in the case of a dense system with
general coefficients. A better bound on the number of so-
lutions is given by the so calledmixed volume of a system,
cf. [2]. Calculating this bound for the system in (9) gives a
mixed volume equal to 42, so we have at most 42 solutions
to our system.

In order to solve our equations we have used a polyno-
mial solver called PHC, which is described in [9]. This pro-
gram starts with calculating the mixed volume of the sys-
tem. After the calculation of the mixed volume the solver
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Figure 4: To the left a histogram over the number of solu-
tions with the right orientationa and to the right a histogram
over the number of real solutions for about 1800 simulated
cases.

proceeds by constructing a more easily solved system with
the same structure as the original problem. It solves this
system and the 42 solutions are propagated to the solution
to the original system by a homotopy continuation method.
Some of these solutions go out to infinity and are not solu-
tions to the original problem.

In order to study the number of solutions of our case we
simulated around 1800 cases with three 3-quivers in three
images. We then used PHC to solve the simulated cases.
The solver found 12 solutions in each case, of which some
were complex. We assume that we have the directions in
each image. Up til now we have not used this information,
but have only considered the lines. The information about
the directions can be used to remove solutions with wrong
orientation. It turns out that in most cases there was only
one true solution to our problem! To the left in Figure 4 a
histogram of the number of solutions with the right orienta-
tion is given and to the right of the number of real solutions.

5.3. A real image example
In Figure 5, three images of a scene with three quivers is
shown. The quivers were manually extracted. We then used
our parameterization and the solver to solve for the camera
geometry. In this case there were ten real solutions but only
one of them had the right orientation. To test this solution
we extracted a number of points in the scene. Using our
calculated cameras we then intersected the structure of the
points and reprojected them in the images. The result is
shown in Figure 5. One can see that the reprojection errors
are quite small. The original points are shown as asterisks
and the reprojected points as circles. The largest errors are
for points furthest from the quivers as would be expected.

6. Conclusions
In this paper we have introduced the notion of a quiver.



Figure 5: The three images used with three quivers. The re-
projected points using the solution obtained from the quiv-
ers is also shown with original points as ’*’ and reprojected
points as ’o’.

We have studied three types of quivers, with one, two
and three directions respectively. For these types of quiv-
ers there are two minimal cases. For 1-quivers, three such
features seen in three affine views gives a unique linear so-
lution. For three 3-quivers in three uncalibrated projective
views we get up to twelve solutions, but simulations show
that in most cases we get a unique solution. Experiments on
real data shows that the solutions obtained from the minimal
data gives good estimates on the camera geometry.

We have also investigated 2-quivers seen in three views,
where simulations show that such features give more stable
estimation of the trifocal tensor as opposed to only using
line or point information.
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