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Abstract

We present a method for segmentation of cells from color
images of blood smears in the frame work of statistical mod-
eling. The 2-part approach results in locating each of the
white blood cells (WBC) and identifying the regions cor-
responding to the nucleus and the cytoplasm, in the given
blood smear. The given RGB image is first converted to its
Hue (H), Saturation (S), Value (V) equivalent. Each pixel
is treated as a vector of the three dimensions namely H,
S and V. The components are weighted to give more im-
portance to the most distinguishing features. We segment
by modeling each of the above mentioned regions by a dis-
tinct 3-D Gaussian distribution. In the first step, K-means
clustering is performed on the 3-D feature vectors. This re-
sults in partitioning of the image into distinct regions. The
centroids and the variances obtained in the K-means step
are used to initialize Gaussian parameters for Expectation-
Maximization (EM) algorithm. The EM algorithm iterates
between segmentation and parameter estimation till conver-
gence. A total of 115 images of smears were analyzed using
our algorithm and successful segmentation was achieved in
80% of the cells contained in the images. The most impor-
tant feature of this technique is that there are no parameters
to be tuned by the user.

Keywords: Color image processing, blood cells, segmen-
tation, EM algorithm, Clustering.

1 Introduction

To automate analysis of Leukaemic diseases, automated
blood cell segmentation needs to be accomplished. A typ-
ical blood smear consists of white blood cells (WBC), red
blood cells (RBC), plasma and platelets. The goal of seg-
mentation is to locate the WBCs and to mark their nucleus
and cytoplasm regions. This will facilitate their further pro-
cessing to classify them as belonging to a particular class, or
declaring them to be either healthy or diseased. The accu-
racy of segmentation is crucial since the subsequent steps in
the analysis depend on it. Numerous segmentation methods
have been proposed for digitized cell images of peripheral
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blood or bone marrow smears.

Dorin Comaniciu et al. [1] use non-Gaussian clusters
in LUV color space. Their cell segmentation algorithm de-
tects clusters in the L U V color space and delineates their
borders by employing the gradient ascent mean shift pro-
cedure. Park [2] has carried out segmentation using Wa-
tershed algorithm. The nuclei of the WBCs are identified
based on their size. This is followed by snake algorithm in
order to draw the cell boundary. Methodical thresholding of
the histogram is used to eliminate the background. A tech-
nique based on edge detection is proposed by Ravi et al.
[6]. Here, the nucleus is segmented based on the edges that
are effectively detected by Teager Energy operator proposed
by Kaiser. Cytoplasm is segmented using selective math-
ematical morphology. Katz [5] suggests extraction of the
region of interest from a larger image around thresholded
cell nuclei. The segmentation of that image into cell and
non-cell regions is carried out using Canny edge detection
followed by a circle identification algorithm. Wermser et
al. [4] have introduced a hierarchical thresholding scheme
using a priori information regarding chromatic properties of
background and cell components. Kovalev er al. [9] have
proposed a three- step algorithm to segment white blood
cells, employing prior knowledge of color information and
using a circle-shaped approximation, Cseke [3] investigated
the multi-step segmentation scheme, which implements the
automatic thresholding method suggested by Otsu [7].

The performance of any of the above segmentation tech-
niques will be limited by one or more of the following fac-
tors: significant case-specific distinctions in blood smear
preparation, smear staining and image acquisition condi-
tions. Further, most techniques mentioned here are sensi-
tive to the right selection of parameters such as, threshold,
mask-size and initial contour. Also, the assumption of cir-
cular shape is untenable in the case of most of the abnor-
mal cells. Hence, we devise a robust technique free from
the above assumptions and the need for user-interaction to
tune parameters. In this paper, we report that two-part seg-
mentation scheme that enables us to distinguish the WBC-
cytoplasm and nucleus from the input image of a blood
smear.
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Figure 1: System Overview (a) Stage 1 (b) Stage 2

2 Segmentation scheme

Fig. 1 shows the schematic of the proposed segmentation
scheme. Our approach to segmentation is color-based. We
first locate the nuclei of the cells using K-means clustering
on the HSV equivalent of the image. We then crop a rect-
angular region around it that encompasses the entire cell.
This is shown in Fig. 1a. Subsequent processing is carried
out on the HSV equivalent of these sub-images. K-means
clustering, followed by EM-algorithm are used to get the fi-
nal segmentation of the cytoplasm and the nucleus regions.
Protrusion of neighboring cells is removed using Connected
Component Analysis. This is shown in Fig. 1b.

The histogram of the S-image (see Fig. 2a.) shows the
distinct modes corresponding to each of the regions in the
blood-smear. The WBC-nucleus can be easily identified
by the high values of saturation. In most cases, the WBC-
cytoplasm occupies the next level of saturation. However,
the ambiguity can be resolved using the spatial information
that the cytoplasm is in immediate contact with the nucleus.
The image is converted to its HSV equivalent using the fol-
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Figure 2: (a) Original histogram (b) corresponding Gaus-
sian fit

lowing equations:

H = cos-1 5[(R—G) + (R - B)] 0
[(R-G)?+(R-B)(G - B)]:
3 .
S = 1 — mmln(R, G, B) (2)
V:%(R+G+B) 3)

Each pixel in the image is represented by a vector of 3
components, namely H, S and V. Since the S-component
plays a more conspicuous part, we have weighted it by a fac-
tor of 2, while the other two features are given unit weigh-
tage. K-Means clustering is performed on this collection
of vectors. We have used 6 clusters in our experiments.
The centroids are initialized by finding the mean vector and
looking for those K-vectors that are farthest from the mean.
Euclidean distance in the feature space is used as the mea-
sure of dissimilarity. The convergence criteria is that the



difference in the centroids in successive iterations is less
than a pre-defined threshold. At the end of this run, we get
a class label for each of the pixels, and the centroids for
each of the classes.

A priori knowledge helps us conclude that the centroid
with maximum saturation corresponds to nucleus. We then
crop a rectangular region, surrounding the nucleus, of suf-
ficient area so as to enclose the entire cell. Thus a set of
sub-images, each containing only one WBC, is obtained.

Further processing of each of the sub-images involves
two steps: (i) Initial estimation of parameters using K-
means (ii) Refinement of parameters using EM

2.1 [Initial Estimation using K-Means

Each sub-image is separately processed. First, the image is
converted to its HSV components. K-means clustering is
carried out on the HSV-vectors. Repetition of the clustering
step on the small data set results in tighter clusters within
the region. We obtain a class label for each of the pixels,
and the centroids for each of the classes.

We model each of the clusters by a Gaussian distribu-
tion. The initial values of the parameters of the normal dis-
tribution can be computed using the clusters obtained by the
K-means algorithm. For the kth cluster, the mean is given

by:
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where, z; is every 3-D vector that belongs to the kth
cluster, py is the mean vector and nj is the number of
vectors in the kth cluster.

Since the three features H, S and V are independent,
the off-diagonal elements of their covariance matrix can be
taken as zero. Hence only the self-covariance of each of the
dimensions need to be computed. For the kth cluster, the
dth diagonal element of the covariance matrix is given by:
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where, ny is the number of vectors in the kth cluster, x;4
is the d-th dimension of the ith vector and jixq is the dth
dimension of the mean vector of cluster k.

The values of centroids and variances obtained from the
K-means step are used as the initial estimates of the param-
eters. These values are refined in the subsequent step. The
EM algorithm [8] is employed as follows.

2.2 Parameter-refinement using EM

The EM algorithm consists of two major steps: an Expec-
tation step, followed by a Maximization step. The Expecta-

tion is with respect to the unknown underlying variables, us-
ing the current estimate of the parameters and conditioned
upon the observations. The Maximization step then pro-
vides a new estimate of the parameters. These two steps
are iterated until convergence. The following sub-sections
explain in detail the E and M steps in our algorithm.

2.2.1 TheE Step:

The E step computes the probability S; associated with la-
beling the ¢th pixel, z; as belonging to the kth cluster,
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where, C* is the covariance matrix associated with clus-
ter k, pp is the mean vector of cluster k, ¢ and k take
values 1,2...N and 1,2... K, respectively. Here N =
width x height and K =Number of clusters.

2.2.2 The M step:

The M-step refines the model parameters given the cluster-
ing arrived at E-step.
The weighted mean of the kth cluster is updated as:
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The weighted self-correlation of the dth feature in the
kth cluster is updated as:
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where, x;4 is the dth dimension of the ith vector and figq
is the dth dimension of the mean vector of cluster k.
Both E and M-steps are carried out iteratively. The conver-
gence criteria is taken as,
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Thresholding each of the distributions results in one
region being captured in each distribution. Our a priori
knowledge of the relevant regions helps us associate them
with the Gaussian distributions obtained. As mentioned ear-
lier, the nucleus-region has the highest values of saturation.
Hence the Gaussian distribution whose mean vector has the
highest saturation component is identified as corresponding
to the nucleus. To find the cytoplasm, we look for the clus-
ter with maximum number of pixels in immediate contact
with the nucleus. Fig. 2. compares the histogram of a typi-
cal S-component image and the corresponding Gaussian fit.
The model parameters are obtained by the EM algorithm.
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Figure 3: (a) Input Image (b) Saturation Image (c) K-Means
Output (d) EM-Output
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Figure 4: (a) Protrusions of Neighboring cells (b) Image
cleared using Connected component analysis

The entire sequence of processing of a typical image is
shown in Fig. 3. The output may need a smoothening pro-
cess to eliminate specks of mis-classification, if any. This
can be accomplished using morphological operations of
open-close. Besides, stray instances of platelets might ap-
pear, whose coloring pattern resembles those of the WBCs.
These are eliminated on the basis of the minimum expected
size. The cropped rectangular patch might have protrusions
of neighboring cells along with the cell in the center, as il-
lustrated in Fig. 4(a). To eliminate these protrusions, con-
nected component analysis is performed. This helps us re-
tain the cell in the center and ignore the rest (see Fig. 4(b)).

3 Results

The proposed scheme has been applied on 115 peripheral
blood smear slides, stained using May-Grunwald-Giesma
(MGG) stain got from the collaborating clinic of the Uni-
versity of Kaiserslautern, Germany. Typical size of the im-
ages handled is 1000 x 1300. Shown in Fig. 5(a) is an
image of a blood smear containing 2 neutrophils and a lym-
phocyte. The segmented outputs obtained are illustrated
in Figs. 5, 6 and 7. The ratio of the cytoplasm-pixels to
that of the entire image is very low. To avoid the possi-
ble merging of the cytoplasm with a more-dominant cluster,
we choose the number of clusters beyond the obvious ones,
which are the RBCs, background, WBC-cytoplasm and the
WBC-nucleus. As can be seen, the image doesn’t exhibit
very good contrast between the background and the cyto-
plasm of the WBCs. Our technique successfully segments
the image as shown by the outputs.

For cells with granules in the cytoplasm, it is observed
that the granules don’t get colored homogeneously. The
shading causes the lower ends of the granules to be clus-
tered together, and the higher ends of the granules to be
separately clustered. However, smoothening of the output
helps us recover the entire cytoplasm. We have obtained a
segmentation accuracy (manual segmentation carried out by
an expert, is taken as the reference) of about 80% on our im-
age dataset of 115 images containing various types of cells,
with varying degrees of color contrast between the cells and
the background.

For our calculations, all input values are between 0 and
1. It takes about 20 iterations for the EM-algorithm to con-
verge to an error threshold of 0.00001. In cases where two
non-touching cells appear in the same rectangular patch,
care is taken to retain only one at a time. However, if the
cells happen to be touching, our system doesn’t distinguish
them as two different cells. This would need the cells to be
recognized as clustered, and a declustering technique needs
to be subsequently used.

4 Conclusions

We have developed an efficient automatic system for blood
cell segmentation from color images of blood smears. This
system requires no user-interaction or parameter tuning,
which clearly places it above most techniques convention-
ally used. The system can be easily adapted for any given
data set with a known magnification. We utilize the fact that
the nucleus exhibits maximum saturation for locating the
WBC cells. The system works even when the contrast be-
tween the background and the cytoplasm is not perceptible.
The performance is good even in cases where the nucleus
is multi-lobed, as in neutrophils. However, the technique
needs to be enhanced to handle clustered cells, to be clini-
cally used.
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Figure 5: (a) Input Image of the Blood Smear (b) Cropped image of one of the cells (c) Nucleus Mask (d) Cell-Nucleus (e)
Cytoplasm Mask (f) Cell-Cytoplasm
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Figure 6: (a) Segmentation Outputs-Example 2
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